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Abstract

Accurate under-canopy weed detection is a major challenge in precision agriculture due
to occlusion in conventional UAV imagery. This study presents an unsupervised 3D
point-cloud framework integrating UAV and nano-drone data to improve weed
identification in dense crop environments. Field experiments in a blueberry plantation
combined UAV (DJI Mavic 3M) and nano-drone (DJI Mini 4 Pro) imagery. Point clouds
were co-registered using ground control points, rigid transformation, and lterative
Closest Point (ICP). Segmentation employed Progressive Morphological Filtering (PMF)
for ground/non-ground separation, weighted K-means for soil-vegetation classification,
and DBSCAN-K-means clustering for individual weed identification. A 2D weed map
was generated by projecting crops and weed location. The integrated dataset identified
125 weed clusters compared to 52 with UAV-only data, achieving 72.8% precision,
93.8% recall, and 82.1% F1-score. Results confirm that multi-perspective point clouds
enhance under-canopy weed detection and provide a foundation for large-scale weed

mapping, and automated weeding systems.

Keywords: UAV mapping; nano-drone; 3D point cloud alignment; unsupervised

segmentation; precision agriculture; weed detection
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Chapter 1. Introduction

1.1. Background

Weeds are undesirable plants that compete with crops for essential resources
such as nutrients and water [1], leading to substantial yield reduction and increased
production costs. To safeguard agricultural productivity, weed management has long been
a major focus of agronomic research. Conventional strategies include physical,
mechanical, cultural, biological, and chemical approaches, among which chemical
herbicides remain the most widely adopted [2, 3, 4]. However, selective pressure has
accelerated the evolution of herbicide resistance in many weed species [5, 6, 7], and
excessive herbicide use poses risks to crops, ecosystems, the environment, and human
health [8, 9, 10, 11]. These challenges highlight the urgent need for more sustainable and

precise weed management strategies [12].

Unmanned Aerial Vehicles (UAVs), commonly referred to as drones, are powered
aerial systems that operate without an onboard pilot, relying on aerodynamic forces for lift
and functioning either autonomously or under remote control [13]. Equipped with diverse
payloads such as RGB, multispectral, hyperspectral, thermal, and Light Detection and
Ranging (LIDAR) sensors, UAVs enable the collection of high-resolution imagery and
spatial data for environmental monitoring [14]. In practice, UAVs have been successfully
deployed across multiple fields, including mining [15], forestry [16], and agriculture [17,
18]. Their adoption enhances the speed of data acquisition, spatial resolution, deployment
flexibility, operational safety, and cost-effectiveness compared with traditional manned

aircraft or ground-based surveys.

1.1.1. UAV mapping in agricultural use

Unmanned Aerial Vehicles (UAVs) have become one of the most widely adopted
platforms for high-resolution mapping. The most basic approach relies on image
mosaicking to generate orthophotos; however, more advanced photogrammetric methods
such as Structure from Motion (SfM) and Multi-View Stereopsis (MVS) can reconstruct
detailed three-dimensional (3D) products, including digital surface and terrain models,

textured 3D meshes, and vector-based information layers [19, 20, 21].



The effectiveness of UAV mapping lies in its ability to rapidly survey large
agricultural areas with centimeter-level accuracy, while accommodating a wide range of
sensor payloads, such as RGB, multispectral, hyperspectral, or LIDAR sensors. These
capabilities have established UAVs as indispensable tools for precision agriculture,
supporting tasks such as crop growth monitoring [22], yield estimation [23, 24], and weed
detection [25]. Beyond spectral analysis, UAV-derived point clouds also provide valuable
structural information, enabling advanced analyses such as crop height estimation [26]

and canopy volume quantification [27].

Despite these advantages, most UAV mapping workflows are inherently limited by
their top-down imaging perspective. In dense crop environments, the canopy obstructs
visibility of the under-canopy region, leading to incomplete data collection and the
omission of low-lying vegetation. Consequently, features such as under-canopy weeds
cannot be reliably detected or mapped using UAV imagery alone. This limitation directly
impacts weed management, as undetected weeds contribute to long-term persistence and
reduce the effectiveness of control strategies. Overcoming these shortcomings requires
mapping methods that complement conventional UAV perspectives with alternative
viewpoints, particularly under-canopy imagery, to achieve a more complete 3D

reconstruction of the field environment.

1.1.2. Precise weed detection

Most precision weed detection methods including robotic and UAV-based 2D
image approaches are based on computer vision and image processing, exploiting feature
differences such as texture, shape, spectral reflectance, and color between crops and
weeds to achieve classification [28]. The integration of machine learning and deep
learning has further improved detection accuracy and automation [29]. Algorithms such as
Support Vector Machines (SVM), Atrtificial Neural Networks (ANN), and Convolutional
Neural Networks (CNN) have been widely applied in weed classification tasks [30].
However, reliance on supervised learning models makes these workflows less accessible
to end-users, as they often require extensive labeled datasets and frequent model

retraining.

Weed management robots represent a typical example of ground-based solutions,

where onboard cameras capture close-range imagery for weed recognition [31]. While



such systems can achieve high accuracy, their operational coverage is limited, making
them less suitable for large-scale farmland applications. UAV-based approaches, by
contrast, offer higher scanning efficiency and scalability for field-scale weed detection.
Nevertheless, UAV imagery is constrained by flight altitude and its top-down perspective,
which restricts visibility under dense canopies and reduces detection reliability in complex

field conditions.

In contrast to both robotic and UAV-based image approaches, LIDAR and laser
scanning, either equipped on UAV or as ground equipment, methods construct 3D point
clouds and apply clustering algorithms to exploit spatial information for weed detection [32,
33]. Although these approaches can outperform traditional UAV imagery in terms of
accuracy, they are computationally expensive, require longer processing times, and

remain impractical for routine agricultural monitoring.

The limitations of existing approaches highlight the need for new solutions capable
of overcoming occlusion challenges while remaining computationally efficient and user-
friendly. Unsupervised methods that eliminate the dependency on labeled datasets and
training can enhance accessibility, ensure broader applicability, and simplify adoption in

real-world farming contexts.

1.1.3. Nano-drones

Nano-drones or nano-UAVs, commonly referring to ultra-light unmanned aerial
vehicles under 250 g, are formally defined in aviation safety regulations in several
countries, including Canada, Europe, and the United States [34]. Through strict weight
budgeting and the removal of non-essential components, nano-drones can achieve
dimensions below 10 cm, enabling them to operate effectively in confined or cluttered
environments where larger UAVs cannot maneuver [35]. Existing agricultural applications
of nano-drones include aerial monitoring inside greenhouses [36] and pollination tasks in

controlled environments [37].

Compared with larger UAV platforms, nano-drones can maneuver beneath dense
vegetation, fly closer to the ground, and capture understory information that is typically
obscured from conventional top-down aerial imagery. However, nano-drones also face

inherent limitations, including reduced GPS accuracy, shorter battery life, lower flight



stability, and constraints on sensor payload capacity [38]. These limitations prevent nano-
drones from replacing conventional UAVs for large-scale field coverage or high-precision
mapping when used alone. Nevertheless, their complementary viewing geometry makes
them highly valuable for tasks requiring close-range inspection—such as under-canopy
weed detection—when deployed alongside a conventional UAV. Integrating data from
both platforms enables a more complete 3D reconstruction, combining stable canopy-level
structure with detailed ground-level observations and effectively addressing visibility

challenges that traditional UAV systems cannot overcome.

1.2. Motivation

Although UAV-based mapping has significantly advanced precision agriculture, its
reliance on a top-down imaging perspective restricts visibility in dense crop environments,
where canopy cover prevents accurate detection of understorey vegetation. As a result,
under-canopy weeds often remain unobserved and untreated, reducing the effectiveness
of weed management strategies and contributing to long-term persistence in agricultural
fields. To overcome this limitation, there is a need to integrate under-canopy information,
such as nano-drone data, with conventional UAV mapping to generate a more complete
three-dimensional representation of the field. We define a nano-drone as a smaller drone

than a usual UAV, weighing under 250 grams.

At the same time, existing weed detection methods frequently rely on supervised
machine learning models, which demand large amounts of labeled data and repeated
training to adapt to new crops, environments, or growth stages. These requirements
create barriers for practical adoption by farmers, who often lack the time and resources
for extensive data preparation. Therefore, this research applies a series of tailored
unsupervised algorithms for point cloud alignment and weed detection, ensuring the
workflow remains general, efficient, and accessible without the need for labeled datasets.
By addressing both visibility and usability challenges, this work aims to provide a scalable

and farmer-friendly solution for precise weed mapping.

1.3. Objective and Scope

The objective of this research is to enhance weed detection accuracy by

integrating under-canopy nano-drone imagery with conventional high-altitude UAV data to



generate a more complete three-dimensional representation of agricultural fields. To
achieve this, the study employs a series of unsupervised algorithms for point cloud
alignment, crop—ground segmentation, soil-vegetation separation, and individual weed
clustering. Techniques such as RGB-weighted K-means, DBSCAN clustering,
transformation-based alignment with Iterative Closest Point (ICP), and ground filtering
methods are combined to ensure robust and scalable processing without reliance on

labeled training data.

The scope of this research includes the development and evaluation of this
unsupervised workflow in different agricultural environments, with a focus on under-
canopy weed detection and the generation of complete weed distribution maps. The
proposed method is compared against conventional UAV-only mapping to demonstrate
improvements in accuracy and coverage. While the framework is designed for adaptability
across crops and field conditions, extensions such as incorporating multispectral sensors
or real-time robotic platforms fall beyond the present scope and are suggested for future

investigation.

1.4. Contributions

This thesis introduces a novel framework for under-canopy weed detection in
dense crop environments through the integration of nano-drone and UAV imagery. The
conceptual idea of combining multi-perspective drone data was suggested by my
supervisor, Dr. Woo Soo Kim, while the full algorithmic development was designed and
implemented by me. The contributions include point cloud generation, transformation-
matrix—based alignment, fine registration using ICP, ground/non-ground separation, soil—
vegetation classification via weighted K-means, individual weed segmentation through

DBSCAN-K-means clustering, and final weed map creation.

Beyond the core contributions of this thesis, the developed unsupervised algorithm
pipeline was extended to related applications, including the extraction of tree height and
canopy volume in orchard environments. These studies highlight the broader applicability
of the proposed methods for sustainable agricultural monitoring and precision

management. The following publication supports the algorithms used in this thesis.:



e X. Xia, J. Sachar, K. Alibhai, J. Labelle, D. Demin, E. Sulle, and W. S. Kim,
“Accessible Drone Image Processing for Sustainable Resource Management of
3D Tree-like Crops Using Unsupervised Algorithms,” Information Processing in
Agriculture, https://doi.org/10.1016/].inpa.2025.11.009, (2025).

1.5. Thesis overview

This thesis aims to improve weed detection accuracy in agricultural fields by
integrating under-canopy nano-drone imagery with conventional UAV data through an
unsupervised 3D point cloud processing framework. Chapter 2 provides background
information and a literature review on UAV-based mapping, weed detection techniques,
and point cloud processing methods. Chapter 3 presents the proposed nano-drone
assisted workflow, including data acquisition, point cloud alignment, crop and soil
segmentation, and unsupervised weed clustering. Chapter 4 discusses the experimental
results, highlighting improvements in under-canopy detection and overall weed mapping
accuracy compared to conventional UAV only methods. Chapter 5 concludes the research
by summarizing the findings and outlining future work, including incorporating weed
density assessment and visualization across entire fields, and integrating the generated

weed maps with automated devices capable of performing site-specific weed control.


https://doi.org/10.1016/j.inpa.2025.11.009

Chapter 2. Literature Review

2.1. UAV mapping in agricultural

UAVs are increasingly employed in agricultural research, with the choice of
payload strongly dependent on the monitoring objective. Sensors ranging from simple
RGB cameras to advanced multispectral, hyperspectral, thermal, and LIiDAR systems

enable diverse applications, each providing unique spectral or spatial information.

