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Abstract 

Accurate under-canopy weed detection is a major challenge in precision agriculture due 

to occlusion in conventional UAV imagery. This study presents an unsupervised 3D 

point-cloud framework integrating UAV and nano-drone data to improve weed 

identification in dense crop environments. Field experiments in a blueberry plantation 

combined UAV (DJI Mavic 3M) and nano-drone (DJI Mini 4 Pro) imagery. Point clouds 

were co-registered using ground control points, rigid transformation, and Iterative 

Closest Point (ICP). Segmentation employed Progressive Morphological Filtering (PMF) 

for ground/non-ground separation, weighted K-means for soil–vegetation classification, 

and DBSCAN–K-means clustering for individual weed identification. A 2D weed map 

was generated by projecting crops and weed location. The integrated dataset identified 

125 weed clusters compared to 52 with UAV-only data, achieving 72.8% precision, 

93.8% recall, and 82.1% F1-score. Results confirm that multi-perspective point clouds 

enhance under-canopy weed detection and provide a foundation for large-scale weed 

mapping, and automated weeding systems. 

Keywords:  UAV mapping; nano-drone; 3D point cloud alignment; unsupervised 

segmentation; precision agriculture; weed detection 
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Chapter 1. Introduction 

1.1. Background 

Weeds are undesirable plants that compete with crops for essential resources 

such as nutrients and water [1], leading to substantial yield reduction and increased 

production costs. To safeguard agricultural productivity, weed management has long been 

a major focus of agronomic research. Conventional strategies include physical, 

mechanical, cultural, biological, and chemical approaches, among which chemical 

herbicides remain the most widely adopted [2, 3, 4]. However, selective pressure has 

accelerated the evolution of herbicide resistance in many weed species [5, 6, 7], and 

excessive herbicide use poses risks to crops, ecosystems, the environment, and human 

health [8, 9, 10, 11]. These challenges highlight the urgent need for more sustainable and 

precise weed management strategies [12]. 

Unmanned Aerial Vehicles (UAVs), commonly referred to as drones, are powered 

aerial systems that operate without an onboard pilot, relying on aerodynamic forces for lift 

and functioning either autonomously or under remote control [13]. Equipped with diverse 

payloads such as RGB, multispectral, hyperspectral, thermal, and Light Detection and 

Ranging (LiDAR) sensors, UAVs enable the collection of high-resolution imagery and 

spatial data for environmental monitoring [14]. In practice, UAVs have been successfully 

deployed across multiple fields, including mining [15], forestry [16], and agriculture [17, 

18]. Their adoption enhances the speed of data acquisition, spatial resolution, deployment 

flexibility, operational safety, and cost-effectiveness compared with traditional manned 

aircraft or ground-based surveys. 

1.1.1. UAV mapping in agricultural use 

Unmanned Aerial Vehicles (UAVs) have become one of the most widely adopted 

platforms for high-resolution mapping. The most basic approach relies on image 

mosaicking to generate orthophotos; however, more advanced photogrammetric methods 

such as Structure from Motion (SfM) and Multi-View Stereopsis (MVS) can reconstruct 

detailed three-dimensional (3D) products, including digital surface and terrain models, 

textured 3D meshes, and vector-based information layers [19, 20, 21]. 
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The effectiveness of UAV mapping lies in its ability to rapidly survey large 

agricultural areas with centimeter-level accuracy, while accommodating a wide range of 

sensor payloads, such as RGB, multispectral, hyperspectral, or LiDAR sensors. These 

capabilities have established UAVs as indispensable tools for precision agriculture, 

supporting tasks such as crop growth monitoring [22], yield estimation [23, 24], and weed 

detection [25]. Beyond spectral analysis, UAV-derived point clouds also provide valuable 

structural information, enabling advanced analyses such as crop height estimation [26] 

and canopy volume quantification [27]. 

Despite these advantages, most UAV mapping workflows are inherently limited by 

their top-down imaging perspective. In dense crop environments, the canopy obstructs 

visibility of the under-canopy region, leading to incomplete data collection and the 

omission of low-lying vegetation. Consequently, features such as under-canopy weeds 

cannot be reliably detected or mapped using UAV imagery alone. This limitation directly 

impacts weed management, as undetected weeds contribute to long-term persistence and 

reduce the effectiveness of control strategies. Overcoming these shortcomings requires 

mapping methods that complement conventional UAV perspectives with alternative 

viewpoints, particularly under-canopy imagery, to achieve a more complete 3D 

reconstruction of the field environment. 

1.1.2. Precise weed detection 

Most precision weed detection methods including robotic and UAV-based 2D 

image approaches are based on computer vision and image processing, exploiting feature 

differences such as texture, shape, spectral reflectance, and color between crops and 

weeds to achieve classification [28]. The integration of machine learning and deep 

learning has further improved detection accuracy and automation [29]. Algorithms such as 

Support Vector Machines (SVM), Artificial Neural Networks (ANN), and Convolutional 

Neural Networks (CNN) have been widely applied in weed classification tasks [30]. 

However, reliance on supervised learning models makes these workflows less accessible 

to end-users, as they often require extensive labeled datasets and frequent model 

retraining. 

Weed management robots represent a typical example of ground-based solutions, 

where onboard cameras capture close-range imagery for weed recognition [31]. While 
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such systems can achieve high accuracy, their operational coverage is limited, making 

them less suitable for large-scale farmland applications. UAV-based approaches, by 

contrast, offer higher scanning efficiency and scalability for field-scale weed detection. 

Nevertheless, UAV imagery is constrained by flight altitude and its top-down perspective, 

which restricts visibility under dense canopies and reduces detection reliability in complex 

field conditions. 

In contrast to both robotic and UAV-based image approaches, LiDAR and laser 

scanning, either equipped on UAV or as ground equipment, methods construct 3D point 

clouds and apply clustering algorithms to exploit spatial information for weed detection [32, 

33]. Although these approaches can outperform traditional UAV imagery in terms of 

accuracy, they are computationally expensive, require longer processing times, and 

remain impractical for routine agricultural monitoring. 

The limitations of existing approaches highlight the need for new solutions capable 

of overcoming occlusion challenges while remaining computationally efficient and user-

friendly. Unsupervised methods that eliminate the dependency on labeled datasets and 

training can enhance accessibility, ensure broader applicability, and simplify adoption in 

real-world farming contexts.  

1.1.3. Nano-drones 

Nano-drones or nano-UAVs, commonly referring to ultra-light unmanned aerial 

vehicles under 250 g, are formally defined in aviation safety regulations in several 

countries, including Canada, Europe, and the United States [34]. Through strict weight 

budgeting and the removal of non-essential components, nano-drones can achieve 

dimensions below 10 cm, enabling them to operate effectively in confined or cluttered 

environments where larger UAVs cannot maneuver [35]. Existing agricultural applications 

of nano-drones include aerial monitoring inside greenhouses [36] and pollination tasks in 

controlled environments [37]. 

Compared with larger UAV platforms, nano-drones can maneuver beneath dense 

vegetation, fly closer to the ground, and capture understory information that is typically 

obscured from conventional top-down aerial imagery. However, nano-drones also face 

inherent limitations, including reduced GPS accuracy, shorter battery life, lower flight 
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stability, and constraints on sensor payload capacity [38]. These limitations prevent nano-

drones from replacing conventional UAVs for large-scale field coverage or high-precision 

mapping when used alone. Nevertheless, their complementary viewing geometry makes 

them highly valuable for tasks requiring close-range inspection—such as under-canopy 

weed detection—when deployed alongside a conventional UAV. Integrating data from 

both platforms enables a more complete 3D reconstruction, combining stable canopy-level 

structure with detailed ground-level observations and effectively addressing visibility 

challenges that traditional UAV systems cannot overcome. 

1.2. Motivation 

Although UAV-based mapping has significantly advanced precision agriculture, its 

reliance on a top-down imaging perspective restricts visibility in dense crop environments, 

where canopy cover prevents accurate detection of understorey vegetation. As a result, 

under-canopy weeds often remain unobserved and untreated, reducing the effectiveness 

of weed management strategies and contributing to long-term persistence in agricultural 

fields. To overcome this limitation, there is a need to integrate under-canopy information, 

such as nano-drone data, with conventional UAV mapping to generate a more complete 

three-dimensional representation of the field. We define a nano-drone as a smaller drone 

than a usual UAV, weighing under 250 grams. 

At the same time, existing weed detection methods frequently rely on supervised 

machine learning models, which demand large amounts of labeled data and repeated 

training to adapt to new crops, environments, or growth stages. These requirements 

create barriers for practical adoption by farmers, who often lack the time and resources 

for extensive data preparation. Therefore, this research applies a series of tailored 

unsupervised algorithms for point cloud alignment and weed detection, ensuring the 

workflow remains general, efficient, and accessible without the need for labeled datasets. 

By addressing both visibility and usability challenges, this work aims to provide a scalable 

and farmer-friendly solution for precise weed mapping. 

1.3. Objective and Scope 

The objective of this research is to enhance weed detection accuracy by 

integrating under-canopy nano-drone imagery with conventional high-altitude UAV data to 
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generate a more complete three-dimensional representation of agricultural fields. To 

achieve this, the study employs a series of unsupervised algorithms for point cloud 

alignment, crop–ground segmentation, soil–vegetation separation, and individual weed 

clustering. Techniques such as RGB-weighted K-means, DBSCAN clustering, 

transformation-based alignment with Iterative Closest Point (ICP), and ground filtering 

methods are combined to ensure robust and scalable processing without reliance on 

labeled training data. 

The scope of this research includes the development and evaluation of this 

unsupervised workflow in different agricultural environments, with a focus on under-

canopy weed detection and the generation of complete weed distribution maps. The 

proposed method is compared against conventional UAV-only mapping to demonstrate 

improvements in accuracy and coverage. While the framework is designed for adaptability 

across crops and field conditions, extensions such as incorporating multispectral sensors 

or real-time robotic platforms fall beyond the present scope and are suggested for future 

investigation. 

1.4. Contributions 

This thesis introduces a novel framework for under-canopy weed detection in 

dense crop environments through the integration of nano-drone and UAV imagery. The 

conceptual idea of combining multi-perspective drone data was suggested by my 

supervisor, Dr. Woo Soo Kim, while the full algorithmic development was designed and 

implemented by me. The contributions include point cloud generation, transformation-

matrix–based alignment, fine registration using ICP, ground/non-ground separation, soil–

vegetation classification via weighted K-means, individual weed segmentation through 

DBSCAN–K-means clustering, and final weed map creation. 

Beyond the core contributions of this thesis, the developed unsupervised algorithm 

pipeline was extended to related applications, including the extraction of tree height and 

canopy volume in orchard environments. These studies highlight the broader applicability 

of the proposed methods for sustainable agricultural monitoring and precision 

management. The following publication supports the algorithms used in this thesis.:  
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• X. Xia, J. Sachar, K. Alibhai, J. Labelle, D. Demin, E. Sulle, and W. S. Kim, 

“Accessible Drone Image Processing for Sustainable Resource Management of 

3D Tree-like Crops Using Unsupervised Algorithms,” Information Processing in 

Agriculture, https://doi.org/10.1016/j.inpa.2025.11.009, (2025). 

1.5. Thesis overview 

This thesis aims to improve weed detection accuracy in agricultural fields by 

integrating under-canopy nano-drone imagery with conventional UAV data through an 

unsupervised 3D point cloud processing framework. Chapter 2 provides background 

information and a literature review on UAV-based mapping, weed detection techniques, 

and point cloud processing methods. Chapter 3 presents the proposed nano-drone 

assisted workflow, including data acquisition, point cloud alignment, crop and soil 

segmentation, and unsupervised weed clustering. Chapter 4 discusses the experimental 

results, highlighting improvements in under-canopy detection and overall weed mapping 

accuracy compared to conventional UAV only methods. Chapter 5 concludes the research 

by summarizing the findings and outlining future work, including incorporating weed 

density assessment and visualization across entire fields, and integrating the generated 

weed maps with automated devices capable of performing site-specific weed control.  

https://doi.org/10.1016/j.inpa.2025.11.009
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Chapter 2. Literature Review 

2.1. UAV mapping in agricultural 

UAVs are increasingly employed in agricultural research, with the choice of 

payload strongly dependent on the monitoring objective. Sensors ranging from simple 

RGB cameras to advanced multispectral, hyperspectral, thermal, and LiDAR systems 

enable diverse applications, each providing unique spectral or spatial information.  

RGB cameras are the most common payload due to their low cost and high spatial 

resolution. Studies have shown their effectiveness for tasks such as crop emergence 

monitoring in potatoes [39], yield estimation in cotton [40], and fruit detection in orchards 

[41]. 

Multispectral cameras capture reflectance in discrete bands such as green, red, 

red-edge, and near-infrared, enabling vegetation index calculations like Normalized 

Difference Vegetation Index (NDVI) for crop monitoring. Guan et al. demonstrated that 

UAV-derived NDVI values in rice and wheat fields were strongly correlated with fertilizer 

application levels and yields, supporting their use in nutrient management and yield 

prediction [42]. In tree crops, Johansen et al. used UAV multispectral imagery in 

macadamia orchards to derive vegetation indices that effectively classified tree health 

conditions, illustrating the value of multispectral payloads for precision agriculture [43].  

Hyperspectral sensors further increase spectral resolution, recording hundreds of 

contiguous bands across the visible and near-infrared spectrum. This enables detection 

of subtle biochemical variations in crops that multispectral cameras cannot capture. Zarco-

Tejada et al. successfully used UAV hyperspectral imagery to estimate leaf carotenoid 

content in vineyards [44], while Lucieer et al. demonstrated hyperspectral applications for 

chlorophyll and pigment mapping in heterogeneous agricultural landscapes [45]. These 

studies confirm the potential of hyperspectral payloads for detailed physiological 

assessments, though their operational complexity and heavy data requirements remain 

challenges. 

Thermal cameras provide canopy temperature measurements, which can be used 

as indicators of water stress and irrigation needs. Park et al. used UAV thermal imagery 
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to evaluate crop water status, demonstrating the potential of thermal sensing for precision 

irrigation management [46]. Such applications illustrate how UAV thermal payloads 

contribute to water-use efficiency and stress detection in agricultural systems. 

LiDAR sensors offer direct acquisition of 3D structural information by measuring 

distances between the UAV and the vegetation surface. Christiansen et al. demonstrated 

UAV-mounted LiDAR for agricultural field surveying, with applications in crop height and 

canopy structure estimation [47]. However, LiDAR systems are often more expensive and 

data-intensive compared to passive optical sensors. Recent advances in SfM 

photogrammetry have made UAV RGB imagery a practical alternative for 3D 

reconstruction, producing dense point clouds that include both geometric and spectral 

information. For example, UAV RGB point clouds have been applied to canopy volume 

extraction in citrus orchards [27] and biomass estimation in forage crops [48], showing 

comparable performance to LiDAR-based approaches but with lower cost and greater 

accessibility.  
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Figure 2.1.  Examples of UAV mapping in agricultural applications: (a) UAV RGB 

orthomosaic of cotton breeding plots [40], (b) UAV false colour 
orthomosaic of macadamia orchard [43], (c) Adaptive Crop Water 
Stress Index (CWSI) map derived from UAV thermal infrared image 
[46], (d) RGB orthomosaic and NDVI distribution map of rice paddies 
[42], (e) UAV LiDAR point cloud of winter wheat field [47]. 

In summary, UAV mapping in agriculture leverages different payloads to meet 

diverse research objectives, from RGB-based crop monitoring to multispectral, 

hyperspectral, thermal, and LiDAR systems. While each sensor type offers unique 

advantages, limitations remain, particularly in terms of canopy occlusion and data 

integration. These challenges highlight the need for innovative workflows that combine 

complementary perspectives, such as under-canopy nano-drone imagery with 

conventional UAV mapping, to provide more complete and accurate field representations.  

2.2. Weed detection approaches 

Weed detection methods can generally be divided into two main categories: those 

relying on 2D image information and visual analysis, and those based on 3D spatial 

information combined with clustering algorithms. 
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2D image-based methods typically exploit differences in spectral and color 

features, such as RGB (red, green, and blue), HSI (hue, saturation, and intensity), and 

HSV (hue, saturation, and value) color spaces, to discriminate between crops, weeds, and 

soil [49]. Multispectral and hyperspectral imaging provide additional spectral information, 

enabling the calculation of a broader range of vegetation indices (VIs), thereby improving 

species differentiation [50]. For instance, fusion of RGB and multispectral images has 

been shown to enhance discrimination of weed patches in rice fields [51], while 

hyperspectral sensing coupled with machine learning models such as self-organizing 

maps (SOM), mixture of Gaussians (MOG), and SVM achieved accurate crop–weed 

discrimination in field studies [52]. The development of machine learning and deep 

learning further expanded detection accuracy, with methods including SVM [53], Random 

Forest (RF) [54], ANN [55], CNN [56], YOLO [57], and Region-based Convolutional Neural 

Networks (R-CNN) [58] applied across various crop field. To reduce the dependence on 

costly manual labeling, Ferreira et al. developed an unsupervised deep learning 

framework combined with semi-automatic data labeling, achieving high weed 

discrimination accuracy while greatly minimizing annotation effort [59]. Table 2.1 provides 

an overview of widely adopted machine-learning methods for weed detection, highlighting 

the algorithm type, main features, and performance reported in previous research. 

Table 2.1  Review of usual weed detection machine learning algorithms 

Research ML algorithm Feature Accuracy 

Weed detection in three 
sunflower fields and two 
cotton fields [54] 
Castro et al. 2017 

Random Forest 
(RF) 

Robust to noise 
Good with limited data 
Requires feature engineering 

Varies from 
59.1% to 84% 

Weed detection in carrots 
crop fields [53] 
Murawwat et al. 2018 

Support Vector 
Machines (SVMs)  

Strong for binary classification 
Sensitive to parameter tuning 

Varies from 
50% to 95% 

Weed detection in sesame 
and melon fields [55] 
Monteiro et al. 2021 

Artificial neural 
networks (ANNs) 

Learns nonlinear patterns 
Less manual feature design 
Requires large dataset training 

Varies from 
92% to 100% 

Weed detection in soybean 
field [56] 
Haq 2022 

Convolution Neural 
Network (CNN) 

Automatic feature extraction 
Requires large dataset training 

Grass 98.58%, 
broadleaf 
(weed) 98.32% 

Weed detection in sesame 
fields [57] 
Chen et al. 2022 

YOLO 
Real-time detection 
Lower accuracy on small weeds 

Varies from 
83.54% to 
90.70% 
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Research ML algorithm Feature Accuracy 

Weed detection in soybean 
fields [58] 
Zhang et al. 2023 

Region-based 
Convolutional 
Neural Networks 
(R-CNN)  

High-precision detection 
Good for small weeds 
Computationally heavy 

Average 
99.16% 

3D spatial information-based methods leverage plant geometry, height, and 

volume to overcome some of the limitations of 2D imagery, especially in under-canopy 

weed detection. Structured-light stereoscopy and depth cameras, have been used to 

reconstruct 3D plant models, enabling the separation of crops and weeds based on 

corrected plant height and volumetric parameters [60]. LiDAR and SfM photogrammetry 

further enhance the availability of point cloud data, but these methods often impose 

heavier computational costs compared to 2D approaches [61, 62].  



12 

 
Figure 2.2.  Examples of weed detection workflows: (a) a 2D image-based 

computer vision pipeline, involving preprocessing, vegetation 
segmentation, feature extraction, and classification [49], (b) a 3D 
spatial information-based pipeline, incorporating mesh construction, 
processing, and plant/weed value extraction [60]. 

In addition, several other studies provide complementary insights. For example, 

robot-mounted sensor system composed of a photoelectric signal modulation system and 

a photoelectric signal acquisition and processing system improved the accuracy and 

efficiency of the spectral reflectance measurement [63]. Likewise, video-based machine 

vision prototypes tested in potato fields demonstrated real-time weed segmentation and 
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classification using texture and color descriptors with high accuracy under natural light 

conditions [64].  

Overall, 2D image-based methods dominate current practice due to their simplicity 

and wide adoption, but they are constrained by canopy occlusion and variable illumination. 

In contrast, 3D approaches offer clear advantages for under-canopy detection and 

structural analysis, though at the cost of computational efficiency. These complementary 

strengths underscore the need for developing hybrid workflows that combine UAV and 

under-canopy imaging with unsupervised algorithms for practical field deployment.  

2.3. Photogrammetry and 3D point cloud 

Photogrammetry is the science of obtaining reliable spatial information about 

physical objects and the environment through the recording, measurement, and 

interpretation of photographic images. Historically, its foundation can be traced back to 

stereophotogrammetry in the late 19th and early 20th centuries, where overlapping 

images were used to determine three-dimensional object coordinates [65]. With the 

development of digital imaging and computational methods, photogrammetry has become 

one of the most widely used approaches for generating three-dimensional datasets. A key 

output of modern photogrammetry is the 3D point cloud, which represents objects as 

discrete sets of points defined by their spatial coordinates (x, y, z) and often associated 

color or intensity values. Compared to polygon meshes [66], which reconstruct continuous 

surfaces by connecting vertices into triangles, point clouds are more lightweight and 

flexible: they directly preserve raw spatial measurements, require less processing for data 

generation, and are more efficient in terms of storage and compression [67]. With the 

advancement of laser scanning, LiDAR, and photogrammetry, 3D point clouds have 

become a standard output format for representing spatial environments [68], and their 

applications now span construction [69], forestry [70], mining [71], and agriculture [72]. 

An illustrative example of the value of point clouds in complex environments is 

found in recent work on under-canopy UAV laser scanning for forestry. Conventional UAV-

based surveys conducted above the canopy are limited by occlusion, leading to significant 

data gaps in densely vegetated forests. In contrast, using UAVs to fly below the canopy 

with mounted laser scanning systems has been shown to greatly improve the accuracy of 

tree structural measurements, including diameter, height, and crown geometry [73]. This 
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case highlights the advantage of 3D point clouds in capturing detailed information in 

challenging, cluttered environments where traditional top-down imaging is insufficient. 

2.4. 3D point cloud processing approaches 

Processing 3D point cloud data involves a sequence of operations designed to 

transform raw, unstructured measurements into meaningful geometric and semantic 

information. The general workflow typically includes filtering, which removes noise and 

outliers to improve data quality [74]; feature estimation, such as normals and curvatures, 

that provide geometric descriptors of local structures [75]; surface reconstruction, where 

point sets are interpolated into continuous surfaces or meshes [76]; and model fitting, 

where geometric primitives or parametric models are adjusted to approximate observed 

data [77]. Two additional core tasks are registration, aligning multiple point clouds into a 

common coordinate system, and segmentation, partitioning the dataset into distinct 

objects or classes. 