RGB cameras are the most common payload due to their low cost and high spatial
resolution. Studies have shown their effectiveness for tasks such as crop emergence
monitoring in potatoes [39], yield estimation in cotton [40], and fruit detection in orchards
[41].

Multispectral cameras capture reflectance in discrete bands such as green, red,
red-edge, and near-infrared, enabling vegetation index calculations like Normalized
Difference Vegetation Index (NDVI) for crop monitoring. Guan et al. demonstrated that
UAV-derived NDVI values in rice and wheat fields were strongly correlated with fertilizer
application levels and yields, supporting their use in nutrient management and yield
prediction [42]. In tree crops, Johansen et al. used UAV multispectral imagery in
macadamia orchards to derive vegetation indices that effectively classified tree health

conditions, illustrating the value of multispectral payloads for precision agriculture [43].

Hyperspectral sensors further increase spectral resolution, recording hundreds of
contiguous bands across the visible and near-infrared spectrum. This enables detection
of subtle biochemical variations in crops that multispectral cameras cannot capture. Zarco-
Tejada et al. successfully used UAV hyperspectral imagery to estimate leaf carotenoid
content in vineyards [44], while Lucieer et al. demonstrated hyperspectral applications for
chlorophyll and pigment mapping in heterogeneous agricultural landscapes [45]. These
studies confirm the potential of hyperspectral payloads for detailed physiological
assessments, though their operational complexity and heavy data requirements remain

challenges.

Thermal cameras provide canopy temperature measurements, which can be used

as indicators of water stress and irrigation needs. Park et al. used UAV thermal imagery



to evaluate crop water status, demonstrating the potential of thermal sensing for precision
irrigation management [46]. Such applications illustrate how UAV thermal payloads

contribute to water-use efficiency and stress detection in agricultural systems.

LiDAR sensors offer direct acquisition of 3D structural information by measuring
distances between the UAV and the vegetation surface. Christiansen et al. demonstrated
UAV-mounted LiDAR for agricultural field surveying, with applications in crop height and
canopy structure estimation [47]. However, LiDAR systems are often more expensive and
data-intensive compared to passive optical sensors. Recent advances in SfM
photogrammetry have made UAV RGB imagery a practical alternative for 3D
reconstruction, producing dense point clouds that include both geometric and spectral
information. For example, UAV RGB point clouds have been applied to canopy volume
extraction in citrus orchards [27] and biomass estimation in forage crops [48], showing
comparable performance to LiDAR-based approaches but with lower cost and greater

accessibility.



@

o
(a) RGB orthomosaic image (4.3 cm GSD) (b) Color NDVI distribution map(10.5 cm GSD)

Figure 2.1. Examples of UAV mapping in agricultural applications: (a) UAV RGB
orthomosaic of cotton breeding plots [40], (b) UAV false colour
orthomosaic of macadamia orchard [43], (c) Adaptive Crop Water
Stress Index (CWSI) map derived from UAV thermal infrared image
[46], (d) RGB orthomosaic and NDVI distribution map of rice paddies
[42], (e) UAV LiDAR point cloud of winter wheat field [47].

In summary, UAV mapping in agriculture leverages different payloads to meet
diverse research objectives, from RGB-based crop monitoring to multispectral,
hyperspectral, thermal, and LIiDAR systems. While each sensor type offers unique
advantages, limitations remain, particularly in terms of canopy occlusion and data
integration. These challenges highlight the need for innovative workflows that combine
complementary perspectives, such as under-canopy nano-drone imagery with

conventional UAV mapping, to provide more complete and accurate field representations.

2.2. Weed detection approaches

Weed detection methods can generally be divided into two main categories: those
relying on 2D image information and visual analysis, and those based on 3D spatial

information combined with clustering algorithms.



2D image-based methods typically exploit differences in spectral and color
features, such as RGB (red, green, and blue), HSI (hue, saturation, and intensity), and
HSV (hue, saturation, and value) color spaces, to discriminate between crops, weeds, and
soil [49]. Multispectral and hyperspectral imaging provide additional spectral information,
enabling the calculation of a broader range of vegetation indices (VIs), thereby improving
species differentiation [50]. For instance, fusion of RGB and multispectral images has
been shown to enhance discrimination of weed patches in rice fields [51], while
hyperspectral sensing coupled with machine learning models such as self-organizing
maps (SOM), mixture of Gaussians (MOG), and SVM achieved accurate crop—weed
discrimination in field studies [52]. The development of machine learning and deep
learning further expanded detection accuracy, with methods including SVM [53], Random
Forest (RF) [54], ANN [55], CNN [56], YOLO [57], and Region-based Convolutional Neural
Networks (R-CNN) [58] applied across various crop field. To reduce the dependence on
costly manual labeling, Ferreira et al. developed an unsupervised deep learning
framework combined with semi-automatic data labeling, achieving high weed
discrimination accuracy while greatly minimizing annotation effort [59]. Table 2.1 provides
an overview of widely adopted machine-learning methods for weed detection, highlighting

the algorithm type, main features, and performance reported in previous research.

Table 2.1 Review of usual weed detection machine learning algorithms

Research ML algorithm Feature Accuracy

Weed detection in three Robust to noise

sunflower fields and two Random Forest Good with limited data Varies from
cotton fields [54] (RF) Reaqires feat o 59.1% to 84%
Castro et al. 2017 equires feature engineering

Weed detection in carrots Support Vector Strong for binary classification Varies from

crop fields [53]
Murawwat et al. 2018

Weed detection in sesame Learns nonlinear patterns

Machines (SVMs) | Sensitive to parameter tuning 50% to 95%

and melon fields [55] ﬁ‘g&gﬂg?ﬁﬁ,\l‘s) Less manual feature design g;f/'efoﬂ%’go/
Monteiro et al. 2021 Requires large dataset training ’ °
Weed detection in soybean Grass 98.58%,

Convolution Neural | Automatic feature extraction

Zﬁ;lg [25062]2 Network (CNN) Requires large dataset training ?VQZZ%I;Q 82.32%
Weed detection in sesame Real-time detection Varies from
fields [57] YOLO Lower accuracy on small weeds | 83.54% to
Chen et al. 2022 90.70%
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Research ML algorithm Feature Accuracy

Region-based

Weed detection in soybean High-precision detection

, Convolutional Average
fields [58] Neural Networks Good for gmall weeds 99 16%
Zhang et al. 2023 (R-CNN) Computationally heavy

3D spatial information-based methods leverage plant geometry, height, and
volume to overcome some of the limitations of 2D imagery, especially in under-canopy
weed detection. Structured-light stereoscopy and depth cameras, have been used to
reconstruct 3D plant models, enabling the separation of crops and weeds based on
corrected plant height and volumetric parameters [60]. LIDAR and SfM photogrammetry
further enhance the availability of point cloud data, but these methods often impose

heavier computational costs compared to 2D approaches [61, 62].
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Figure 2.2.

In addition, several other studies provide complementary insights. For example,
robot-mounted sensor system composed of a photoelectric signal modulation system and
a photoelectric signal acquisition and processing system improved the accuracy and
efficiency of the spectral reflectance measurement [63]. Likewise, video-based machine

vision prototypes tested in potato fields demonstrated real-time weed segmentation and
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classification using texture and color descriptors with high accuracy under natural light

conditions [64].

Overall, 2D image-based methods dominate current practice due to their simplicity
and wide adoption, but they are constrained by canopy occlusion and variable illumination.
In contrast, 3D approaches offer clear advantages for under-canopy detection and
structural analysis, though at the cost of computational efficiency. These complementary
strengths underscore the need for developing hybrid workflows that combine UAV and

under-canopy imaging with unsupervised algorithms for practical field deployment.

2.3. Photogrammetry and 3D point cloud

Photogrammetry is the science of obtaining reliable spatial information about
physical objects and the environment through the recording, measurement, and
interpretation of photographic images. Historically, its foundation can be traced back to
stereophotogrammetry in the late 19th and early 20th centuries, where overlapping
images were used to determine three-dimensional object coordinates [65]. With the
development of digital imaging and computational methods, photogrammetry has become
one of the most widely used approaches for generating three-dimensional datasets. A key
output of modern photogrammetry is the 3D point cloud, which represents objects as
discrete sets of points defined by their spatial coordinates (x, y, z) and often associated
color or intensity values. Compared to polygon meshes [66], which reconstruct continuous
surfaces by connecting vertices into triangles, point clouds are more lightweight and
flexible: they directly preserve raw spatial measurements, require less processing for data
generation, and are more efficient in terms of storage and compression [67]. With the
advancement of laser scanning, LIDAR, and photogrammetry, 3D point clouds have
become a standard output format for representing spatial environments [68], and their

applications now span construction [69], forestry [70], mining [71], and agriculture [72].

An illustrative example of the value of point clouds in complex environments is
found in recent work on under-canopy UAV laser scanning for forestry. Conventional UAV-
based surveys conducted above the canopy are limited by occlusion, leading to significant
data gaps in densely vegetated forests. In contrast, using UAVs to fly below the canopy
with mounted laser scanning systems has been shown to greatly improve the accuracy of

tree structural measurements, including diameter, height, and crown geometry [73]. This
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case highlights the advantage of 3D point clouds in capturing detailed information in

challenging, cluttered environments where traditional top-down imaging is insufficient.

2.4. 3D point cloud processing approaches

Processing 3D point cloud data involves a sequence of operations designed to
transform raw, unstructured measurements into meaningful geometric and semantic
information. The general workflow typically includes filtering, which removes noise and
outliers to improve data quality [74]; feature estimation, such as normals and curvatures,
that provide geometric descriptors of local structures [75]; surface reconstruction, where
point sets are interpolated into continuous surfaces or meshes [76]; and model fitting,
where geometric primitives or parametric models are adjusted to approximate observed
data [77]. Two additional core tasks are registration, aligning multiple point clouds into a
common coordinate system, and segmentation, partitioning the dataset into distinct

objects or classes.

To support these tasks, a few specialized software libraries have been developed.
Among them, the Point Cloud Library (PCL) is one of the most widely used open-source
frameworks, integrating a comprehensive set of algorithms for filtering, feature estimation,
registration, segmentation, and surface reconstruction [78]. In addition, point cloud
visualization plays a critical role in both qualitative interpretation and quantitative
validation. Open3D has emerged as a popular open-source platform offering efficient tools

for visualization and processing of 3D data [79].

In the context of this research, registration and segmentation represent the most
critical components of the point cloud workflow. Registration ensures accurate alignment
between UAV and nano-drone datasets, while segmentation enables the separation of
soil, crops, and weeds. Therefore, the following subsections will provide a more detailed

literature review of these two processes.

2.4.1. 3D point cloud registration

Registration methods for point clouds can generally be divided into two categories:
conventional optimization-based methods and deep neural network-based methods [80].

Within the first category, the most influential is the ICP algorithm, introduced by Besl and
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McKay in 1992 [81]. ICP iteratively minimizes the distance between two point sets by
alternating between establishing correspondences matching each point in the source
cloud with the nearest point in the target and estimating the rigid transformation that
minimizes the mean squared error. The process is repeated until convergence, which is
guaranteed to a local minimum, though performance depends heavily on the initial

alignment.