To support these tasks, a few specialized software libraries have been developed. 

Among them, the Point Cloud Library (PCL) is one of the most widely used open-source 

frameworks, integrating a comprehensive set of algorithms for filtering, feature estimation, 

registration, segmentation, and surface reconstruction [78]. In addition, point cloud 

visualization plays a critical role in both qualitative interpretation and quantitative 

validation. Open3D has emerged as a popular open-source platform offering efficient tools 

for visualization and processing of 3D data [79]. 

In the context of this research, registration and segmentation represent the most 

critical components of the point cloud workflow. Registration ensures accurate alignment 

between UAV and nano-drone datasets, while segmentation enables the separation of 

soil, crops, and weeds. Therefore, the following subsections will provide a more detailed 

literature review of these two processes.  

2.4.1. 3D point cloud registration 

Registration methods for point clouds can generally be divided into two categories: 

conventional optimization-based methods and deep neural network-based methods [80]. 

Within the first category, the most influential is the ICP algorithm, introduced by Besl and 
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McKay in 1992 [81]. ICP iteratively minimizes the distance between two point sets by 

alternating between establishing correspondences matching each point in the source 

cloud with the nearest point in the target and estimating the rigid transformation that 

minimizes the mean squared error. The process is repeated until convergence, which is 

guaranteed to a local minimum, though performance depends heavily on the initial 

alignment. 

Besides ICP, Procrustes analysis [82] has also been applied for point cloud 

alignment. The classical Procrustes method seeks the optimal rigid transformation 

(rotation, translation, and optionally scale) between two point sets by minimizing least-

squares residuals. Building on this foundation, Toldo et al. proposed a global registration 

approach that embeds Generalized Procrustes Analysis into an ICP framework, enabling 

simultaneous alignment of multiple views while distributing registration errors evenly 

across all datasets [83]. This hybrid strategy leverages the robustness of ICP in handling 

partial overlaps with the mathematical rigor of Procrustes optimization, thus mitigating the 

accumulation of errors that typically arise in sequential pairwise registration. 

Beyond these foundational methods, significant efforts have been made to improve 

the robustness and efficiency of registration, particularly under conditions of noise, varying 

density, and partial overlap. For example, Yang et al. proposed a local feature statistics 

histogram (LFSH) descriptor combined with an optimized sample consensus (OSAC) 

algorithm, forming a coarse-to-fine pipeline that significantly improved efficiency and 

robustness in both model and scene registration tasks [84]. Huang et al. introduced a 

method based on Gaussian Mixture Models (GMMs) which focus more on global 

information while ignore local structure distortion [85].  

In addition to optimization-based techniques, a growing body of research has 

applied deep neural networks to point cloud registration. PointNetLK adapts the Lucas–

Kanade framework by leveraging PointNet features as an alignment function, eliminating 

explicit correspondence search. Deep Closest Point (DCP) further integrates attention 

mechanisms and a differentiable Singular Value Decomposition (SVD) layer, allowing end-

to-end rigid transformation estimation with higher accuracy under large motions. CorsNet 

concatenates the local features with the global features and regresses the point cloud 

correspondence [86, 87, 88]. Collectively, these methods highlight the potential of 



16 

learning-based approaches to improve robustness to noise, initialization, and cross-

source variation. 

Overall, conventional optimization-based methods remain attractive for their 

interpretability, computational efficiency, and solid mathematical guarantees. In contrast, 

deep learning–based methods demonstrate stronger adaptability to complex, large-scale, 

or cross-source data by learning robust feature representations directly from data. 

Together, these two approaches are complementary: optimization-based methods provide 

reliable baselines with low computational cost, while deep learning approaches offer 

enhanced generalization and robustness, particularly in challenging field environments. 

2.4.2. 3D point cloud segmentation 

Segmentation is the process of grouping raw point clouds into subsets that share 

common geometric or radiometric properties, such as surface orientation, curvature, or 

reflectance. It is an essential step in point cloud processing, as it enables subsequent 

classification, modeling, and analysis by reducing complexity and giving structure to 

otherwise unorganized data. 

Conventional segmentation methods can be broadly categorized into several 

groups. Edge-based segmentation relies on detecting discontinuities in local surface 

properties such as normals or curvature to delineate object boundaries but often suffers 

from sensitivity to noise. Region growing methods start from seed points and expand 

clusters based on similarity criteria like curvature or planarity, offering more robustness to 

noise but requiring careful parameter tuning. Model-fitting approaches, such as Random 

Sample Consensus (RANSAC) or Hough Transform, extract geometric primitives (planes, 

spheres, cylinders) directly from point sets and are particularly effective for man-made 

structures. Hybrid methods combine multiple strategies to leverage the strengths of 

different approaches [89].  

With the advancement of machine learning, segmentation methods have 

expanded into supervised, unsupervised, and semi-supervised approaches. Supervised 

methods rely on annotated datasets to learn semantic classes. Widely used models 

include RF, Markov Network, SVM, VoxNet, PointNet, ACNN [90]. Zhou et al. ulitized SVM 
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and boosting to segment soybean plants from 3D point cloud [91], and Qi et al. verified 

segmentation performance of PointNet++, MinkowskiNet and FPconv in the research [27].  

Unsupervised methods partition point clouds without labels, leveraging intrinsic 

data properties. The most common examples are K-means and Density-based spatial 

clustering of applications with noise (DBSCAN). K-means, first introduced by MacQueen 

in 1967, partitions data into k clusters by minimizing within-cluster variance [92, 93]. While 

effective, it requires the number of clusters to be predefined. To address this limitation, 

Sinaga and Yang proposed an unsupervised K-means that automatically estimates the 

optimal cluster number without initialization [94]. DBSCAN, on the other hand, groups 

points based on density, marking sparse points as noise [95]. It is widely used for irregular 

and non-spherical clusters but is sensitive to parameters. Building upon this, Border-

Peeling Clustering was introduced as a non-parametric extension that iteratively peels 

away border points to reveal cluster cores, thereby adapting more flexibly to varying 

densities [96]. 

Semi-supervised methods attempt to reduce annotation cost by combining a small 

set of labeled data with unsupervised clustering. A representative approach is CANUPO, 

which applies a multi-scale dimensionality criterion to lidar point clouds for classifying 

natural scenes with limited supervision, showing utility in geomorphology and other 

complex environments [97].  

 
Figure 2.3.  Examples of 3D point cloud segmentation result by: (a) edge-based 

segmentation [98], (b) region growing method [89], (c) model-fitting 
approach [89], (d) unsupervised K-means clustering [94], (e) border-
peeling clustering [96], (f) semi-supervised method: CANUPO [97].  
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Supervised methods rely on annotated training datasets to learn semantic classes, 

unsupervised methods automatically partition data based on intrinsic properties without 

labels, while semi-supervised methods combine limited annotations with unsupervised 

clustering to reduce labeling effort. These approaches enable higher flexibility and 

adaptability to diverse datasets, though they may also require significant computational 

resources.  

A Digital Terrain Model (DTM) is an ordered array of numbers representing the 

spatial distribution of terrain characteristics [99]. It provides a bare-earth representation by 

removing above-ground features such as vegetation and buildings. DTMs are essential in 

diverse applications, including flood modeling [100], landslide prediction [101], 

hydrological analysis [102], forestry inventory [103], and precision agriculture [26], where 

accurate knowledge of the terrain surface forms the foundation for reliable decision-

making.  

DTM extraction is therefore a key objective in point cloud segmentation. Among 

the commonly used geometric filters, the Progressive Morphological Filter (PMF) gradually 

increases the window size of morphological operators combined with elevation difference 

thresholds to remove nonground features while retaining ground points [104]. This 

approach has shown good performance in both flat and mountainous terrains, though it 

may produce omission errors in steep areas where true terrain points are incorrectly 

removed. Another widely used method is the Cloth Simulation Filter (CSF), which treats 

the inverted point cloud as a virtual surface and simulates a cloth dropping over it [105]. 

The cloth surface adapts to the ground while ignoring elevated objects, making CSF 

intuitive and effective across various landscapes. However, its accuracy can be influenced 

by parameter settings such as grid resolution and cloth stiffness. 

Beyond these, other approaches have been developed. The Grid-Based Approach 

rasterizes the point cloud into regular grid cells, then applies hierarchical filtering and 

weighting functions to detect and replace nonground elements. This method leverages 

efficient image-processing techniques and allows high-resolution DTMs to be generated 

from airborne laser scanning data [106]. Similarly, the Simple Morphological Filter (SMRF) 

modifies the classic morphological filtering framework with adaptive elevation thresholds, 

offering an alternative for separating ground from nonground points in complex 

environments [107]. 
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Together, these methods provide the foundation for generating accurate DTMs 

from UAV or airborne LiDAR point clouds, balancing trade-offs between computational 

efficiency, adaptability to terrain types, and sensitivity to parameter selection.  

 



20 

Chapter 3. Nano-drone Assisted Unsupervised 
Weed Detection 

3.1. System workflow 

The proposed nano-drone assisted weed detection framework consists of four 

interconnected modules, as illustrated in Figure 3.1.  

The first module is Data Acquisition, where imagery is collected using both 

conventional UAV and nano-drone. This dual-perspective acquisition ensures that 

information from both canopy and sub-canopy layers is captured, overcoming the 

occlusion problem of traditional UAV-based mapping.  

The second module is Point Cloud Processing and Alignment, where imagery from 

both sources is processed into 3D point clouds. Reference points are extracted to support 

the initial alignment through a transformation matrix, followed by fine alignment using the 

Iterative Closest Point (ICP) algorithm. This ensures accurate registration between multi-

source datasets. 

The third module, Crop Segmentation, partitions the integrated point cloud into 

ground and non-ground points. From this process, the non-ground subset is isolated to 

represent crop structures, providing the foundation for subsequent vegetation analysis. 

The final module is the Weed Classifier, which applies unsupervised clustering 

algorithms to the ground point cloud. Soil–vegetation segmentation is first performed using 

a weighted K-means algorithm, followed by individual weed segmentation with clustering 

methods. The outputs are then compiled into a weed distribution map, enabling clear 

visualization of weed presence and patterns across the field.  

This modular workflow integrates multi-perspective data acquisition with 

unsupervised point cloud processing, allowing for precise, scalable, and training-free 

weed mapping suitable for diverse agricultural environments.  
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Figure 3.1.  Workflow chart of the nano-drone assisted weed detection 

3.2. Data acquisition 

3.2.1. Experiment site 

The experiment was conducted in a blueberry field located in Abbotsford, British 

Columbia, Canada (49.02°N, 122.43°W). The study area covers approximately 675 m² 

and consists of five rows of blueberry crops, with each row containing 25–35 individual 

plants. This site was selected as a representative small-scale field, and the planting 

density in this field is relatively high, leading to significant canopy closure. Under such 

conditions, conventional UAVs with a top-down perspective often fail to capture under-

canopy details due to occlusion from dense foliage. This limitation highlights the need for 

integrating nano-drone imaging with conventional UAV mapping to obtain more complete 

3D information for crop and weed analysis. 
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Figure 3.2.  Satellite image of the experiment site in Abbotsford, BC, Canada, and 

the zoomed section showing densely planted blueberry rows.  

Figure 3.2 presents the satellite image of the experimental site along with a 

zoomed-in section of the crop rows, illustrating the dense planting structure and potential 

under-canopy occlusion. 