Besides ICP, Procrustes analysis [82] has also been applied for point cloud
alignment. The classical Procrustes method seeks the optimal rigid transformation
(rotation, translation, and optionally scale) between two point sets by minimizing least-
squares residuals. Building on this foundation, Toldo et al. proposed a global registration
approach that embeds Generalized Procrustes Analysis into an ICP framework, enabling
simultaneous alignment of multiple views while distributing registration errors evenly
across all datasets [83]. This hybrid strategy leverages the robustness of ICP in handling
partial overlaps with the mathematical rigor of Procrustes optimization, thus mitigating the

accumulation of errors that typically arise in sequential pairwise registration.

Beyond these foundational methods, significant efforts have been made to improve
the robustness and efficiency of registration, particularly under conditions of noise, varying
density, and partial overlap. For example, Yang et al. proposed a local feature statistics
histogram (LFSH) descriptor combined with an optimized sample consensus (OSAC)
algorithm, forming a coarse-to-fine pipeline that significantly improved efficiency and
robustness in both model and scene registration tasks [84]. Huang et al. introduced a
method based on Gaussian Mixture Models (GMMs) which focus more on global

information while ignore local structure distortion [85].

In addition to optimization-based techniques, a growing body of research has
applied deep neural networks to point cloud registration. PointNetLK adapts the Lucas—
Kanade framework by leveraging PointNet features as an alignment function, eliminating
explicit correspondence search. Deep Closest Point (DCP) further integrates attention
mechanisms and a differentiable Singular Value Decomposition (SVD) layer, allowing end-
to-end rigid transformation estimation with higher accuracy under large motions. CorsNet
concatenates the local features with the global features and regresses the point cloud

correspondence [86, 87, 88]. Collectively, these methods highlight the potential of

15



learning-based approaches to improve robustness to noise, initialization, and cross-

source variation.

Overall, conventional optimization-based methods remain attractive for their
interpretability, computational efficiency, and solid mathematical guarantees. In contrast,
deep learning—based methods demonstrate stronger adaptability to complex, large-scale,
or cross-source data by learning robust feature representations directly from data.
Together, these two approaches are complementary: optimization-based methods provide
reliable baselines with low computational cost, while deep learning approaches offer

enhanced generalization and robustness, particularly in challenging field environments.

2.4.2. 3D point cloud segmentation

Segmentation is the process of grouping raw point clouds into subsets that share
common geometric or radiometric properties, such as surface orientation, curvature, or
reflectance. It is an essential step in point cloud processing, as it enables subsequent
classification, modeling, and analysis by reducing complexity and giving structure to

otherwise unorganized data.

Conventional segmentation methods can be broadly categorized into several
groups. Edge-based segmentation relies on detecting discontinuities in local surface
properties such as normals or curvature to delineate object boundaries but often suffers
from sensitivity to noise. Region growing methods start from seed points and expand
clusters based on similarity criteria like curvature or planarity, offering more robustness to
noise but requiring careful parameter tuning. Model-fitting approaches, such as Random
Sample Consensus (RANSAC) or Hough Transform, extract geometric primitives (planes,
spheres, cylinders) directly from point sets and are particularly effective for man-made
structures. Hybrid methods combine multiple strategies to leverage the strengths of

different approaches [89].

With the advancement of machine learning, segmentation methods have
expanded into supervised, unsupervised, and semi-supervised approaches. Supervised
methods rely on annotated datasets to learn semantic classes. Widely used models
include RF, Markov Network, SVM, VoxNet, PointNet, ACNN [90]. Zhou et al. ulitized SVM
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and boosting to segment soybean plants from 3D point cloud [91], and Qi et al. verified

segmentation performance of PointNet++, MinkowskiNet and FPconv in the research [27].

Unsupervised methods partition point clouds without labels, leveraging intrinsic
data properties. The most common examples are K-means and Density-based spatial
clustering of applications with noise (DBSCAN). K-means, first introduced by MacQueen
in 1967, partitions data into k clusters by minimizing within-cluster variance [92, 93]. While
effective, it requires the number of clusters to be predefined. To address this limitation,
Sinaga and Yang proposed an unsupervised K-means that automatically estimates the
optimal cluster number without initialization [94]. DBSCAN, on the other hand, groups
points based on density, marking sparse points as noise [95]. It is widely used for irregular
and non-spherical clusters but is sensitive to parameters. Building upon this, Border-
Peeling Clustering was introduced as a non-parametric extension that iteratively peels
away border points to reveal cluster cores, thereby adapting more flexibly to varying
densities [96].

Semi-supervised methods attempt to reduce annotation cost by combining a small
set of labeled data with unsupervised clustering. A representative approach is CANUPO,
which applies a multi-scale dimensionality criterion to lidar point clouds for classifying
natural scenes with limited supervision, showing utility in geomorphology and other

complex environments [97].

(@) (b) (c)

@

Figure 2.3. Examples of 3D point cloud segmentation result by: (a) edge-based
segmentation [98], (b) region growing method [89], (c) model-fitting
approach [89], (d) unsupervised K-means clustering [94], (e) border-
peeling clustering [96], (f) semi-supervised method: CANUPO [97].
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Supervised methods rely on annotated training datasets to learn semantic classes,
unsupervised methods automatically partition data based on intrinsic properties without
labels, while semi-supervised methods combine limited annotations with unsupervised
clustering to reduce labeling effort. These approaches enable higher flexibility and
adaptability to diverse datasets, though they may also require significant computational

resources.

A Digital Terrain Model (DTM) is an ordered array of numbers representing the
spatial distribution of terrain characteristics [99]. It provides a bare-earth representation by
removing above-ground features such as vegetation and buildings. DTMs are essential in
diverse applications, including flood modeling [100], landslide prediction [101],
hydrological analysis [102], forestry inventory [103], and precision agriculture [26], where
accurate knowledge of the terrain surface forms the foundation for reliable decision-

making.

DTM extraction is therefore a key objective in point cloud segmentation. Among
the commonly used geometric filters, the Progressive Morphological Filter (PMF) gradually
increases the window size of morphological operators combined with elevation difference
thresholds to remove nonground features while retaining ground points [104]. This
approach has shown good performance in both flat and mountainous terrains, though it
may produce omission errors in steep areas where true terrain points are incorrectly
removed. Another widely used method is the Cloth Simulation Filter (CSF), which treats
the inverted point cloud as a virtual surface and simulates a cloth dropping over it [105].
The cloth surface adapts to the ground while ignoring elevated objects, making CSF
intuitive and effective across various landscapes. However, its accuracy can be influenced

by parameter settings such as grid resolution and cloth stiffness.

Beyond these, other approaches have been developed. The Grid-Based Approach
rasterizes the point cloud into regular grid cells, then applies hierarchical filtering and
weighting functions to detect and replace nonground elements. This method leverages
efficient image-processing techniques and allows high-resolution DTMs to be generated
from airborne laser scanning data [106]. Similarly, the Simple Morphological Filter (SMRF)
modifies the classic morphological filtering framework with adaptive elevation thresholds,
offering an alternative for separating ground from nonground points in complex

environments [107].

18



Together, these methods provide the foundation for generating accurate DTMs
from UAV or airborne LiDAR point clouds, balancing trade-offs between computational

efficiency, adaptability to terrain types, and sensitivity to parameter selection.
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Chapter 3. Nano-drone Assisted Unsupervised
Weed Detection

3.1. System workflow

The proposed nano-drone assisted weed detection framework consists of four

interconnected modules, as illustrated in Figure 3.1.

The first module is Data Acquisition, where imagery is collected using both
conventional UAV and nano-drone. This dual-perspective acquisition ensures that
information from both canopy and sub-canopy layers is captured, overcoming the

occlusion problem of traditional UAV-based mapping.

The second module is Point Cloud Processing and Alignment, where imagery from
both sources is processed into 3D point clouds. Reference points are extracted to support
the initial alignment through a transformation matrix, followed by fine alignment using the
Iterative Closest Point (ICP) algorithm. This ensures accurate registration between multi-

source datasets.

The third module, Crop Segmentation, partitions the integrated point cloud into
ground and non-ground points. From this process, the non-ground subset is isolated to

represent crop structures, providing the foundation for subsequent vegetation analysis.

The final module is the Weed Classifier, which applies unsupervised clustering
algorithms to the ground point cloud. Soil-vegetation segmentation is first performed using
a weighted K-means algorithm, followed by individual weed segmentation with clustering
methods. The outputs are then compiled into a weed distribution map, enabling clear

visualization of weed presence and patterns across the field.

This modular workflow integrates multi-perspective data acquisition with
unsupervised point cloud processing, allowing for precise, scalable, and training-free

weed mapping suitable for diverse agricultural environments.
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Figure 3.1. Workflow chart of the nano-drone assisted weed detection
3.2. Data acquisition

3.2.1. Experiment site

The experiment was conducted in a blueberry field located in Abbotsford, British
Columbia, Canada (49.02°N, 122.43°W). The study area covers approximately 675 m?
and consists of five rows of blueberry crops, with each row containing 25-35 individual
plants. This site was selected as a representative small-scale field, and the planting
density in this field is relatively high, leading to significant canopy closure. Under such
conditions, conventional UAVs with a top-down perspective often fail to capture under-
canopy details due to occlusion from dense foliage. This limitation highlights the need for
integrating nano-drone imaging with conventional UAV mapping to obtain more complete

3D information for crop and weed analysis.
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Figure 3.2.  Satellite image of the experiment site in Abbotsford, BC, Canada, and
the zoomed section showing densely planted blueberry rows.

Figure 3.2 presents the satellite image of the experimental site along with a
zoomed-in section of the crop rows, illustrating the dense planting structure and potential

under-canopy occlusion.

3.2.2. UAV and nano-drone image acquisition

Two UAV platforms were employed in this study: the DJI Mavic 3M (SZ DJI
Technology Co. Ltd, Shenzhen, China), referred to as the conventional UAV, and the DJI
Mini 4 Pro (SZ DJI Technology Co. Ltd, Shenzhen, China), used as the nano-drone. The
Mavic 3M is equipped with a 5280 x 3956 pixel camera and was flown at an altitude of
150 ft (45.72 m) to capture nadir images of the experimental field. In contrast, the Mini 4
Pro provides a higher resolution of 8064 x 6048 pixels and was deployed at a much lower
altitude of 6 m above its departure location, enabling detailed imaging of under-canopy

regions.

Ground Control Points (GCPs) were placed across the site to improve point cloud
accuracy and facilitate multi-source alignment [108, 109]. Four standard chessboard
GCPs were positioned at the four corners of the field to enhance photogrammetric
reconstruction precision. Additionally, three custom red GCPs were distributed in a

triangular configuration within the field to serve as reference points for the transformation
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matrix during alignment. These GCPs were fabricated from polyester fabric, which
minimized light reflection variability under changing illumination conditions and improved

image consistency. Photographs of the UAV platforms and GCPs are shown in Figure 3.3.

(b)

(d)

Figure 3.3. UAV platforms and Ground Control Points (a) DJI Mavic 3M, (b) DJI
Mini 4 Pro, (c) chess-pattern GCP, (d) custom red GCP.

The Mavic 3M flight path was automatically generated by DJI Smart Farm
software, following a structured grid pattern with two orthogonal directions to maximize
coverage (Figure 3.4a). In contrast, the Mini 4 Pro required manually defined waypoints
due to the low altitude of flight near the canopy, where precise maneuvering was essential.
Given its lightweight design (249 g), the nano-drone was more susceptible to instability
during flight, resulting in a less regular distribution of capture points (Figure 3.4b). For both
UAVs, the image acquisition settings included an 80% frontal overlap and 75% side
overlap. The image interval of the nano-drone was calculated based on its Ground
Sampling Distance (GSD) and flight altitude.
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Figure 3.4. UAV flight paths (a) automatic grid flight plan of DJI Mavic 3M, (b)
manual setup waypoints path of DJI Mini 4 Pro.

3.2.3. Ground truth

On the same day as the UAV and nano-drone data acquisition, a manual ground
truth survey of weed distribution was conducted. The dominant weed species observed in
the blueberry field included Curly Dock, Brome Grass, Houttuynia cordata, Thistle, and
Mouse-ear Chickweed, with representative field photographs shown in Figure 3.5. During
this process, small blueberry offshoots that grew close to the ground and visually

resembled weeds were carefully excluded to ensure accuracy.
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Figure 3.5. Field photographs of representative weed species in the blueberry
experimental site: (a) Curly Dock, (b) Brome Grass, (c) Houttuynia
cordata, (d) Thistle, (e) Mouse-ear Chickweed.

Due to the dense planting density of the blueberry rows, most weeds were located
beneath the canopy and could not be captured by conventional nadir UAV imagery. This
limitation highlighted the necessity of adopting a nano-drone-assisted UAV mapping and
3D point cloud-based weed detection strategy. A total of 97 weeds were recorded: 73
under the canopy and 24 in inter-row gaps or alongside blueberry plants. The ground truth
data were subsequently digitized into a weed distribution map, which served as a

reference baseline for evaluating the performance of the proposed detection algorithm.

3.3. Point cloud data processing and alignment

Following the acquisition of UAV and nano-drone imagery, point cloud data were
generated through photogrammetric reconstruction. However, due to differences in sensor
type, flight altitude, and imaging perspective, the resulting point clouds often exhibit
discrepancies in scale, orientation, and completeness. To ensure that both datasets could
be effectively integrated, a systematic point cloud processing and alignment pipeline was
implemented. The process involved reference point extraction, initial alignment using

transformation matrices, and refinement through iterative optimization methods. This step
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is critical for fusing complementary top-down and under-canopy perspectives, thereby

producing a unified and structurally consistent 3D representation of the crop field.

Conventional UAVs provide a broad top-down perspective, enabling efficient
reconstruction of canopy structures across large areas with consistent coverage. Their
main limitation lies in the lack of under-canopy visibility, where weeds and stems are
heavily occluded. In contrast, nano-drones flown at low altitudes offer valuable under-
canopy details, capturing structural information that UAVs cannot access. However, nano-
drone scanning also presents challenges, including lower GPS accuracy, reduced flight
stability due to their lightweight design, and limited coverage per flight. By integrating these
two complementary perspectives, it becomes possible to generate a unified 3D model that
preserves canopy integrity while enhancing understorey representation. Figure 3.6
provides a conceptual illustration of this integration process, highlighting how UAV and

nano-drone data collectively contribute to more complete field reconstructions.

=

Normal UAV scanning Nano-drone scanning Integrated 3D model

Figure 3.6. Conceptual illustration of UAV and nano-drone complementary
scanning for integrated 3D reconstruction.

An illustrative example is presented in Figure 3.6, showing point clouds collected
in Central Park, Burnaby, BC, Canada (49.22°N, 123.01°W). The conventional UAV-
derived point cloud provides detailed canopy structure but lacks under-canopy visibility,
while the nano-drone-derived point cloud captures understory details at the cost of
reduced coverage. Their alignment and fusion demonstrate the potential to generate more

complete reconstructions by integrating multi-perspective data.
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Figure 3.7. Example of point cloud alignment by steps (a) raw point cloud by two
sources, (b) integrated point cloud by transformation matrix, (c)
integrated point cloud by ICP fine alignment.

3.3.1. Point cloud data generation and processing

All UAV and nano-drone images were processed in Pix4Dmapper (Pix4D S.A.,
Prilly, Switzerland) to generate 3D point clouds through standard photogrammetric
workflows, including feature matching, bundle adjustment, and dense reconstruction. The
resulting point cloud datasets were exported in PLY format, with spatial information stored
in an arbitrary coordinate system using metric units (meters). RGB color attributes were
normalized to the range of 0-1, facilitating efficient reading and visualization in Python
using the Open3D library.

Since the visualization capacity of Open3D is limited by window size and rendering
quality, CloudCompare [110] was additionally employed to present high-resolution

visualizations and to examine finer details of the reconstructed structures.

Denoising is also an important step in point cloud processing, as it improves the
overall quality of the dataset by removing outliers. In this study, denoising was carried out
using two types of filters to improve point cloud quality by removing outliers. The statistical
outlier removal filter identifies and eliminates points whose average distance to a fixed
number of neighbors exceeds a threshold defined by the standard deviation [111]. This
approach preserves the overall structure of the dataset while filtering away sparsely
distributed noise. Complementing this, the radius outlier filter evaluates the local point
density within a specified radius and removes any point that has fewer than a minimum

number of neighbors [112]. This method is particularly effective at suppressing small
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spurious clusters, such as isolated artifacts near the ground surface. Together, these two

filters ensured a cleaner and more reliable dataset for subsequent processing steps.

3.3.2. Initial Alignment by Transformation Matrix

The purpose of this step was to achieve a coarse registration of the UAV and nano-
drone point clouds by constructing a transformation matrix from three common reference
points. Compared with applying ICP directly, this procedure reduces computational load

and provides a more stable initialization.

The reference points were obtained from the Red Ground Control Points (GCPs)
placed in the field. Although the theoretical RGB value of these GCPs is (255, 0, 0), the
actual field conditions—such as illumination and surface reflectance—prevent them from
appearing as perfectly pure red. To automate their detection, a DBSCAN clustering
algorithm with RGB thresholds was applied. Only points with red values greater than 180,
green values less than 120, and blue values less than 100 were retained for clustering,
thresholds that were empirically determined from the observed GCP colors. Because
noise points in the scene could still satisfy these conditions, a relatively high min_samples
parameter was used, ensuring that only dense red clusters corresponding to the GCPs

were preserved.

For each detected GCP, the centroid coordinate of the cluster was extracted to
represent its spatial location. This yielded three points from the UAV point cloud and three
from the nano-drone point cloud. To establish one-to-one correspondence between them,
a triangle geometry—based ordering method was used. The procedure compared the side
lengths of triangles formed by the three GCPs in each dataset and tested all permutations
to identify the configuration that minimized the difference in side length distributions. In

this way, the two sets of reference points were matched consistently in space.

Finally, with three corresponding pairs of reference points, a rigid transformation
matrix consisting of rotation and translation was computed. This transformation completed
the initial alignment of the nano-drone point cloud to the UAV point cloud, providing a well-

integrated dataset for subsequent processing.
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3.3.3. Fine Alignment by ICP

After the initial alignment was established through the transformation matrix, the
Iterative Closest Point (ICP) algorithm was employed to refine the registration between
the UAV and nano-drone point clouds. ICP operates by iteratively minimizing the distance
between corresponding points in two datasets. In each iteration, correspondences are first
identified by pairing each point in the source cloud with its nearest neighbor in the target
cloud. A rigid transformation consisting of rotation and translation is then estimated to
minimize the mean squared error of these correspondences. This process is repeated

until convergence criteria are met.

The performance of ICP depends largely on its parameter settings. Key
parameters include the maximum correspondence distance, which restricts the search
radius for matching points, and the convergence tolerance, which defines the threshold
for stopping iterations once the alignment error stabilizes. In this study, these parameters
were tuned to balance computational efficiency with registration accuracy, ensuring
reliable alignment despite differences in density and perspective between the two point

clouds.

Upon completion of the ICP refinement, the UAV- and nano-drone—derived
datasets were merged into a single, well-integrated point cloud. This integrated dataset
provided both canopy-level and under-canopy information, forming the foundation for

subsequent weed segmentation and mapping.

3.4. Crop Segmentation

The first step toward weed detection is to isolate crops from ground points, which
includes soil, weed and other non-weed vegetation, in the reconstructed 3D point cloud.
Separating crop structures from the underlying terrain ensures that subsequent
segmentation and classification processes focus only on relevant plant information while

reducing computational complexity.

In this workflow, the Progressive Morphological Filter (PMF) was applied for
ground and non-ground separation. The advantage of PMF lies in its robustness when
dealing with point clouds that are not perfectly co-registered. Unlike the Cloth Simulation

Filter (CSF), which relies on a simulated physical surface to approximate the terrain, PMF
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incrementally expands a structuring element to detect and remove ground points based
on local elevation differences. This morphological approach is less sensitive to
misalignments between datasets, making it particularly suitable for our fused UAV and

nano-drone point cloud.

During experiments, we observed that when applied to point clouds generated
solely from conventional UAV data, both CSF and PMF yielded comparable results.
However, when processing the combined multi-perspective dataset, PMF consistently
performed better, producing cleaner ground segmentation and more reliable extraction of
crop structures. This advantage provided a more accurate foundation for the subsequent

soil-vegetation and weed segmentation steps.

3.5. Weed Classifier

3.5.1. Soil-vegetation Segmentation

After crop segmentation, the remaining ground points were further classified into
two categories: soil and vegetation (including weeds and small non-crop plants). This soil—
vegetation separation was performed using a weighted K-means clustering algorithm,
where six features were selected as input: x, y, relative z, Excess Green Index (ExG), and
Excess Green minus Excess Red Index (ExGR). The feature weights were set as [0.4,

0.4, 2.3, 2.0, 1.0], respectively, to emphasize the most discriminative attributes.

Relative elevation (relative z) was chosen instead of the absolute z value because
the point clouds were reconstructed in an arbitrary coordinate system. By normalizing
elevation relative to local ground level, the feature more reliably distinguished vegetation

protruding above the soil surface from background terrain irregularities.

The ExG and ExGR indices were derived from RGB color attributes to capture
spectral differences between vegetation and soil. ExG enhances the contribution of the
green channel relative to red and blue, making it sensitive to chlorophyll-rich plant
structures. EXGR further contrasts green dominance against red dominance, improving
robustness under variable illumination. Strengthening the weights of relative z, ExG, and
ExXGR ensured that clustering was driven primarily by structural height and vegetation-
specific spectral properties, which are the most reliable indicators for separating soil from

vegetation in complex agricultural environments.
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The resulting vegetation point cloud was retained as the input for the next stage of
processing, namely individual weed segmentation. By filtering out soil background and
preserving only vegetation-related structures, the workflow ensured that subsequent
clustering focused directly on detecting and isolating individual weed instances from the

crop field.

3.5.2. Individual Weed Segmentation

Prior to individual weed segmentation, the vegetation point cloud was denoised to
remove spurious points and residual crop tips that might remain after DTM extraction. This
preprocessing ensured that subsequent clustering would focus on meaningful vegetation

structures rather than noise artifacts.

The cleaned vegetation cloud was then segmented using the DBSCAN algorithm,
which partitions data into clusters of varying density without requiring prior knowledge of
the number of groups. The resulting clusters represented a mixture of grass patches,
individual weeds, and occasional noise components. For each cluster, several geometric
features were computed, including maximum linear extent, two-dimensional projected
area, and three-dimensional volume. These descriptors provided quantitative measures

of cluster morphology that could help distinguish weeds from other vegetation.

Using these features, a K-means clustering algorithm was applied to divide all
clusters into two categories: weed clusters and non-weed clusters. Field observations
revealed that the maximum length of common weeds in the experimental site rarely
exceeded 80 cm. Based on this observation, a post-processing filter was introduced to
discard clusters with maximum lengths above this threshold, thereby improving

classification accuracy by excluding unlikely candidates.