3.2.2. UAV and nano-drone image acquisition 

Two UAV platforms were employed in this study: the DJI Mavic 3M (SZ DJI 

Technology Co. Ltd, Shenzhen, China), referred to as the conventional UAV, and the DJI 

Mini 4 Pro (SZ DJI Technology Co. Ltd, Shenzhen, China), used as the nano-drone. The 

Mavic 3M is equipped with a 5280 × 3956 pixel camera and was flown at an altitude of 

150 ft (45.72 m) to capture nadir images of the experimental field. In contrast, the Mini 4 

Pro provides a higher resolution of 8064 × 6048 pixels and was deployed at a much lower 

altitude of 6 m above its departure location, enabling detailed imaging of under-canopy 

regions. 

Ground Control Points (GCPs) were placed across the site to improve point cloud 

accuracy and facilitate multi-source alignment [108, 109]. Four standard chessboard 

GCPs were positioned at the four corners of the field to enhance photogrammetric 

reconstruction precision. Additionally, three custom red GCPs were distributed in a 

triangular configuration within the field to serve as reference points for the transformation 
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matrix during alignment. These GCPs were fabricated from polyester fabric, which 

minimized light reflection variability under changing illumination conditions and improved 

image consistency. Photographs of the UAV platforms and GCPs are shown in Figure 3.3. 

 
Figure 3.3.  UAV platforms and Ground Control Points (a) DJI Mavic 3M, (b) DJI 

Mini 4 Pro, (c) chess-pattern GCP, (d) custom red GCP. 

The Mavic 3M flight path was automatically generated by DJI Smart Farm 

software, following a structured grid pattern with two orthogonal directions to maximize 

coverage (Figure 3.4a). In contrast, the Mini 4 Pro required manually defined waypoints 

due to the low altitude of flight near the canopy, where precise maneuvering was essential. 

Given its lightweight design (249 g), the nano-drone was more susceptible to instability 

during flight, resulting in a less regular distribution of capture points (Figure 3.4b). For both 

UAVs, the image acquisition settings included an 80% frontal overlap and 75% side 

overlap. The image interval of the nano-drone was calculated based on its Ground 

Sampling Distance (GSD) and flight altitude.  



24 

 
Figure 3.4.  UAV flight paths (a) automatic grid flight plan of DJI Mavic 3M, (b) 

manual setup waypoints path of DJI Mini 4 Pro.  

3.2.3. Ground truth 

On the same day as the UAV and nano-drone data acquisition, a manual ground 

truth survey of weed distribution was conducted. The dominant weed species observed in 

the blueberry field included Curly Dock, Brome Grass, Houttuynia cordata, Thistle, and 

Mouse-ear Chickweed, with representative field photographs shown in Figure 3.5. During 

this process, small blueberry offshoots that grew close to the ground and visually 

resembled weeds were carefully excluded to ensure accuracy.  
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Figure 3.5.  Field photographs of representative weed species in the blueberry 

experimental site: (a) Curly Dock, (b) Brome Grass, (c) Houttuynia 
cordata, (d) Thistle, (e) Mouse-ear Chickweed.  

Due to the dense planting density of the blueberry rows, most weeds were located 

beneath the canopy and could not be captured by conventional nadir UAV imagery. This 

limitation highlighted the necessity of adopting a nano-drone-assisted UAV mapping and 

3D point cloud-based weed detection strategy. A total of 97 weeds were recorded: 73 

under the canopy and 24 in inter-row gaps or alongside blueberry plants. The ground truth 

data were subsequently digitized into a weed distribution map, which served as a 

reference baseline for evaluating the performance of the proposed detection algorithm. 

3.3. Point cloud data processing and alignment 

Following the acquisition of UAV and nano-drone imagery, point cloud data were 

generated through photogrammetric reconstruction. However, due to differences in sensor 

type, flight altitude, and imaging perspective, the resulting point clouds often exhibit 

discrepancies in scale, orientation, and completeness. To ensure that both datasets could 

be effectively integrated, a systematic point cloud processing and alignment pipeline was 

implemented. The process involved reference point extraction, initial alignment using 

transformation matrices, and refinement through iterative optimization methods. This step 
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is critical for fusing complementary top-down and under-canopy perspectives, thereby 

producing a unified and structurally consistent 3D representation of the crop field. 

Conventional UAVs provide a broad top-down perspective, enabling efficient 

reconstruction of canopy structures across large areas with consistent coverage. Their 

main limitation lies in the lack of under-canopy visibility, where weeds and stems are 

heavily occluded. In contrast, nano-drones flown at low altitudes offer valuable under-

canopy details, capturing structural information that UAVs cannot access. However, nano-

drone scanning also presents challenges, including lower GPS accuracy, reduced flight 

stability due to their lightweight design, and limited coverage per flight. By integrating these 

two complementary perspectives, it becomes possible to generate a unified 3D model that 

preserves canopy integrity while enhancing understorey representation. Figure 3.6 

provides a conceptual illustration of this integration process, highlighting how UAV and 

nano-drone data collectively contribute to more complete field reconstructions.  

 
Figure 3.6.  Conceptual illustration of UAV and nano-drone complementary 

scanning for integrated 3D reconstruction.  

An illustrative example is presented in Figure 3.6, showing point clouds collected 

in Central Park, Burnaby, BC, Canada (49.22°N, 123.01°W). The conventional UAV-

derived point cloud provides detailed canopy structure but lacks under-canopy visibility, 

while the nano-drone-derived point cloud captures understory details at the cost of 

reduced coverage. Their alignment and fusion demonstrate the potential to generate more 

complete reconstructions by integrating multi-perspective data.  
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Figure 3.7.  Example of point cloud alignment by steps (a) raw point cloud by two 

sources, (b) integrated point cloud by transformation matrix, (c) 
integrated point cloud by ICP fine alignment.  

3.3.1. Point cloud data generation and processing 

All UAV and nano-drone images were processed in Pix4Dmapper (Pix4D S.A., 

Prilly, Switzerland) to generate 3D point clouds through standard photogrammetric 

workflows, including feature matching, bundle adjustment, and dense reconstruction. The 

resulting point cloud datasets were exported in PLY format, with spatial information stored 

in an arbitrary coordinate system using metric units (meters). RGB color attributes were 

normalized to the range of 0–1, facilitating efficient reading and visualization in Python 

using the Open3D library. 

Since the visualization capacity of Open3D is limited by window size and rendering 

quality, CloudCompare [110] was additionally employed to present high-resolution 

visualizations and to examine finer details of the reconstructed structures.  

Denoising is also an important step in point cloud processing, as it improves the 

overall quality of the dataset by removing outliers. In this study, denoising was carried out 

using two types of filters to improve point cloud quality by removing outliers. The statistical 

outlier removal filter identifies and eliminates points whose average distance to a fixed 

number of neighbors exceeds a threshold defined by the standard deviation [111]. This 

approach preserves the overall structure of the dataset while filtering away sparsely 

distributed noise. Complementing this, the radius outlier filter evaluates the local point 

density within a specified radius and removes any point that has fewer than a minimum 

number of neighbors [112]. This method is particularly effective at suppressing small 
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spurious clusters, such as isolated artifacts near the ground surface. Together, these two 

filters ensured a cleaner and more reliable dataset for subsequent processing steps. 

3.3.2. Initial Alignment by Transformation Matrix 

The purpose of this step was to achieve a coarse registration of the UAV and nano-

drone point clouds by constructing a transformation matrix from three common reference 

points. Compared with applying ICP directly, this procedure reduces computational load 

and provides a more stable initialization. 

The reference points were obtained from the Red Ground Control Points (GCPs) 

placed in the field. Although the theoretical RGB value of these GCPs is (255, 0, 0), the 

actual field conditions—such as illumination and surface reflectance—prevent them from 

appearing as perfectly pure red. To automate their detection, a DBSCAN clustering 

algorithm with RGB thresholds was applied. Only points with red values greater than 180, 

green values less than 120, and blue values less than 100 were retained for clustering, 

thresholds that were empirically determined from the observed GCP colors. Because 

noise points in the scene could still satisfy these conditions, a relatively high min_samples 

parameter was used, ensuring that only dense red clusters corresponding to the GCPs 

were preserved. 

For each detected GCP, the centroid coordinate of the cluster was extracted to 

represent its spatial location. This yielded three points from the UAV point cloud and three 

from the nano-drone point cloud. To establish one-to-one correspondence between them, 

a triangle geometry–based ordering method was used. The procedure compared the side 

lengths of triangles formed by the three GCPs in each dataset and tested all permutations 

to identify the configuration that minimized the difference in side length distributions. In 

this way, the two sets of reference points were matched consistently in space. 

Finally, with three corresponding pairs of reference points, a rigid transformation 

matrix consisting of rotation and translation was computed. This transformation completed 

the initial alignment of the nano-drone point cloud to the UAV point cloud, providing a well-

integrated dataset for subsequent processing.  
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3.3.3. Fine Alignment by ICP 

After the initial alignment was established through the transformation matrix, the 

Iterative Closest Point (ICP) algorithm was employed to refine the registration between 

the UAV and nano-drone point clouds. ICP operates by iteratively minimizing the distance 

between corresponding points in two datasets. In each iteration, correspondences are first 

identified by pairing each point in the source cloud with its nearest neighbor in the target 

cloud. A rigid transformation consisting of rotation and translation is then estimated to 

minimize the mean squared error of these correspondences. This process is repeated 

until convergence criteria are met. 

The performance of ICP depends largely on its parameter settings. Key 

parameters include the maximum correspondence distance, which restricts the search 

radius for matching points, and the convergence tolerance, which defines the threshold 

for stopping iterations once the alignment error stabilizes. In this study, these parameters 

were tuned to balance computational efficiency with registration accuracy, ensuring 

reliable alignment despite differences in density and perspective between the two point 

clouds. 

Upon completion of the ICP refinement, the UAV- and nano-drone–derived 

datasets were merged into a single, well-integrated point cloud. This integrated dataset 

provided both canopy-level and under-canopy information, forming the foundation for 

subsequent weed segmentation and mapping. 

3.4. Crop Segmentation 

The first step toward weed detection is to isolate crops from ground points, which 

includes soil, weed and other non-weed vegetation, in the reconstructed 3D point cloud. 

Separating crop structures from the underlying terrain ensures that subsequent 

segmentation and classification processes focus only on relevant plant information while 

reducing computational complexity. 

In this workflow, the Progressive Morphological Filter (PMF) was applied for 

ground and non-ground separation. The advantage of PMF lies in its robustness when 

dealing with point clouds that are not perfectly co-registered. Unlike the Cloth Simulation 

Filter (CSF), which relies on a simulated physical surface to approximate the terrain, PMF 
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incrementally expands a structuring element to detect and remove ground points based 

on local elevation differences. This morphological approach is less sensitive to 

misalignments between datasets, making it particularly suitable for our fused UAV and 

nano-drone point cloud. 

During experiments, we observed that when applied to point clouds generated 

solely from conventional UAV data, both CSF and PMF yielded comparable results. 

However, when processing the combined multi-perspective dataset, PMF consistently 

performed better, producing cleaner ground segmentation and more reliable extraction of 

crop structures. This advantage provided a more accurate foundation for the subsequent 

soil–vegetation and weed segmentation steps. 