This combination of density-based clustering, geometric feature extraction, and
rule-based filtering produced a reliable weed segmentation outcome, forming the basis for

constructing the final weed distribution map.

3.5.3. Weed map creation

Following the identification of weed clusters, the final step was to generate a 2D

visualization of weed distribution across the field. Both the crop point cloud and the weed
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point cloud were projected onto a two-dimensional plane. To enhance interpretability, the
crop projection was rendered in green, while the weed projection was rendered in red. The
weed layer was then overlaid on top of the crop background, producing a weed distribution
map that provides an intuitive view of weed locations relative to crop rows. This map not
only facilitates visual assessment of weed density and spatial distribution but also serves

as a practical output format for future integration with precision agriculture tools.
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Chapter 4. Results and Discussion

4.1. Point Cloud Data

The experiment produced three sets of point clouds: one derived from conventional
UAV imagery, one from nano-drone imagery, and a final integrated dataset combining
both sources (Figure 4.1). Each dataset exhibited distinct structural and visual

characteristics that directly reflect their acquisition perspectives.

(b)

(d)

Figure 4.1. Visualization of the reconstructed point clouds at the experimental
blueberry field: (a) orthographic view of conventional UAV-derived
point cloud, (b) oblique view of conventional UAV-derived point cloud,
(c) orthographic view of nano-drone-derived point cloud, (d) oblique
view of nano-drone—derived point cloud, (e) orthographic view of the
integrated point cloud, (f) oblique view of the integrated point cloud.
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The conventional UAV point cloud provided a continuous top-down reconstruction
of the crop canopy. While the canopy rows were well defined, the under-canopy regions
were largely occluded, leaving visible gaps beneath the blueberry shrubs. In contrast, the
nano-drone point cloud, captured from a near-ground perspective, successfully
represented under-canopy structures, including stems and low-lying weeds. However, due
to close-range flights and the limited stability of the lightweight platform, the nano-drone
data appeared less uniform, with redundancy and irregular point spacing. The integrated
dataset combined the complementary strengths of both sources, producing a more
complete reconstruction that included both canopy-level and under-canopy details,

thereby providing a stronger foundation for subsequent weed segmentation.

(@) (b)

Figure 4.2. Zoomed section of experiment site point cloud (blueberry field, near-
ground view): (a) conventional UAV data, showing limited under-
canopy detail; (b) integrated UAV and nano-drone data, providing
enhanced representation of ground-level structures.

To illustrate these differences, Figure 4.2 presents a zoomed section of the near-
ground view. In the UAV-only data (Figure 4.2a), the lower canopy and ground structures
are poorly represented, whereas in the integrated dataset (Figure 4.2b), the combination

of UAV and nano-drone inputs captures significantly more detail at ground level.

To substantiate these qualitative observations, quantitative metrics were extracted

and summarized in Table 4.1. The first metric, average point density, reflects the overall
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coverage of the reconstructed scene. The second metric, percentage of ground-level
points, specifically evaluates how much structural detail was captured below the canopy.
Here, ground level was defined as the relative elevation range of 0—0.5 m, a threshold
chosen to encompass weeds and low-lying vegetation typically growing at or just above
the soil surface, while excluding most of the crop canopy. Results show that the nano-
drone dataset achieved the highest proportion of ground-level points (37.14%), while the

UAV dataset captured fewer details below the canopy.

Table 4.1. Quantitative characteristics of different point clouds
. . Ground-level percentage (%)
Average point density (pts/m2) (range 0-0.5m)
UAV 55074 34.23
Nano-drone 132589 37.14
Integrated 184909 34.60

(@ (b) (©)
UAV — Relative z distribution 1e6 Nano-drone — Relative z distribution 1e6 Aligned — Relative z distribution
600000 14

500000 12

400000
€
3 300000
8

200000

100000 L

0 0.0 0.0
0.0 05 10 15 2.0 0.0 05 10 15 2.0 0.0 05 10 15 2.0

Relative z (m) Relative z (m) Relative z (m)

Figure 4.3. Vertical distribution histograms of point relative elevation of: (a) UAV
data, (b) nano-drone data, (c) integrated dataset.

Figure 4.3 further supports this analysis with vertical distribution histograms of
relative elevation. The UAV dataset (Figure 4.3a) shows a strong concentration at canopy
height with minimal ground detail. The nano-drone dataset (Figure 4.3b) displays a
broader distribution, particularly in the lower elevation range, while the integrated dataset
(Figure 4.3c) presents a more continuous vertical profile, combining canopy and under-

canopy information.

Overall, the results confirm that integrating UAV and nano-drone point clouds
enhances both completeness and structural continuity of field reconstruction. By
combining high canopy detail from UAV imagery with the enriched under-canopy detail
from nano-drone imagery, the integrated dataset provides a superior foundation for weed

detection in dense crop environments.
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In the subsequent workflow, both the integrated point cloud and the UAV-only point
cloud were processed through the same segmentation and classification steps. This
parallel design allows for a direct comparison between the two datasets, with the goal of
quantifying and demonstrating the benefits introduced by nano-drone—assisted mapping.
By applying identical procedures to both inputs, the analysis highlights how the additional
under-canopy detail captured by the nano-drone enhances weed identification

performance in dense crop environments.

4.2. Crop Segmentation

The first step of segmentation involved applying the Progressive Morphological
Filter (PMF) to separate the complete point cloud into ground and non-ground
components. The ground point cloud included bare soil, weeds, and other low-lying
vegetation, while the non-ground point cloud primarily represented the crop canopy. After
segmentation, both components were color-coded to provide an intuitive visualization of
the results, as shown in Figure 4.4 (a) and (d), where red indicates ground points and

green corresponds to non-ground points.
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Figure 4.4. Visualized result of: (a) colorized binary segmentation map of
integrated dataset, (b) ground point cloud of integrated dataset, (c)
non-ground point cloud of integrated dataset, (d) colorized binary
segmentation map of UAV-only dataset, (e) ground point cloud of
UAV-only dataset, (f) non-ground point cloud of UAV-only dataset.

Both the integrated dataset and the UAV dataset produced similar crop
segmentation outcomes. In both cases, the blueberry crop rows were clearly separated
from the soil, and the overall structure of the plantation was well preserved. However, the
integrated dataset exhibited slightly more noise points in the ground region. This effect
arises from the imperfect fusion between the UAV and nano-drone point clouds, which

introduced minor inconsistencies and layering artifacts in the ground surface. Despite this
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drawback, the integrated point cloud still provides richer detail for subsequent weed

detection, especially in under-canopy regions where UAV-only data remain insufficient.

4.3. Individual Weed Segmentation

Following crop segmentation, soil-vegetation segmentation was performed on the
ground point cloud using a weighted K-means scheme. The objective of this step was to
remove all bare-soil points from the ground layer and retain only vegetation points (weeds

and other low plants) as inputs to the subsequent individual-weed clustering.
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Figure 4.5. Visualized result of: (a) colorized binary segmentation map of
integrated dataset, (b) segmented vegetation point cloud of integrated
dataset, (c) denoised vegetation point cloud of integrated dataset, (d)
colorized binary segmentation map of UAV-only dataset, (e)
segmented vegetation point cloud of UAV-only dataset, (f) denoised
vegetation point cloud of UAV-only dataset.

Figure 4.5 summarizes the intermediate results for the integrated dataset (top row,
a—c) and the UAV-only dataset (bottom row, d—f). Panels (a) and (d) show the color-coded
two-class maps (brown as soil, green as vegetation) produced by the weighted K-means
segmentation. Panels (b) and (e) visualize the retained vegetation point clouds after
removing soil. Panels (c) and (f) present the denoised vegetation clouds, where spurious

points and small residual crop tips were suppressed before clustering.
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Qualitatively, the soil-vegetation separation was successful for both datasets and
aligns with the expected composition of the ground layer: bare soil beneath the canopy,
grassy inter-row strips, and under-canopy weed patches preserved as vegetation.
Comparing the two sources, the integrated dataset clearly exhibits richer under-canopy
vegetation detail—more continuous patches and finer structures—reflecting the added

visibility provided by nano-drone imagery.

The denoised vegetation point cloud obtained from the soil-vegetation
segmentation served as the input for the next step of the individual weed segmentation
pipeline. The process begins by applying DBSCAN to group vegetation points into
clusters, followed by a K-means—based binary classification to separate weed clusters
from non-weed vegetation. Finally, clusters identified as weeds are extracted for

downstream weed map creation.
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Visualized result of: (a) DBSCAN segmentation of integrated dataset,
(b) colorized weed and non-weed of integrated dataset, (c) final weed
clusters of integrated dataset, (d) DBSCAN segmentation of UAV-only
dataset, (e) colorized weed and non-weed of UAV-only dataset, (f) final
weed clusters of UAV-only dataset.
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Figure 4.6 illustrates the workflow for the integrated dataset (a—c, top row) and the
UAV-only dataset (d—f, bottom row). Panels (a) and (d) show the DBSCAN clustering
outputs, where each cluster is visualized in a unique color. Panels (b) and (e) display the
K-means classification results: red clusters represent non-weed vegetation, while multi-
colored clusters indicate detected weed patches. Panels (c) and (f) show the final weed-
only clusters extracted from the vegetation point cloud, which were later used for

generating the weed distribution maps.

Qualitatively, both datasets capture inter-row and under-canopy vegetation, but
the integrated dataset reveals a substantially richer weed distribution. Many under-canopy
weeds that were invisible in the UAV-only point cloud were successfully detected in the
integrated data. Quantitatively, the integrated dataset produced 125 distinct weed
clusters, compared to only 52 clusters detected in the UAV-only dataset. This outcome
confirms our core hypothesis: integrating nano-drone imagery with conventional UAV data
significantly improves under-canopy weed detection by recovering structural details

otherwise occluded from a top-down perspective.

4.4. Final Weed Map

The final weed distribution map is shown in Figure 4.7, where the green areas
represent the 2D projection of crop points and the red areas denote the detected weed
clusters. As illustrated, most of the weeds are located in the under-canopy region. This
visualization clearly highlights the challenge of relying solely on conventional UAV

imagery, as many of these weeds would be occluded from an overhead view.
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Figure 4.7. Weed distribution map of: (a) ground truth, (b) integrated dataset, (c)
UAV-only dataset.

Table 4.2. Accuracy evaluation of weed detection
Integrated dataset UAV-only dataset
True positive 91 32
False positive 34 20
False negative 6 65
Precision 72.8% 61.5%
Recall 93.8% 33.0%
F1-score 82.1% 43.0%

Accuracy evaluation results are summarized in Table 4.2. The integrated dataset,
which integrates UAV and nano-drone point clouds, achieved a precision of 72.8%, recall
of 93.8%, and an overall F1-score of 82.1%. In contrast, the UAV-only dataset showed
lower performance, with a precision of 61.5%, recall of 33.0%, and an F1-score of 43.0%.
These results demonstrate that while the integrated dataset produced more false positives
than UAV-only, it also detected substantially more true positives and missed far fewer
weeds. The high recall value indicates that the integrated dataset provides a more
complete representation of weed distribution, reducing the risk of undetected weeds in

under-canopy areas.

Overall, the weed maps confirm the effectiveness of integrating nano-drone
imagery with UAV data. The combined dataset not only enriches under-canopy detail but
also improves detection accuracy, validating the hypothesis that multi-perspective point

clouds enhance under-canopy weed identification.
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Chapter 5. Conclusion and Future Work

5.1. Conclusion

This thesis developed and rigorously evaluated a nano-drone—assisted,
unsupervised 3D point-cloud framework for under-canopy weed detection in perennial
crop fields. The framework addressed the critical limitation of conventional UAV imagery,
namely the occlusion of weeds beneath dense crop canopies, by integrating

complementary aerial and near-ground perspectives.

The proposed workflow consisted of four main stages: (i) dual-perspective data
acquisition, combining UAV canopy-level coverage with nano-drone near-ground
observations; (ii) coarse alignment through DBSCAN-based GCP extraction and rigid
transformation via triangle geometry; (iii) fine alignment using lterative Closest Point (ICP);
and (iv) multi-level segmentation, including PMF-based ground/non-ground separation,
weighted K-means soil-vegetation classification, and DBSCAN-K-means clustering for
individual weed identification. The final output was a 2D weed distribution map that directly

supports site-specific field management.

Field experiments conducted in a densely planted blueberry farm confirmed that
the integrated multi-perspective dataset significantly outperformed UAV-only data. The
integrated dataset identified 125 weed clusters, more than double the UAV-only result of
52 clusters. Accuracy metrics further reinforced this improvement, with precision of 72.8%,
recall of 93.8%, and F1-score of 82.1% compared with 61.5%, 33.0%, and 43.0% for UAV-
only data. Vertical distribution histograms highlighted the structural complementarity of the
two datasets, validating the hypothesis that multi-perspective integration enhances weed

detection in occluded environments.
Key contributions of this thesis can be summarized as follows:

¢ Novel integration of UAV and nano-drone imagery: Demonstrated the feasibility
and effectiveness of combining top-down and under-canopy perspectives for

agricultural point-cloud reconstruction.
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e Robust point-cloud alignment pipeline: Developed a practical two-step alignment
strategy (GCP-based transformation + ICP) that ensured structural consistency

between heterogeneous datasets.

o Novel unsupervised weed detection framework: Implemented a multi-stage
segmentation process capable of separating soil, crop, and weed clusters without

reliance on labeled data.

¢ Validated improvement in detection accuracy: Provided quantitative evidence that
multi-perspective integration nearly doubled the number of identified weed clusters
and significantly improved precision, recall, and F1-score compared with UAV-only

workflows.

Despite these achievements, several limitations remain, including residual
misalignment artifacts in the fused ground layer, parameter sensitivity for density-based
clustering, and false positives arising in heterogeneous ground conditions. These
challenges highlight the need for improved data acquisition stability, registration

refinement, and post-processing strategies in future work.

5.2. Future Work

Building upon the contributions of this research, several directions for future

investigation are identified:
(1) Enhancement of georeferencing accuracy and data acquisition stability.

Improving the positional accuracy of UAV platforms, particularly nano-drones, is
critical for reducing residual misalignment and ensuring reliable reconstructions. Future
work should explore the integration of RTK/PPK GNSS systems, denser GCP deployment,
and synchronization of camera and IMU/GNSS measurements. Additionally,
improvements in nano-drone stability—through enhanced waypoint navigation, visual-
inertial odometry, or terrain-following flight modes—may further increase the reliability of

near-ground acquisitions.

(2) Development of large-scale weed density mapping tools.
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Beyond cluster-level detection, the framework can be extended to generate field-
scale weed density maps, enabling farmers to identify infestation hotspots and assess
spatial variability. Grid-based or row-based density representations, combined with
temporal monitoring, would provide valuable decision support for adaptive weed

management strategies.
(3) Integration with autonomous weeding systems.

A longer-term objective is to establish a practical, closed-loop weed-management
workflow in which UAV-acquired imagery and the proposed under-canopy detection
framework directly support robotic weeding platforms. In such a system, farmers would

follow a simple operational sequence:

1. deploy a conventional UAV and a nano-drone to capture canopy-level and under-
canopy images,

2. upload the raw images into a user-friendly software package,

3. automatically generate a fused 3D point cloud and corresponding weed distribution
map, and

4. send the georeferenced weed map to an autonomous weeding robot for targeted
intervention.

Compared with using a robot alone—which must physically explore the full field to
perform real-time weed detection—integrating pre-generated weed maps dramatically
improves operational efficiency. The robot no longer needs to survey the entire field
visually; it only navigates to predetermined weed locations and performs localized removal.
This reduces energy consumption, decreases field traversal time, minimizes mechanical

wear, and increases the robot’s effective daily treatment capacity.

To support real-world adoption, the full framework will be encapsulated into a
streamlined software platform. The tool will accept raw UAV and nano-drone imagery as
inputs, automatically execute alignment, segmentation, and weed-clustering algorithms in
the background, and output a standardized georeferenced weed map. Once generated,
the map can be transmitted directly to a weeding robot through standard communication
protocols, enabling rapid “scan — analyze — act” operation. Such a pipeline lowers the
technical barrier for farmers, enhances decision-making efficiency, and moves toward a

fully automated, precise, and sustainable weed-management system.
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Appendix A. Point Cloud Processing and Weed
Detection Code (Python)

import os
import numpy as np
import open3d as 03d

import myfunc as mf

os.system('cls’)

UAV_PLY = r"C:\path\to\uav.ply"
NANO_PLY = r"C:\path\to\nano.ply"
OUT_DIR = r"C:\path\to\out"

os.makedirs(OUT_DIR, exist_ok=True)

uav = mf.load_pcd(UAV_PLY)

nano = mf.load_pcd(NANO_PLY)

# Extract 3 red targets from both clouds
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uav_gcps = mf.extract_red_gcps_dbscan(uav, eps=0.08, min_samples=60)

nano_gcps = mf.extract_red_gcps_dbscan(nano, eps=0.08, min_samples=60)

# Order via triangle geometry matching

ref3, tgt3 = mf.match_gcp_order_by_triangle(uav_gcps, nano_gcps)

# Rigid transform nano -> uav
rig = mf.rigid_transform(np.vstack(tgt3), np.vstack(ref3), with_scale=False)

nano_init = mf.apply_transform(nano, rig.R, rig.t, rig.s)

nano_icp, T_icp, reg = mf.icp_refine(nano_init, uav, max_corr_dist=0.20)

aligned = uav + nano_icp # integrated PCD

mf.save_pcd(aligned, os.path.join(OUT_DIR, "A_aligned.ply"))

print("[SAVE] Integrated aligned cloud -> A_aligned.ply")

def branch_process(prefix: str, whole_pcd: 03d.geometry.PointCloud):

prefix: 'N' for UAV-only, 'A' for integrated
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# 3.1 denoise
clean = mf.remove_statistical_outliers(whole_pcd, 15, 2.0)
clean = mf.remove_radius_outliers(clean, radius=0.05, min_points=8)

mf.save_pcd(clean, os.path.join(OUT_DIR, f*{prefix}_clean.ply"))

# 3.2 PMF ground/non-ground

g_path = os.path.join(OUT_DIR, f{prefix} ground.ply")

ng_path= os.path.join(OUT_DIR, f{prefix} _nonground.ply")

g_out, ng_out = mf.pmf _filter_file(
input_path=0s.path.join(OUT_DIR, f"{prefix}_clean.ply"),
ground_out_path=g_path,
nonground_out_path=ng_path,

max_window_size=40, slope=1.1, initial_distance=0.9, max_distance=2.8,

cell_size=1.2

# Fallback if PDAL not available: split nothing

ground_pcd = mf.load _pcd(g_path) if g _out else 03d.geometry.PointCloud()

nonground_pcd= mf.load_pcd(ng_path) if ng_out else whole pcd

# 3.3 denoise ground before soil-veg split
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if not ground_pcd.is_empty():
ground_pcd = mf.remove_statistical_outliers(ground_pcd, 15, 2.0)
ground_pcd = mf.remove_radius_outliers(ground_pcd, 0.05, 8)

mf.save_pcd(ground_pcd, os.path.join(OUT_DIR, f*{prefix}_ground_d.ply"))

# 3.4 soil-vegetation KMeans (weights: X,Y,relZ,ExG,ExXGR)

# For relZ plane, we use the UAV ground as reference if available; otherwise the

current ground.

ref_ground = ground_pcd if prefix == "N" else mf.load_pcd(os.path.join(OUT_DIR,
"N_ground.ply")) if os.path.exists(os.path.join(OUT_DIR, "N_ground.ply")) else
ground_pcd

_, soil_mask, veg_mask, colored = mf.kmeans_soil_vs_veg(ground_pcd, ref_ground,
weights=(0.4,0.4,2.3,2.0,1.0))

mf.save_pcd(colored, os.path.join(OUT_DIR, f{prefix}_soilveg_colored.ply"))
soil = ground_pcd.select_by_index(np.where(soil_mask)[0])

veg = ground_pcd.select_by_index(np.where(veg_mask)[0])
mf.save_pcd(soil, os.path.join(OUT_DIR, f*{prefix}_soil.ply"))

mf.save_pcd(veg, os.path.join(OUT_DIR, f{prefix} veg.ply"))

# 3.5 weed candidates (use crop rows from non-ground)
crop = nonground_pcd
crop = mf.voxel_downsample(crop, 0.02)

veg = mf.voxel _downsample(veg, 0.02)
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# 3.6 cluster weeds (DBSCAN -> KMeans size split -> length filter)
labels, clusters, centers, colored_db = mf.cluster_weeds_dbscan_xyz(

veg, eps=0.14, min_samples=18, axis_weights=(1,1,1)

mf.save_pcd(colored_db, os.path.join(OUT_DIR, f{prefix}_weed_dbscan_color.ply"))

keep_ids, , = mf.select small_clusters_by kmeans(clusters, k=2)

keep_ids = mf.enforce_max_cluster_length(keep_ids, clusters, max_len=1.0,

mode="xy")

# Build weeds-only cloud (all red) & multi-color result

uniq = sorted(set(labels) - {-1})

lab2idx = {lab: i for i, lab in enumerate(uniq)}

weed_labels = [lab for lab in uniq if lab2idx[lab] in keep_ids]

if len(weed_labels) > 0:
mask_pts = np.isin(labels, weed_labels)
weeds_only = veg.select_by_index(np.where(mask_pts)[0])
weeds_only red = 03d.geometry.PointCloud(weeds_only)

weeds_only red.paint_uniform_color([1.0, 0.0, 0.0])
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mf.save_pcd(weeds_only_red, os.path.join(OUT_DIR,
f"{prefix}_weeds_only_red.ply"))

# 3.7 Weed map (2D overlay)
# crops = non-ground (green); weeds = weeds_only_red (red)
crops_for_map = crop

weeds_for_map = weeds_only_red if len(weed_labels) > 0 else
03d.geometry.PointCloud()

mf.make_weed_map(
crops_for_map, weeds_for_map,
out_png=os.path.join(OUT_DIR, f"{prefix}_weed_map.png"),

pixel_size=0.02, margin=0.5, point_dilate=2

# UAV-only branch

branch_process("N", uav)

# Integrated (aligned) branch

branch_process("A", aligned)

print("\n[Done] Main pipeline completed.\n")
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# (DBSCAN / KMeans weed post-processing & 2D maps follow your original flow/styles