3.5. Weed Classifier 

3.5.1. Soil-vegetation Segmentation 

After crop segmentation, the remaining ground points were further classified into 

two categories: soil and vegetation (including weeds and small non-crop plants). This soil–

vegetation separation was performed using a weighted K-means clustering algorithm, 

where six features were selected as input: x, y, relative z, Excess Green Index (ExG), and 

Excess Green minus Excess Red Index (ExGR). The feature weights were set as [0.4, 

0.4, 2.3, 2.0, 1.0], respectively, to emphasize the most discriminative attributes. 

Relative elevation (relative z) was chosen instead of the absolute z value because 

the point clouds were reconstructed in an arbitrary coordinate system. By normalizing 

elevation relative to local ground level, the feature more reliably distinguished vegetation 

protruding above the soil surface from background terrain irregularities. 

The ExG and ExGR indices were derived from RGB color attributes to capture 

spectral differences between vegetation and soil. ExG enhances the contribution of the 

green channel relative to red and blue, making it sensitive to chlorophyll-rich plant 

structures. ExGR further contrasts green dominance against red dominance, improving 

robustness under variable illumination. Strengthening the weights of relative z, ExG, and 

ExGR ensured that clustering was driven primarily by structural height and vegetation-

specific spectral properties, which are the most reliable indicators for separating soil from 

vegetation in complex agricultural environments.  
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The resulting vegetation point cloud was retained as the input for the next stage of 

processing, namely individual weed segmentation. By filtering out soil background and 

preserving only vegetation-related structures, the workflow ensured that subsequent 

clustering focused directly on detecting and isolating individual weed instances from the 

crop field. 

3.5.2. Individual Weed Segmentation 

Prior to individual weed segmentation, the vegetation point cloud was denoised to 

remove spurious points and residual crop tips that might remain after DTM extraction. This 

preprocessing ensured that subsequent clustering would focus on meaningful vegetation 

structures rather than noise artifacts. 

The cleaned vegetation cloud was then segmented using the DBSCAN algorithm, 

which partitions data into clusters of varying density without requiring prior knowledge of 

the number of groups. The resulting clusters represented a mixture of grass patches, 

individual weeds, and occasional noise components. For each cluster, several geometric 

features were computed, including maximum linear extent, two-dimensional projected 

area, and three-dimensional volume. These descriptors provided quantitative measures 

of cluster morphology that could help distinguish weeds from other vegetation. 

Using these features, a K-means clustering algorithm was applied to divide all 

clusters into two categories: weed clusters and non-weed clusters. Field observations 

revealed that the maximum length of common weeds in the experimental site rarely 

exceeded 80 cm. Based on this observation, a post-processing filter was introduced to 

discard clusters with maximum lengths above this threshold, thereby improving 

classification accuracy by excluding unlikely candidates. 

This combination of density-based clustering, geometric feature extraction, and 

rule-based filtering produced a reliable weed segmentation outcome, forming the basis for 

constructing the final weed distribution map. 

3.5.3. Weed map creation 

Following the identification of weed clusters, the final step was to generate a 2D 

visualization of weed distribution across the field. Both the crop point cloud and the weed 
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point cloud were projected onto a two-dimensional plane. To enhance interpretability, the 

crop projection was rendered in green, while the weed projection was rendered in red. The 

weed layer was then overlaid on top of the crop background, producing a weed distribution 

map that provides an intuitive view of weed locations relative to crop rows. This map not 

only facilitates visual assessment of weed density and spatial distribution but also serves 

as a practical output format for future integration with precision agriculture tools. 
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Chapter 4. Results and Discussion 

4.1. Point Cloud Data 

The experiment produced three sets of point clouds: one derived from conventional 

UAV imagery, one from nano-drone imagery, and a final integrated dataset combining 

both sources (Figure 4.1). Each dataset exhibited distinct structural and visual 

characteristics that directly reflect their acquisition perspectives.  

 
Figure 4.1.  Visualization of the reconstructed point clouds at the experimental 

blueberry field: (a) orthographic view of conventional UAV-derived 
point cloud, (b) oblique view of conventional UAV-derived point cloud, 
(c) orthographic view of nano-drone–derived point cloud, (d) oblique 
view of nano-drone–derived point cloud, (e) orthographic view of the 
integrated point cloud, (f) oblique view of the integrated point cloud. 
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The conventional UAV point cloud provided a continuous top-down reconstruction 

of the crop canopy. While the canopy rows were well defined, the under-canopy regions 

were largely occluded, leaving visible gaps beneath the blueberry shrubs. In contrast, the 

nano-drone point cloud, captured from a near-ground perspective, successfully 

represented under-canopy structures, including stems and low-lying weeds. However, due 

to close-range flights and the limited stability of the lightweight platform, the nano-drone 

data appeared less uniform, with redundancy and irregular point spacing. The integrated 

dataset combined the complementary strengths of both sources, producing a more 

complete reconstruction that included both canopy-level and under-canopy details, 

thereby providing a stronger foundation for subsequent weed segmentation. 

 
Figure 4.2.  Zoomed section of experiment site point cloud (blueberry field, near-

ground view): (a) conventional UAV data, showing limited under-
canopy detail; (b) integrated UAV and nano-drone data, providing 
enhanced representation of ground-level structures.  

To illustrate these differences, Figure 4.2 presents a zoomed section of the near-

ground view. In the UAV-only data (Figure 4.2a), the lower canopy and ground structures 

are poorly represented, whereas in the integrated dataset (Figure 4.2b), the combination 

of UAV and nano-drone inputs captures significantly more detail at ground level.  

To substantiate these qualitative observations, quantitative metrics were extracted 

and summarized in Table 4.1. The first metric, average point density, reflects the overall 
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coverage of the reconstructed scene. The second metric, percentage of ground-level 

points, specifically evaluates how much structural detail was captured below the canopy. 

Here, ground level was defined as the relative elevation range of 0–0.5 m, a threshold 

chosen to encompass weeds and low-lying vegetation typically growing at or just above 

the soil surface, while excluding most of the crop canopy. Results show that the nano-

drone dataset achieved the highest proportion of ground-level points (37.14%), while the 

UAV dataset captured fewer details below the canopy.  

Table 4.1. Quantitative characteristics of different point clouds 

 Average point density (pts/m2) Ground-level percentage (%) 
(range 0-0.5m) 

UAV 55074 34.23 
Nano-drone 132589 37.14 
Integrated 184909 34.60 

 
Figure 4.3.  Vertical distribution histograms of point relative elevation of: (a) UAV 

data, (b) nano-drone data, (c) integrated dataset.  

Figure 4.3 further supports this analysis with vertical distribution histograms of 

relative elevation. The UAV dataset (Figure 4.3a) shows a strong concentration at canopy 

height with minimal ground detail. The nano-drone dataset (Figure 4.3b) displays a 

broader distribution, particularly in the lower elevation range, while the integrated dataset 

(Figure 4.3c) presents a more continuous vertical profile, combining canopy and under-

canopy information. 

Overall, the results confirm that integrating UAV and nano-drone point clouds 

enhances both completeness and structural continuity of field reconstruction. By 

combining high canopy detail from UAV imagery with the enriched under-canopy detail 

from nano-drone imagery, the integrated dataset provides a superior foundation for weed 

detection in dense crop environments.  
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In the subsequent workflow, both the integrated point cloud and the UAV-only point 

cloud were processed through the same segmentation and classification steps. This 

parallel design allows for a direct comparison between the two datasets, with the goal of 

quantifying and demonstrating the benefits introduced by nano-drone–assisted mapping. 

By applying identical procedures to both inputs, the analysis highlights how the additional 

under-canopy detail captured by the nano-drone enhances weed identification 

performance in dense crop environments.  

4.2. Crop Segmentation 

The first step of segmentation involved applying the Progressive Morphological 

Filter (PMF) to separate the complete point cloud into ground and non-ground 

components. The ground point cloud included bare soil, weeds, and other low-lying 

vegetation, while the non-ground point cloud primarily represented the crop canopy. After 

segmentation, both components were color-coded to provide an intuitive visualization of 

the results, as shown in Figure 4.4 (a) and (d), where red indicates ground points and 

green corresponds to non-ground points.  
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Figure 4.4.  Visualized result of: (a) colorized binary segmentation map of 

integrated dataset, (b) ground point cloud of integrated dataset, (c) 
non-ground point cloud of integrated dataset, (d) colorized binary 
segmentation map of UAV-only dataset, (e) ground point cloud of 
UAV-only dataset, (f) non-ground point cloud of UAV-only dataset. 

Both the integrated dataset and the UAV dataset produced similar crop 

segmentation outcomes. In both cases, the blueberry crop rows were clearly separated 

from the soil, and the overall structure of the plantation was well preserved. However, the 

integrated dataset exhibited slightly more noise points in the ground region. This effect 

arises from the imperfect fusion between the UAV and nano-drone point clouds, which 

introduced minor inconsistencies and layering artifacts in the ground surface. Despite this 
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drawback, the integrated point cloud still provides richer detail for subsequent weed 

detection, especially in under-canopy regions where UAV-only data remain insufficient.  

4.3. Individual Weed Segmentation 

Following crop segmentation, soil–vegetation segmentation was performed on the 

ground point cloud using a weighted K-means scheme. The objective of this step was to 

remove all bare-soil points from the ground layer and retain only vegetation points (weeds 

and other low plants) as inputs to the subsequent individual-weed clustering.  
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Figure 4.5.  Visualized result of: (a) colorized binary segmentation map of 

integrated dataset, (b) segmented vegetation point cloud of integrated 
dataset, (c) denoised vegetation point cloud of integrated dataset, (d) 
colorized binary segmentation map of UAV-only dataset, (e) 
segmented vegetation point cloud of UAV-only dataset, (f) denoised 
vegetation point cloud of UAV-only dataset. 

Figure 4.5 summarizes the intermediate results for the integrated dataset (top row, 

a–c) and the UAV-only dataset (bottom row, d–f). Panels (a) and (d) show the color-coded 

two-class maps (brown as soil, green as vegetation) produced by the weighted K-means 

segmentation. Panels (b) and (e) visualize the retained vegetation point clouds after 

removing soil. Panels (c) and (f) present the denoised vegetation clouds, where spurious 

points and small residual crop tips were suppressed before clustering.  
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Qualitatively, the soil–vegetation separation was successful for both datasets and 

aligns with the expected composition of the ground layer: bare soil beneath the canopy, 

grassy inter-row strips, and under-canopy weed patches preserved as vegetation. 

Comparing the two sources, the integrated dataset clearly exhibits richer under-canopy 

vegetation detail—more continuous patches and finer structures—reflecting the added 

visibility provided by nano-drone imagery.  

The denoised vegetation point cloud obtained from the soil–vegetation 

segmentation served as the input for the next step of the individual weed segmentation 

pipeline. The process begins by applying DBSCAN to group vegetation points into 

clusters, followed by a K-means–based binary classification to separate weed clusters 

from non-weed vegetation. Finally, clusters identified as weeds are extracted for 

downstream weed map creation.  
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Figure 4.6.  Visualized result of: (a) DBSCAN segmentation of integrated dataset, 

(b) colorized weed and non-weed of integrated dataset, (c) final weed 
clusters of integrated dataset, (d) DBSCAN segmentation of UAV-only 
dataset, (e) colorized weed and non-weed of UAV-only dataset, (f) final 
weed clusters of UAV-only dataset. 
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Figure 4.6 illustrates the workflow for the integrated dataset (a–c, top row) and the 

UAV-only dataset (d–f, bottom row). Panels (a) and (d) show the DBSCAN clustering 

outputs, where each cluster is visualized in a unique color. Panels (b) and (e) display the 

K-means classification results: red clusters represent non-weed vegetation, while multi-

colored clusters indicate detected weed patches. Panels (c) and (f) show the final weed-

only clusters extracted from the vegetation point cloud, which were later used for 

generating the weed distribution maps.  