# for A_* and N_* branches. )
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Appendix B. Function Define Code (Python)

import json
import os
from dataclasses import dataclass

from typing import List, Tuple, Optional

import numpy as np

import open3d as 03d

def load_pcd(path: str) -> 03d.geometry.PointCloud:
p = o3d.io.read_point_cloud(path)
if p.is_empty():
raise ValueError(f"[load_pcd] Empty or unreadable: {path}")

return p

def save_pcd(pcd: 03d.geometry.PointCloud, path: str):

o3d.io.write_point_cloud(path, pcd)

def visualize_pcd(*geoms, window="0Open3D", point_size=2.0):
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vis = 03d.visualization.Visualizer()
vis.create_window(window_name=window)
for g in geoms:

vis.add_geometry(g)
opt = vis.get_render_option()
opt.point_size = float(point_size)
vis.run()

vis.destroy_window()

def voxel_downsample(pcd: 03d.geometry.PointCloud, voxel_size: float) ->

03d.geometry.PointCloud:

return pcd.voxel_down_sample(max(voxel_size, 1e-6))

def remove_statistical_outliers(
pcd: 03d.geometry.PointCloud, nb_neighbors=15, std_ratio=2.0
) -> 03d.geometry.PointCloud:

pcd2, = pcd.remove_statistical outlier(nb_neighbors=nb_neighbors,

std_ratio=std_ratio)

return pcd2
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def remove_radius_outliers(
pcd: 03d.geometry.PointCloud, radius=0.05, min_points=8
) -> 03d.geometry.PointCloud:
pcd2, _ = pcd.remove_radius_outlier(nb_points=min_points, radius=radius)

return pcd2

def threshold_red_mask(rgb: np.ndarray, r_min=180, g_max=120, b_max=100) ->

np.ndarray:

"""Return boolean mask for near-red points (colors 0-255 or 0—1 both ok)."""
C =rgb.copy()
if C.max() <= 1.0:

C = (C * 255.0).astype(np.uint8)

r,g,b=C[, 0], C[;, 1], C[;, 2]

return (r >=r_min) & (g <= g_max) & (b <= b_max)

def dbscan_labels(X: np.ndarray, eps: float, min_samples: int) -> np.ndarray:

from sklearn.cluster import DBSCAN

return DBSCAN(eps=eps, min_samples=min_samples).fit_predict(X)
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def extract_red_gcps_dbscan(
pcd: 03d.geometry.PointCloud,
eps=0.08,
min_samples=50,
r_min=180, g_max=120, b_max=100
) -> List[np.ndarray]:
"""Return list of 3D centroids for each red GCP cluster."""
P = np.asarray(pcd.points)
C = np.asarray(pcd.colors)
mask = threshold_red_mask(C, r_min=r_min, g_max=g_max, b_max=b_max)
if mask.sum() == 0:
raise ValueError("[GCP] No red-like points found with threshold.")
Psub = P[mask]
labels = dbscan_labels(Psub, eps=eps, min_samples=min_samples)
uniq = [lab for lab in sorted(set(labels)) if lab != -1]
if len(uniq) < 3:
raise ValueError(f'[GCP] Only {len(uniq)} red clusters found; need =3.")

centroids = [Psub[labels == lab].mean(axis=0) for lab in uniq]

return centroids # unsorted; sort next step
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def _triangle_side_lengths(pts: np.ndarray) -> np.ndarray:
a, b, c=pts
return np.array([
np.linalg.norm(a - b),
np.linalg.norm(b - c),
np.linalg.norm(c - a)

)

def match_gcp_order_by _triangle(

ref_pts3: List[np.ndarray], tgt_pts3: List[np.ndarray]
) -> Tuple[np.ndarray, np.ndarray]:

"""Match target GCP order to reference by triangle geometry (shape-invariant).""

from itertools import permutations

ref = np.vstack(ref_pts3)[:3]

best = None

best diff = 118

ref_len = triangle_side_lengths(ref)

for perm in permutations(np.vstack(tgt_pts3)[:3]):

tgt = np.vstack(perm)

diff = np.linalg.norm(np.sort(ref _len) - np.sort(_triangle_side lengths(tgt)))
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if diff < best_diff:
best_diff = diff
best = tgt

return ref, best

@dataclass

class RigidResult:
R: np.ndarray # (3,3)
t: np.ndarray # (3,)

s: float # scale (1.0 for rigid)

def rigid_transform(A: np.ndarray, B: np.ndarray, with_scale=False) -> RigidResult:
"""Compute transform that maps A -> B (rows are points)."""
assert A.shape == B.shape and A.shape[1] ==
muA = A.mean(axis=0)

muB = B.mean(axis=0)

AA = A - muA
BB = B - muB
H=AAT @ BB
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U, S, Vt = np.linalg.svd(H)
R=VtT@U.T
if np.linalg.det(R) < 0:
Vi[-1, ] *= -1
R=VtT@U.T
if with_scale:
varA = (AA**2).sum()
s = (S.sum() / varA) if varA > 1e-12 else 1.0
else:
s=1.0
t=muB-s*(R@ muA)

return RigidResult(R=R, t=t, s=s)

def apply_transform(pcd: 03d.geometry.PointCloud, R: np.ndarray, t: np.ndarray, s:
float=1.0):

P = np.asarray(pcd.points)
P2=(s*(R@P.T)). T+t

out = 03d.geometry.PointCloud(pcd)
out.points = 03d.utility.Vector3dVector(P2)

return out
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def icp_refine(
source: 03d.geometry.PointCloud,
target: 03d.geometry.PointCloud,
max_corr_dist=0.2,

init=03d.geometry.TransformationEstimationPointToPoint()

trans_init = np.eye(4)
reg = 03d.pipelines.registration.registration_icp(
source, target, max_corr_dist, trans_init,

03d.pipelines.registration. TransformationEstimationPointToPoint()

T = reg.transformation
src2 = 03d.geometry.PointCloud(source)
src2.transform(T)

return src2, T, reg

def pmf filter_file(input_path: str,
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ground_out_path: str,

nonground_out_path: str,

max_window_size=40, slope=1.1,
initial_distance=0.9, max_distance=2.8,
cell_size=1.2) -> Tuple[Optional[str], Optional[str]]:

Try PDAL PMF via subprocess. If PDAL not available, returns (None, None).
import subprocess, tempfile
if not os.path.exists(input_path):

raise FileNotFoundError(input_path)

# PDAL pipeline for PMF on generic PLY (reads XYZ, optional RGB)
pipe = {
"pipeline": [
{"type": "readers.ply", "filename": input_path},
{"type": "filters.pmf",
"max_window_size": max_window_size,
"slope": slope,
"initial_distance": initial_distance,

"max_distance": max_distance,
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"cell_size": cell_size},
{"type": "filters.range", "limits": "Classification[2:2]"},

{"type": "writers.ply", "filename": ground_out_path, "storage_mode": "ascii"},

pipe2 = {
"pipeline": [

{"type": "readers.ply", "filename": input_path},
{"type": "filters.pmf",
"max_window_size": max_window_size,
"slope": slope,
"initial_distance": initial_distance,
"max_distance": max_distance,
"cell_size": cell_size},
{"type": "filters.range", "limits": "Classification[2:2]"},
{"type": "filters.assign", "assignment": "Classification[:]=0"},

{"type": "filters.merge"},

{"type": "writers.ply", "filename": nonground_out_path, "storage_mode": "ascii"}

try:
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with tempfile.NamedTemporaryFile(mode="w", suffix=".json", delete=False) as f1:
json.dump(pipe, f1); p1 = f1.name

with tempfile.NamedTemporaryFile(mode="w", suffix=".json", delete=False) as f2:
json.dump(pipe2, f2); p2 = f2.name

subprocess.run(["pdal", "pipeline", p1], check=True)

subprocess.run(["pdal", "pipeline", p2], check=True)

return ground_out_path, nonground_out_path

except Exception as e:
print("[PMF] PDAL not available or failed:", e)

return None, None

def compute_ExG(colors01: np.ndarray) -> np.ndarray:
C = colors01
if C.max() <=1.0:
r,g, b=C[:;, 0], C[:, 1], C[;, 2]
else:
r, g, b = C[:, 0)/255.0, C[:, 11/255.0, C[:, 2]/255.0

return 2*g-r-b
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def compute_ExGR(colors01: np.ndarray) -> np.ndarray:
C = colors01
if C.max() <=1.0:
r,g,b=C[, 0], C[;, 1], C[;, 2]
else:
r, g, b = C[:, 0)/255.0, C[:, 11/255.0, C[:, 2]/255.0
exg=2*g-r-b
exr=14%-g

return exg - exr

def fit_plane_svd(points_xyz: np.ndarray):
P = np.asarray(points_xyz)
¢ = P.mean(axis=0)
U, S, Vt = np.linalg.svd(P - ¢, full_matrices=False)
n=Vi-1, 1]
n =n/(np.linalg.norm(n) + 1e-12)
a,b,c0O=n
d = -np.dot(n, c)

return (a, b, c0, d), n

def relative_z from_plane(points_xyz: np.ndarray, plane):
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a, b, ¢, d = plane
P = np.asarray(points_xyz)
z_plane = (-d - a*P[:,0] - b*P[;,1]) / (c + 1e-12)

return P[:,2] - z_plane

def kmeans_soil_vs_veg(
ground_pcd: 03d.geometry.PointCloud,
ref_ground: o3d.geometry.PointCloud,
weights=(0.4, 0.4, 2.3, 2.0, 1.0),
k_nn_ref=3,

random_state=42

Features: [X, Y, relZ, ExG, ExGR)]. relZ derived from plane fit to ref_ground.

Returns: labels, soil_mask, veg_mask, colored_copy

from sklearn.cluster import KMeans

P = np.asarray(ground_pcd.points)
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C = np.asarray(ground_pcd.colors) if ground_pcd.has_colors() else np.zeros((len(P),

3))
# fit plane on reference ground for robust relZ
plane, _ = fit_plane_svd(np.asarray(ref_ground.points))
relZ = relative_z_from_plane(P, plane)

ExG = compute_ExG(C); ExGR = compute_ ExGR(C)

X = np.column_stack([P[:,0], P[:,1], relZ, ExG, ExGR])
W = np.asarray(weights, dtype=float)

Xw = X*W # simple diagonal weighting

km = KMeans(n_clusters=2, n_init=10, random_state=random_state).fit(Xw)

labels = km.labels_

# Heuristic: soil has lower ExG/ExGR and lower relZ

# Determine which cluster is soil by comparing mean (relZ + ExG)
c0 = X[labels==0]; c1 = X[labels==1]

score0 = c0[:,2].mean() + c0[:,3].mean()

score1 = c1[:,2].mean() + c1[:,3].mean()

soil_label = 0 if score0 < score1 else 1

soil_mask = (labels == soil_label)
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veg_mask = ~soil_mask

# Build colored copy for quick view (brown soil, green veg)
out = 03d.geometry.PointCloud(ground_pcd)

col = np.tile([0.6, 0.4, 0.2], (len(P), 1))

col[veg_mask] =[0.0, 0.8, 0.0]

out.colors = 03d.utility.Vector3dVector(col)

return labels, soil_mask, veg_mask, out

# (Adapted to your weights/feature-set used in your scripts )

def cluster_weeds_dbscan_xyz(

weeds_cand: 03d.geometry.PointCloud, eps=0.14, min_samples=18,

axis_weights=(1,1,1)

DBSCAN in XYZ with optional anisotropic weights.

Returns labels, clusters(list of Nx3 arrays), centers, colored_cloud
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from sklearn.cluster import DBSCAN

P = np.asarray(weeds_cand.points)

W = np.array(axis_weights, dtype=float)

X=P*W

labels = DBSCAN(eps=eps, min_samples=min_samples).fit_predict(X)
uniq = [lab for lab in sorted(set(labels)) if lab != -1]

clusters = [P[labels == lab] for lab in uniq]

centers = [c.mean(axis=0) for c in clusters]

# colored cloud for preview: each cluster random color, noise gray
colored = 03d.geometry.PointCloud(weeds_cand)
C = np.tile([0.8, 0.8, 0.8], (len(P), 1))
rng = np.random.default_rng(2025)
for lab in uniq:
color = rng.random(3) * 0.6 + 0.35
Cllabels == lab] = color
colored.colors = 03d.utility.Vector3dVector(C)
return labels, clusters, centers, colored

# (Colorization / reporting style follows your main DBSCAN pipelines )

def select_small_clusters_by kmeans(clusters: List[np.ndarray], k=2):
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""Split clusters by size (max span in XY) via KMeans; return indices of smaller

group.""
from sklearn.cluster import KMeans
spans = []
for c in clusters:
if len(c) == 0:
spans.append(0.0)
continue
Xy = ¢[:, 2]
ext = xy.max(axis=0) - xy.min(axis=0)
spans.append(float(np.linalg.norm(ext)))
spans = np.array(spans).reshape(-1, 1)
km = KMeans(n_clusters=k, n_init=10, random_state=42).fit(spans)
labs = km.labels_
means = [spans[labs == i].mean() if (labs == i).any() else 0 for i in range(k)]
small_id = int(np.argmin(means))
keep_ids = list(np.where(labs == small_id)[0])

return keep_ids, labs, km.cluster_centers

def enforce_max_cluster_length(keep_ids: List[int], clusters: List[np.ndarray],

max_len=1.0, mode="xy"):

"""Drop clusters whose maximum extent exceeds threshold (m).
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out =]
for idx in keep_ids:
¢ = clusters[idx]
if len(c) < 2:
continue

if mode.lower() == "xy":

u=cl;, 2]
else:
u=c

ext = u.max(axis=0) - u.min(axis=0)
L = float(np.linalg.norm(ext))
if L <= max_len:

out.append(idx)

return out

def make_crop_map(crop_pcd: 03d.geometry.PointCloud, out_png: str,

pixel_size=0.02, margin=0.5, point_dilate=2):

Top-down 2D projection of crop (green); adapted from your helper script.
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(Original idea/canvas math mirrored here) :contentReference[oaicite:4]{index=4}
P = np.asarray(crop_pcd.points)[:, :2]

min_xy = P.min(axis=0) - margin

max_xy = P.max(axis=0) + margin

size_Xy = max_Xxy - min_xy

W = max(int(np.ceil(size_xy[0] / pixel_size)), 1)

H = max(int(np.ceil(size_xy[1] / pixel_size)), 1)

img = np.full((H, W, 3), 255, dtype=np.uint8)

def xy_to_rc(xy):
cols = ((xy[:, 0] - min_xy[0]) / pixel_size).astype(int)
rows = (H - 1 - (xy[:, 1] - min_xy[1]) / pixel_size).astype(int)

return np.clip(rows, 0, H-1), np.clip(cols, 0, W-1)

r, c =xy_to_rc(P)
img([r, c] = np.array([0, 200, 0], dtype=np.uint8)
try:
from PIL import Image
Image.fromarray(img).save(out_png)

except Exception:
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import matplotlib.pyplot as plt
plt.imsave(out_png, img)

return img, (min_xy, max_xy), (H, W)

def make_weed_map(crop_pcd, weed_pcd, out_png, pixel_size=0.02, margin=0.5,

point_dilate=2):
2D projection: crops green + weeds red (overlaid).

Adapted from your weedmap helper (canvas bounds + paint)

:contentReference[oaicite:5]{index=5}

pts =]

if not crop_pcd.is_empty(): pts.append(np.asarray(crop_pcd.points)[;, :2])

if not weed_pcd.is_empty(): pts.append(np.asarray(weed_pcd.points)[:, :2])
XY = np.vstack(pts)

min_xy = XY.min(axis=0) - margin

max_xy = XY.max(axis=0) + margin

size_Xy = max_xy - min_xy

W = max(int(np.ceil(size_xy[0] / pixel_size)), 1)

H = max(int(np.ceil(size_xy[1] / pixel_size)), 1)

img = np.full((H, W, 3), 255, dtype=np.uint8)
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def xy_to_rc(xy):
cols = ((xy[:, 0] - min_xy[0]) / pixel_size).astype(int)
rows = (H - 1 - (xy[:, 1] - min_xy[1]) / pixel_size).astype(int)

return np.clip(rows, 0, H-1), np.clip(cols, 0, W-1)

if not crop_pcd.is_empty():
r, ¢ = xy_to_rc(np.asarray(crop_pcd.points)[:, :2])
img[r, c] = np.array([0, 200, 0], dtype=np.uint8)

if not weed_pcd.is_empty():
r, ¢ = xy_to_rc(np.asarray(weed_pcd.points)[:, :2])

img[r, c] = np.array([220, 20, 60], dtype=np.uint8)

try:
from PIL import Image
Image.fromarray(img).save(out_png)
except Exception:
import matplotlib.pyplot as plt
plt.imsave(out_png, img)

return img, (min_xy, max_xy), (H, W)
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Appendix C. Point Cloud Evaluation Code (Python)

import open3d as 03d
import numpy as np

import pandas as pd

# Optional: convex hull area via SciPy (better than AABB). If SciPy isn't available,
# the code falls back to AABB area automatically.
try:
from scipy.spatial import ConvexHull
SCIPY_OK = True
except Exception:

SCIPY_OK = False

def read_pcd(path):
p = o3d.io.read_point_cloud(path)
assert len(p.points) > 0, f"Empty point cloud: {path}"

return p

def fit_plane_svd(points_xyz):
"""l east-squares plane fit: returns (a,b,c,d) for ax+by+cz+d=0 and unit normal.""

P = np.asarray(points_xyz)
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centroid = P.mean(axis=0)

U, S, Vt = np.linalg.svd(P - centroid, full_matrices=False)
normal = Vt[-1, :]

normal = normal / (np.linalg.norm(normal) + 1e-12)

a, b, c = normal

d = -centroid @ normal

return (a, b, c, d), normal, centroid

def relative_z from_plane(points_xyz, plane):
"""Relative height above the plane evaluated at the XY of each point."""
a, b, ¢, d = plane
P = np.asarray(points_xyz)
# signed distance to plane
dist = (a*P[:,0] + b*P[:,1] + ¢c*P[;,2] + d) / (np.sqrt(a*a+b*b+c*c) + 1e-12)
# If you prefer purely vertical height (z minus plane's z at (x,y)), use this instead:
# 2z plane = (-d - a*P[:,0] - b*P[:,1]) / (c + 1e-12)
# dist = P[:,2] - z_plane

return dist

def ground_area_m2(points_xyz, method="convex_hull_or_aabb", cell=None):
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"""Approximate ground-projected area (m?). Uses convex hull in XY if SciPy is

present; else AABB.
If 'cell' is provided (e.g., 0.1 m), returns raster area as nx*ny*cell*2 (optional).""
XY = np.asarray(points_xyz)[:, :2]
if cell is not None:
xy_min = XY.min(axis=0); xy_max = XY.max(axis=0)
nx, ny = np.ceil((xy_max-xy_min)/cell).astype(int)
return float(nx*ny*(cell**2))
if SCIPY_OK:
hull = ConvexHull(XY)

return float(hull.area) # in 2D, ConvexHull.area gives perimeter; use volume for

area
# SciPy quirk: in 2D, 'volume' is the polygon area
if SCIPY_OK:
return float(ConvexHull(XY).volume)
# Fallback: AABB area
mins = XY.min(axis=0); maxs = XY.max(axis=0)
ext = maxs - mins

return float(ext[0]*ext[1])

def average density pts_per _m2(pcd, area_m2=None):

if area_m2 is None:
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area_m2 = ground_area_m2(pcd.points)

return len(pcd.points) / max(area_m2, 1e-9)

def percentage_ground_level(relative_z, band=(0.0, 0.03)):
"""Percent of points within a small band above ground (tune band to your crop).""
lo, hi = band
mask = (relative_z >=10) & (relative_z <= hi)

return mask.mean() * 100.0

# Replace with your actual file paths
UAV_PLY  =r"C:\path\to\uav.ply"
NANO_PLY = r"C:\path\to\nano.ply"
ALIGNED_PLY = r"C:\path\to\aligned.ply"

GROUND_PLY = r"C:\path\to\uav_ground.ply" # PMF output

pcd_uav =read_pcd(UAV_PLY)
pcd_nano =read_pcd(NANO_PLY)
pcd_aligned = read_pcd(ALIGNED_PLY)

pcd_ground =read pcd(GROUND_PLY)

# Fit plane to the ground points
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plane, normal, centroid = fit_plane_svd(pcd_ground.points)

# Compute relative z for each dataset
rz_uav = relative_z_from_plane(pcd_uav.points, plane)
rz_nano =relative_z from_plane(pcd_nano.points, plane)

rz_aligned = relative_z_from_plane(pcd_aligned.points, plane)

area_uav = ground_area_m2(pcd_uav.points)
area_nano = ground_area_m2(pcd_nano.points)

area_aligned = ground_area_m2(pcd_aligned.points)

dens_uav = average_density pts_per _m2(pcd_uav, area_uav)
dens_nano = average_density pts per_m2(pcd_nano, area_nano)

dens_aligned = average_density_pts_per_m2(pcd_aligned, area_aligned)

summary_density = pd.DataFrame({
"Cloud": ["UAV","Nano-drone","Aligned"],
"Points (N)": [len(pcd_uav.points), len(pcd_nano.points), len(pcd_aligned.points)],
"Area (m?)": [area_uav, area_nano, area_aligned],
"Avg density (pts/m?)": [dens_uav, dens_nano, dens_aligned],

)
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print(summary_density.round(3))

# Define your "ground-level" band (meters above the plane)

BAND = (0, 0.5) # 0-3 cm; adjust to your site

p_ground _uav = percentage ground_level(rz_uav, BAND)
p_ground_nano = percentage_ground_level(rz_nano, BAND)

p_ground_aligned = percentage_ground_level(rz_aligned, BAND)

summary_ground = pd.DataFrame({
"Cloud": ["UAV","Nano-drone","Aligned"],
"Ground-level band (m)": [["{BAND[O]}—{BAND[1]}"]*3,
"Ground-level (%)": [p_ground_uav, p_ground_nano, p_ground_aligned],

)

print(summary_ground.round(2))

import matplotlib.pyplot as plt

# Choose consistent bins for comparability (e.g., -0.05 to 2.0 m in 0.05 m steps)

bins = np.arange(-0.05, 2.05, 0.05)
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def plot_hist(rz, title, bins, savepath=None):
plt.figure(figsize=(6,4))
plt.hist(rz, bins=bins)
plt.xlabel("Relative z (m)")
plt.ylabel("Count")
plt.title(title)
plt.tight_layout()
if savepath:
plt.savefig(savepath, dpi=300)

plt.show()

plot_hist(rz_uav, "UAV — Relative z distribution", bins, "hist_uav.png")
plot_hist(rz_nano, "Nano-drone — Relative z distribution", bins, "hist_nano.png")

plot_hist(rz_aligned, "Aligned — Relative z distribution", bins, "hist_aligned.png")

# Optional: export the histogram counts for your thesis appendix
def hist_to_df(rz, bins, name):

h, e = np.histogram(rz, bins=bins)

centers = 0.5%(e[:-1]+e[1:])

return pd.DataFrame({"Cloud":name, "RelZ_center_m".centers, "Count":h})
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hist_df = pd.concat([
hist_to_df(rz_uav, bins, "UAV"),
hist_to_df(rz_nano, bins, "Nano-drone"),
hist_to_df(rz_aligned, bins, "Aligned"),

], ignore_index=True)

hist_df.to_csv("relative_z histograms.csv", index=False)
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