Qualitatively, both datasets capture inter-row and under-canopy vegetation, but 

the integrated dataset reveals a substantially richer weed distribution. Many under-canopy 

weeds that were invisible in the UAV-only point cloud were successfully detected in the 

integrated data. Quantitatively, the integrated dataset produced 125 distinct weed 

clusters, compared to only 52 clusters detected in the UAV-only dataset. This outcome 

confirms our core hypothesis: integrating nano-drone imagery with conventional UAV data 

significantly improves under-canopy weed detection by recovering structural details 

otherwise occluded from a top-down perspective.  

4.4. Final Weed Map 

The final weed distribution map is shown in Figure 4.7, where the green areas 

represent the 2D projection of crop points and the red areas denote the detected weed 

clusters. As illustrated, most of the weeds are located in the under-canopy region. This 

visualization clearly highlights the challenge of relying solely on conventional UAV 

imagery, as many of these weeds would be occluded from an overhead view. 
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Figure 4.7.  Weed distribution map of: (a) ground truth, (b) integrated dataset, (c) 
UAV-only dataset.  

Table 4.2. Accuracy evaluation of weed detection 

 Integrated dataset UAV-only dataset 
True positive 91 32 
False positive 34 20 
False negative 6 65 
Precision 72.8% 61.5% 
Recall 93.8% 33.0% 
F1-score 82.1% 43.0% 

Accuracy evaluation results are summarized in Table 4.2. The integrated dataset, 

which integrates UAV and nano-drone point clouds, achieved a precision of 72.8%, recall 

of 93.8%, and an overall F1-score of 82.1%. In contrast, the UAV-only dataset showed 

lower performance, with a precision of 61.5%, recall of 33.0%, and an F1-score of 43.0%. 

These results demonstrate that while the integrated dataset produced more false positives 

than UAV-only, it also detected substantially more true positives and missed far fewer 

weeds. The high recall value indicates that the integrated dataset provides a more 

complete representation of weed distribution, reducing the risk of undetected weeds in 

under-canopy areas.  

Overall, the weed maps confirm the effectiveness of integrating nano-drone 

imagery with UAV data. The combined dataset not only enriches under-canopy detail but 

also improves detection accuracy, validating the hypothesis that multi-perspective point 

clouds enhance under-canopy weed identification.  
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Chapter 5. Conclusion and Future Work 

5.1. Conclusion 

This thesis developed and rigorously evaluated a nano-drone–assisted, 

unsupervised 3D point-cloud framework for under-canopy weed detection in perennial 

crop fields. The framework addressed the critical limitation of conventional UAV imagery, 

namely the occlusion of weeds beneath dense crop canopies, by integrating 

complementary aerial and near-ground perspectives. 

The proposed workflow consisted of four main stages: (i) dual-perspective data 

acquisition, combining UAV canopy-level coverage with nano-drone near-ground 

observations; (ii) coarse alignment through DBSCAN-based GCP extraction and rigid 

transformation via triangle geometry; (iii) fine alignment using Iterative Closest Point (ICP); 

and (iv) multi-level segmentation, including PMF-based ground/non-ground separation, 

weighted K-means soil–vegetation classification, and DBSCAN–K-means clustering for 

individual weed identification. The final output was a 2D weed distribution map that directly 

supports site-specific field management. 

Field experiments conducted in a densely planted blueberry farm confirmed that 

the integrated multi-perspective dataset significantly outperformed UAV-only data. The 

integrated dataset identified 125 weed clusters, more than double the UAV-only result of 

52 clusters. Accuracy metrics further reinforced this improvement, with precision of 72.8%, 

recall of 93.8%, and F1-score of 82.1% compared with 61.5%, 33.0%, and 43.0% for UAV-

only data. Vertical distribution histograms highlighted the structural complementarity of the 

two datasets, validating the hypothesis that multi-perspective integration enhances weed 

detection in occluded environments. 

Key contributions of this thesis can be summarized as follows: 

• Novel integration of UAV and nano-drone imagery: Demonstrated the feasibility 

and effectiveness of combining top-down and under-canopy perspectives for 

agricultural point-cloud reconstruction. 
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• Robust point-cloud alignment pipeline: Developed a practical two-step alignment 

strategy (GCP-based transformation + ICP) that ensured structural consistency 

between heterogeneous datasets. 

• Novel unsupervised weed detection framework: Implemented a multi-stage 

segmentation process capable of separating soil, crop, and weed clusters without 

reliance on labeled data. 

• Validated improvement in detection accuracy: Provided quantitative evidence that 

multi-perspective integration nearly doubled the number of identified weed clusters 

and significantly improved precision, recall, and F1-score compared with UAV-only 

workflows. 

Despite these achievements, several limitations remain, including residual 

misalignment artifacts in the fused ground layer, parameter sensitivity for density-based 

clustering, and false positives arising in heterogeneous ground conditions. These 

challenges highlight the need for improved data acquisition stability, registration 

refinement, and post-processing strategies in future work.  

5.2. Future Work 

Building upon the contributions of this research, several directions for future 

investigation are identified: 

(1) Enhancement of georeferencing accuracy and data acquisition stability. 

Improving the positional accuracy of UAV platforms, particularly nano-drones, is 

critical for reducing residual misalignment and ensuring reliable reconstructions. Future 

work should explore the integration of RTK/PPK GNSS systems, denser GCP deployment, 

and synchronization of camera and IMU/GNSS measurements. Additionally, 

improvements in nano-drone stability—through enhanced waypoint navigation, visual-

inertial odometry, or terrain-following flight modes—may further increase the reliability of 

near-ground acquisitions. 

(2) Development of large-scale weed density mapping tools. 
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Beyond cluster-level detection, the framework can be extended to generate field-

scale weed density maps, enabling farmers to identify infestation hotspots and assess 

spatial variability. Grid-based or row-based density representations, combined with 

temporal monitoring, would provide valuable decision support for adaptive weed 

management strategies. 

(3) Integration with autonomous weeding systems. 

A longer-term objective is to establish a practical, closed-loop weed-management 

workflow in which UAV-acquired imagery and the proposed under-canopy detection 

framework directly support robotic weeding platforms. In such a system, farmers would 

follow a simple operational sequence: 

1. deploy a conventional UAV and a nano-drone to capture canopy-level and under-
canopy images, 

2. upload the raw images into a user-friendly software package, 

3. automatically generate a fused 3D point cloud and corresponding weed distribution 
map, and 

4. send the georeferenced weed map to an autonomous weeding robot for targeted 
intervention. 

Compared with using a robot alone—which must physically explore the full field to 

perform real-time weed detection—integrating pre-generated weed maps dramatically 

improves operational efficiency. The robot no longer needs to survey the entire field 

visually; it only navigates to predetermined weed locations and performs localized removal. 

This reduces energy consumption, decreases field traversal time, minimizes mechanical 

wear, and increases the robot’s effective daily treatment capacity.  

To support real-world adoption, the full framework will be encapsulated into a 

streamlined software platform. The tool will accept raw UAV and nano-drone imagery as 

inputs, automatically execute alignment, segmentation, and weed-clustering algorithms in 

the background, and output a standardized georeferenced weed map. Once generated, 

the map can be transmitted directly to a weeding robot through standard communication 

protocols, enabling rapid “scan → analyze → act” operation. Such a pipeline lowers the 

technical barrier for farmers, enhances decision-making efficiency, and moves toward a 

fully automated, precise, and sustainable weed-management system. 
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Appendix A.  Point Cloud Processing and Weed 
Detection Code (Python) 

import os 

import numpy as np 

import open3d as o3d 

import myfunc as mf 

 

os.system('cls') 

 

# ------------ USER PATHS------------ 

UAV_PLY   = r"C:\path\to\uav.ply" 

NANO_PLY  = r"C:\path\to\nano.ply" 

OUT_DIR   = r"C:\path\to\out" 

os.makedirs(OUT_DIR, exist_ok=True) 

 

# ------------ 0) Load ------------ 

uav  = mf.load_pcd(UAV_PLY) 

nano = mf.load_pcd(NANO_PLY) 

 

# ------------ 1) GCP-based initial alignment ------------ 

# Extract 3 red targets from both clouds 
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uav_gcps  = mf.extract_red_gcps_dbscan(uav,  eps=0.08, min_samples=60) 

nano_gcps = mf.extract_red_gcps_dbscan(nano, eps=0.08, min_samples=60) 

 

# Order via triangle geometry matching 

ref3, tgt3 = mf.match_gcp_order_by_triangle(uav_gcps, nano_gcps) 

 

# Rigid transform nano -> uav 

rig = mf.rigid_transform(np.vstack(tgt3), np.vstack(ref3), with_scale=False) 

nano_init = mf.apply_transform(nano, rig.R, rig.t, rig.s) 

 

# ------------ 2) ICP refinement ------------ 

nano_icp, T_icp, reg = mf.icp_refine(nano_init, uav, max_corr_dist=0.20) 

aligned = uav + nano_icp   # integrated PCD 

 

mf.save_pcd(aligned, os.path.join(OUT_DIR, "A_aligned.ply")) 

print("[SAVE] Integrated aligned cloud -> A_aligned.ply") 

 

# ------------ 3) Common helper to run per-source branch ------------ 

def branch_process(prefix: str, whole_pcd: o3d.geometry.PointCloud): 

    """ 

    prefix: 'N' for UAV-only, 'A' for integrated 
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    """ 

    # 3.1 denoise 

    clean = mf.remove_statistical_outliers(whole_pcd, 15, 2.0) 

    clean = mf.remove_radius_outliers(clean, radius=0.05, min_points=8) 

    mf.save_pcd(clean, os.path.join(OUT_DIR, f"{prefix}_clean.ply")) 

 

    # 3.2 PMF ground/non-ground 

    g_path = os.path.join(OUT_DIR, f"{prefix}_ground.ply") 

    ng_path= os.path.join(OUT_DIR, f"{prefix}_nonground.ply") 

    g_out, ng_out = mf.pmf_filter_file( 

        input_path=os.path.join(OUT_DIR, f"{prefix}_clean.ply"), 

        ground_out_path=g_path, 

        nonground_out_path=ng_path, 

        max_window_size=40, slope=1.1, initial_distance=0.9, max_distance=2.8, 

cell_size=1.2 

    ) 

    # Fallback if PDAL not available: split nothing 

    ground_pcd   = mf.load_pcd(g_path)   if g_out  else o3d.geometry.PointCloud() 

    nonground_pcd= mf.load_pcd(ng_path)  if ng_out else whole_pcd 

 

    # 3.3 denoise ground before soil-veg split 
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    if not ground_pcd.is_empty(): 

        ground_pcd = mf.remove_statistical_outliers(ground_pcd, 15, 2.0) 

        ground_pcd = mf.remove_radius_outliers(ground_pcd, 0.05, 8) 

        mf.save_pcd(ground_pcd, os.path.join(OUT_DIR, f"{prefix}_ground_d.ply")) 

 

    # 3.4 soil-vegetation KMeans (weights: X,Y,relZ,ExG,ExGR) 

    # For relZ plane, we use the UAV ground as reference if available; otherwise the 

current ground. 

    ref_ground = ground_pcd if prefix == "N" else mf.load_pcd(os.path.join(OUT_DIR, 

"N_ground.ply")) if os.path.exists(os.path.join(OUT_DIR, "N_ground.ply")) else 

ground_pcd 

    _, soil_mask, veg_mask, colored = mf.kmeans_soil_vs_veg(ground_pcd, ref_ground, 

weights=(0.4,0.4,2.3,2.0,1.0)) 

    mf.save_pcd(colored, os.path.join(OUT_DIR, f"{prefix}_soilveg_colored.ply")) 

    soil = ground_pcd.select_by_index(np.where(soil_mask)[0]) 

    veg  = ground_pcd.select_by_index(np.where(veg_mask)[0]) 

    mf.save_pcd(soil, os.path.join(OUT_DIR, f"{prefix}_soil.ply")) 

    mf.save_pcd(veg,  os.path.join(OUT_DIR, f"{prefix}_veg.ply")) 

 

    # 3.5 weed candidates (use crop rows from non-ground) 

    crop = nonground_pcd 

    crop = mf.voxel_downsample(crop, 0.02) 

    veg  = mf.voxel_downsample(veg,  0.02) 
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    # 3.6 cluster weeds (DBSCAN -> KMeans size split -> length filter) 

    labels, clusters, centers, colored_db = mf.cluster_weeds_dbscan_xyz( 

        veg, eps=0.14, min_samples=18, axis_weights=(1,1,1) 

    ) 

    mf.save_pcd(colored_db, os.path.join(OUT_DIR, f"{prefix}_weed_dbscan_color.ply")) 

 

    keep_ids, _, _ = mf.select_small_clusters_by_kmeans(clusters, k=2) 

    keep_ids = mf.enforce_max_cluster_length(keep_ids, clusters, max_len=1.0, 

mode="xy") 

 

    # Build weeds-only cloud (all red) & multi-color result 

    uniq = sorted(set(labels) - {-1}) 

    lab2idx = {lab: i for i, lab in enumerate(uniq)} 

    weed_labels = [lab for lab in uniq if lab2idx[lab] in keep_ids] 

    if len(weed_labels) > 0: 

        mask_pts = np.isin(labels, weed_labels) 

        weeds_only = veg.select_by_index(np.where(mask_pts)[0]) 

        weeds_only_red = o3d.geometry.PointCloud(weeds_only) 

        weeds_only_red.paint_uniform_color([1.0, 0.0, 0.0]) 
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        mf.save_pcd(weeds_only_red, os.path.join(OUT_DIR, 

f"{prefix}_weeds_only_red.ply")) 

 

    # 3.7 Weed map (2D overlay) 

    # crops = non-ground (green); weeds = weeds_only_red (red) 

    crops_for_map = crop 

    weeds_for_map = weeds_only_red if len(weed_labels) > 0 else 

o3d.geometry.PointCloud() 

    mf.make_weed_map( 

        crops_for_map, weeds_for_map, 

        out_png=os.path.join(OUT_DIR, f"{prefix}_weed_map.png"), 

        pixel_size=0.02, margin=0.5, point_dilate=2 

    ) 

 

# ------------ Run both branches ------------ 

# UAV-only branch 

branch_process("N", uav) 

 

# Integrated (aligned) branch 

branch_process("A", aligned) 

 

print("\n[Done] Main pipeline completed.\n") 
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# (DBSCAN / KMeans weed post-processing & 2D maps follow your original flow/styles 

#  for A_* and N_* branches. ) 
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Appendix B.  Function Define Code (Python) 

import json 

import os 

from dataclasses import dataclass 

from typing import List, Tuple, Optional 

 

import numpy as np 

import open3d as o3d 

 

# ---------- Basic IO / Viz ---------- 

 

def load_pcd(path: str) -> o3d.geometry.PointCloud: 

    p = o3d.io.read_point_cloud(path) 

    if p.is_empty(): 

        raise ValueError(f"[load_pcd] Empty or unreadable: {path}") 

    return p 

 

def save_pcd(pcd: o3d.geometry.PointCloud, path: str): 

    o3d.io.write_point_cloud(path, pcd) 

 

def visualize_pcd(*geoms, window="Open3D", point_size=2.0): 
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    vis = o3d.visualization.Visualizer() 

    vis.create_window(window_name=window) 

    for g in geoms: 

        vis.add_geometry(g) 

    opt = vis.get_render_option() 

    opt.point_size = float(point_size) 

    vis.run() 

    vis.destroy_window() 

 

def voxel_downsample(pcd: o3d.geometry.PointCloud, voxel_size: float) -> 

o3d.geometry.PointCloud: 

    return pcd.voxel_down_sample(max(voxel_size, 1e-6)) 

 

# ---------- Denoising ---------- 

 

def remove_statistical_outliers( 

    pcd: o3d.geometry.PointCloud, nb_neighbors=15, std_ratio=2.0 

) -> o3d.geometry.PointCloud: 

    pcd2, _ = pcd.remove_statistical_outlier(nb_neighbors=nb_neighbors, 

std_ratio=std_ratio) 

    return pcd2 
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def remove_radius_outliers( 

    pcd: o3d.geometry.PointCloud, radius=0.05, min_points=8 

) -> o3d.geometry.PointCloud: 

    pcd2, _ = pcd.remove_radius_outlier(nb_points=min_points, radius=radius) 

    return pcd2 

 

# ---------- GCP extraction (red targets) ---------- 

 

def threshold_red_mask(rgb: np.ndarray, r_min=180, g_max=120, b_max=100) -> 

np.ndarray: 

    """Return boolean mask for near-red points (colors 0–255 or 0–1 both ok).""" 

    C = rgb.copy() 

    if C.max() <= 1.0: 

        C = (C * 255.0).astype(np.uint8) 

    r, g, b = C[:, 0], C[:, 1], C[:, 2] 

    return (r >= r_min) & (g <= g_max) & (b <= b_max) 

 

def dbscan_labels(X: np.ndarray, eps: float, min_samples: int) -> np.ndarray: 

    from sklearn.cluster import DBSCAN 

    return DBSCAN(eps=eps, min_samples=min_samples).fit_predict(X) 

 



66 

def extract_red_gcps_dbscan( 

    pcd: o3d.geometry.PointCloud, 

    eps=0.08, 

    min_samples=50, 

    r_min=180, g_max=120, b_max=100 

) -> List[np.ndarray]: 

    """Return list of 3D centroids for each red GCP cluster.""" 

    P = np.asarray(pcd.points) 

    C = np.asarray(pcd.colors) 

    mask = threshold_red_mask(C, r_min=r_min, g_max=g_max, b_max=b_max) 

    if mask.sum() == 0: 

        raise ValueError("[GCP] No red-like points found with threshold.") 

    Psub = P[mask] 

    labels = dbscan_labels(Psub, eps=eps, min_samples=min_samples) 

    uniq = [lab for lab in sorted(set(labels)) if lab != -1] 

    if len(uniq) < 3: 

        raise ValueError(f"[GCP] Only {len(uniq)} red clusters found; need ≥3.") 

    centroids = [Psub[labels == lab].mean(axis=0) for lab in uniq] 

    return centroids  # unsorted; sort next step 

 

# ---------- GCP triangle-order matching ---------- 
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def _triangle_side_lengths(pts: np.ndarray) -> np.ndarray: 

    a, b, c = pts 

    return np.array([ 

        np.linalg.norm(a - b), 

        np.linalg.norm(b - c), 

        np.linalg.norm(c - a) 

    ]) 

 

def match_gcp_order_by_triangle( 

    ref_pts3: List[np.ndarray], tgt_pts3: List[np.ndarray] 

) -> Tuple[np.ndarray, np.ndarray]: 

    """Match target GCP order to reference by triangle geometry (shape-invariant).""" 

    from itertools import permutations 

    ref = np.vstack(ref_pts3)[:3] 

    best = None 

    best_diff = 1e18 

    ref_len = _triangle_side_lengths(ref) 

    for perm in permutations(np.vstack(tgt_pts3)[:3]): 

        tgt = np.vstack(perm) 

        diff = np.linalg.norm(np.sort(ref_len) - np.sort(_triangle_side_lengths(tgt))) 
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        if diff < best_diff: 

            best_diff = diff 

            best = tgt 

    return ref, best 

 

# ---------- Rigid transform (Procrustes/Kabsch) ---------- 

 

@dataclass 

class RigidResult: 

    R: np.ndarray  # (3,3) 

    t: np.ndarray  # (3,) 

    s: float       # scale (1.0 for rigid) 

 

def rigid_transform(A: np.ndarray, B: np.ndarray, with_scale=False) -> RigidResult: 

    """Compute transform that maps A -> B (rows are points).""" 

    assert A.shape == B.shape and A.shape[1] == 3 

    muA = A.mean(axis=0) 

    muB = B.mean(axis=0) 

    AA = A - muA 

    BB = B - muB 

    H = AA.T @ BB 
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    U, S, Vt = np.linalg.svd(H) 

    R = Vt.T @ U.T 

    if np.linalg.det(R) < 0: 

        Vt[-1, :] *= -1 

        R = Vt.T @ U.T 

    if with_scale: 

        varA = (AA**2).sum() 

        s = (S.sum() / varA) if varA > 1e-12 else 1.0 

    else: 

        s = 1.0 

    t = muB - s * (R @ muA) 

    return RigidResult(R=R, t=t, s=s) 

 

def apply_transform(pcd: o3d.geometry.PointCloud, R: np.ndarray, t: np.ndarray, s: 

float=1.0): 

    P = np.asarray(pcd.points) 

    P2 = (s * (R @ P.T)).T + t 

    out = o3d.geometry.PointCloud(pcd) 

    out.points = o3d.utility.Vector3dVector(P2) 

    return out 
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# ---------- ICP refinement ---------- 

 

def icp_refine( 

    source: o3d.geometry.PointCloud, 

    target: o3d.geometry.PointCloud, 

    max_corr_dist=0.2, 

    init=o3d.geometry.TransformationEstimationPointToPoint() 

): 

    trans_init = np.eye(4) 

    reg = o3d.pipelines.registration.registration_icp( 

        source, target, max_corr_dist, trans_init, 

        o3d.pipelines.registration.TransformationEstimationPointToPoint() 

    ) 

    T = reg.transformation 

    src2 = o3d.geometry.PointCloud(source) 

    src2.transform(T) 

    return src2, T, reg 

 

# ---------- PMF ground filtering (PDAL wrapper with fallback) ---------- 

 

def pmf_filter_file(input_path: str, 
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                    ground_out_path: str, 

                    nonground_out_path: str, 

                    max_window_size=40, slope=1.1, 

                    initial_distance=0.9, max_distance=2.8, 

                    cell_size=1.2) -> Tuple[Optional[str], Optional[str]]: 

    """ 

    Try PDAL PMF via subprocess. If PDAL not available, returns (None, None). 

    """ 

    import subprocess, tempfile 

    if not os.path.exists(input_path): 

        raise FileNotFoundError(input_path) 

 

    # PDAL pipeline for PMF on generic PLY (reads XYZ, optional RGB) 

    pipe = { 

        "pipeline": [ 

            {"type": "readers.ply", "filename": input_path}, 

            {"type": "filters.pmf", 

             "max_window_size": max_window_size, 

             "slope": slope, 

             "initial_distance": initial_distance, 

             "max_distance": max_distance, 
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             "cell_size": cell_size}, 

            {"type": "filters.range", "limits": "Classification[2:2]"}, 

            {"type": "writers.ply", "filename": ground_out_path, "storage_mode": "ascii"}, 

        ] 

    } 

    pipe2 = { 

        "pipeline": [ 

            {"type": "readers.ply", "filename": input_path}, 

            {"type": "filters.pmf", 

             "max_window_size": max_window_size, 

             "slope": slope, 

             "initial_distance": initial_distance, 

             "max_distance": max_distance, 

             "cell_size": cell_size}, 

            {"type": "filters.range", "limits": "Classification[2:2]"}, 

            {"type": "filters.assign", "assignment": "Classification[:]=0"}, 

            {"type": "filters.merge"}, 

            {"type": "writers.ply", "filename": nonground_out_path, "storage_mode": "ascii"} 

        ] 

    } 

    try: 
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        with tempfile.NamedTemporaryFile(mode="w", suffix=".json", delete=False) as f1: 

            json.dump(pipe, f1); p1 = f1.name 

        with tempfile.NamedTemporaryFile(mode="w", suffix=".json", delete=False) as f2: 

            json.dump(pipe2, f2); p2 = f2.name 

        subprocess.run(["pdal", "pipeline", p1], check=True) 

        subprocess.run(["pdal", "pipeline", p2], check=True) 

        return ground_out_path, nonground_out_path 

    except Exception as e: 

        print("[PMF] PDAL not available or failed:", e) 

        return None, None 

 

# ---------- Vegetation indices / features ---------- 

 

def compute_ExG(colors01: np.ndarray) -> np.ndarray: 

    C = colors01 

    if C.max() <= 1.0: 

        r, g, b = C[:, 0], C[:, 1], C[:, 2] 

    else: 

        r, g, b = C[:, 0]/255.0, C[:, 1]/255.0, C[:, 2]/255.0 

    return 2*g - r - b 
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def compute_ExGR(colors01: np.ndarray) -> np.ndarray: 

    C = colors01 

    if C.max() <= 1.0: 

        r, g, b = C[:, 0], C[:, 1], C[:, 2] 

    else: 

        r, g, b = C[:, 0]/255.0, C[:, 1]/255.0, C[:, 2]/255.0 

    exg = 2*g - r - b 

    exr = 1.4*r - g 

    return exg - exr 

 

def fit_plane_svd(points_xyz: np.ndarray): 

    P = np.asarray(points_xyz) 

    c = P.mean(axis=0) 

    U, S, Vt = np.linalg.svd(P - c, full_matrices=False) 

    n = Vt[-1, :] 

    n = n / (np.linalg.norm(n) + 1e-12) 

    a, b, c0 = n 

    d = -np.dot(n, c) 

    return (a, b, c0, d), n 

 

def relative_z_from_plane(points_xyz: np.ndarray, plane): 
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    a, b, c, d = plane 

    P = np.asarray(points_xyz) 

    z_plane = (-d - a*P[:,0] - b*P[:,1]) / (c + 1e-12) 

    return P[:,2] - z_plane 

 

# ---------- Soil vs vegetation (weighted K-means) ---------- 

 

def kmeans_soil_vs_veg( 

    ground_pcd: o3d.geometry.PointCloud, 

    ref_ground: o3d.geometry.PointCloud, 

    weights=(0.4, 0.4, 2.3, 2.0, 1.0), 

    k_nn_ref=3, 

    random_state=42 

): 

    """ 

    Features: [X, Y, relZ, ExG, ExGR]. relZ derived from plane fit to ref_ground. 

    Returns: labels, soil_mask, veg_mask, colored_copy 

    """ 

    from sklearn.cluster import KMeans 

 

    P = np.asarray(ground_pcd.points) 
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    C = np.asarray(ground_pcd.colors) if ground_pcd.has_colors() else np.zeros((len(P), 

3)) 

    # fit plane on reference ground for robust relZ 

    plane, _ = fit_plane_svd(np.asarray(ref_ground.points)) 

    relZ = relative_z_from_plane(P, plane) 

    ExG = compute_ExG(C); ExGR = compute_ExGR(C) 

 

    X = np.column_stack([P[:,0], P[:,1], relZ, ExG, ExGR]) 

    W = np.asarray(weights, dtype=float) 

    Xw = X * W  # simple diagonal weighting 

 

    km = KMeans(n_clusters=2, n_init=10, random_state=random_state).fit(Xw) 

    labels = km.labels_ 

 

    # Heuristic: soil has lower ExG/ExGR and lower relZ 

    # Determine which cluster is soil by comparing mean (relZ + ExG) 

    c0 = X[labels==0]; c1 = X[labels==1] 

    score0 = c0[:,2].mean() + c0[:,3].mean() 

    score1 = c1[:,2].mean() + c1[:,3].mean() 

    soil_label = 0 if score0 < score1 else 1 

    soil_mask = (labels == soil_label) 
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    veg_mask  = ~soil_mask 

 

    # Build colored copy for quick view (brown soil, green veg) 

    out = o3d.geometry.PointCloud(ground_pcd) 

    col = np.tile([0.6, 0.4, 0.2], (len(P), 1)) 

    col[veg_mask] = [0.0, 0.8, 0.0] 

    out.colors = o3d.utility.Vector3dVector(col) 

 

    return labels, soil_mask, veg_mask, out 

# (Adapted to your weights/feature-set used in your scripts ) 

 

# ---------- Weed clustering & filters ---------- 

 

def cluster_weeds_dbscan_xyz( 

    weeds_cand: o3d.geometry.PointCloud, eps=0.14, min_samples=18, 

axis_weights=(1,1,1) 

): 

    """ 

    DBSCAN in XYZ with optional anisotropic weights. 

    Returns labels, clusters(list of Nx3 arrays), centers, colored_cloud 

    """ 
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    from sklearn.cluster import DBSCAN 

    P = np.asarray(weeds_cand.points) 

    W = np.array(axis_weights, dtype=float) 

    X = P * W 

    labels = DBSCAN(eps=eps, min_samples=min_samples).fit_predict(X) 

    uniq = [lab for lab in sorted(set(labels)) if lab != -1] 

    clusters = [P[labels == lab] for lab in uniq] 

    centers = [c.mean(axis=0) for c in clusters] 

 

    # colored cloud for preview: each cluster random color, noise gray 

    colored = o3d.geometry.PointCloud(weeds_cand) 

    C = np.tile([0.8, 0.8, 0.8], (len(P), 1)) 

    rng = np.random.default_rng(2025) 

    for lab in uniq: 

        color = rng.random(3) * 0.6 + 0.35 

        C[labels == lab] = color 

    colored.colors = o3d.utility.Vector3dVector(C) 

    return labels, clusters, centers, colored 

# (Colorization / reporting style follows your main DBSCAN pipelines ) 

 

def select_small_clusters_by_kmeans(clusters: List[np.ndarray], k=2): 
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    """Split clusters by size (max span in XY) via KMeans; return indices of smaller 

group.""" 

    from sklearn.cluster import KMeans 

    spans = [] 

    for c in clusters: 

        if len(c) == 0: 

            spans.append(0.0) 

            continue 

        xy = c[:, :2] 

        ext = xy.max(axis=0) - xy.min(axis=0) 

        spans.append(float(np.linalg.norm(ext))) 

    spans = np.array(spans).reshape(-1, 1) 

    km = KMeans(n_clusters=k, n_init=10, random_state=42).fit(spans) 

    labs = km.labels_ 

    means = [spans[labs == i].mean() if (labs == i).any() else 0 for i in range(k)] 

    small_id = int(np.argmin(means)) 

    keep_ids = list(np.where(labs == small_id)[0]) 

    return keep_ids, labs, km.cluster_centers_ 

 

def enforce_max_cluster_length(keep_ids: List[int], clusters: List[np.ndarray], 

max_len=1.0, mode="xy"): 

    """Drop clusters whose maximum extent exceeds threshold (m).""" 
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    out = [] 

    for idx in keep_ids: 

        c = clusters[idx] 

        if len(c) < 2: 

            continue 

        if mode.lower() == "xy": 

            u = c[:, :2] 

        else: 

            u = c 

        ext = u.max(axis=0) - u.min(axis=0) 

        L = float(np.linalg.norm(ext)) 

        if L <= max_len: 

            out.append(idx) 

    return out 

 

# ---------- 2D maps (crop-only, crop+weed) ---------- 

 

def make_crop_map(crop_pcd: o3d.geometry.PointCloud, out_png: str, 

                  pixel_size=0.02, margin=0.5, point_dilate=2): 

    """ 

    Top-down 2D projection of crop (green); adapted from your helper script.  
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    (Original idea/canvas math mirrored here) :contentReference[oaicite:4]{index=4} 

    """ 

    P = np.asarray(crop_pcd.points)[:, :2] 

    min_xy = P.min(axis=0) - margin 

    max_xy = P.max(axis=0) + margin 

    size_xy = max_xy - min_xy 

    W = max(int(np.ceil(size_xy[0] / pixel_size)), 1) 

    H = max(int(np.ceil(size_xy[1] / pixel_size)), 1) 

    img = np.full((H, W, 3), 255, dtype=np.uint8) 

 

    def xy_to_rc(xy): 

        cols = ((xy[:, 0] - min_xy[0]) / pixel_size).astype(int) 

        rows = (H - 1 - (xy[:, 1] - min_xy[1]) / pixel_size).astype(int) 

        return np.clip(rows, 0, H-1), np.clip(cols, 0, W-1) 

 

    r, c = xy_to_rc(P) 

    img[r, c] = np.array([0, 200, 0], dtype=np.uint8) 

    try: 

        from PIL import Image 

        Image.fromarray(img).save(out_png) 

    except Exception: 
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        import matplotlib.pyplot as plt 

        plt.imsave(out_png, img) 

    return img, (min_xy, max_xy), (H, W) 

 

def make_weed_map(crop_pcd, weed_pcd, out_png, pixel_size=0.02, margin=0.5, 

point_dilate=2): 

    """ 

    2D projection: crops green + weeds red (overlaid). 

    Adapted from your weedmap helper (canvas bounds + paint) 

:contentReference[oaicite:5]{index=5} 

    """ 

    pts = [] 

    if not crop_pcd.is_empty(): pts.append(np.asarray(crop_pcd.points)[:, :2]) 

    if not weed_pcd.is_empty(): pts.append(np.asarray(weed_pcd.points)[:, :2]) 

    XY = np.vstack(pts) 

    min_xy = XY.min(axis=0) - margin 

    max_xy = XY.max(axis=0) + margin 

    size_xy = max_xy - min_xy 

    W = max(int(np.ceil(size_xy[0] / pixel_size)), 1) 

    H = max(int(np.ceil(size_xy[1] / pixel_size)), 1) 

    img = np.full((H, W, 3), 255, dtype=np.uint8) 
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    def xy_to_rc(xy): 

        cols = ((xy[:, 0] - min_xy[0]) / pixel_size).astype(int) 

        rows = (H - 1 - (xy[:, 1] - min_xy[1]) / pixel_size).astype(int) 

        return np.clip(rows, 0, H-1), np.clip(cols, 0, W-1) 

 

    if not crop_pcd.is_empty(): 

        r, c = xy_to_rc(np.asarray(crop_pcd.points)[:, :2]) 

        img[r, c] = np.array([0, 200, 0], dtype=np.uint8) 

    if not weed_pcd.is_empty(): 

        r, c = xy_to_rc(np.asarray(weed_pcd.points)[:, :2]) 

        img[r, c] = np.array([220, 20, 60], dtype=np.uint8) 

 

    try: 

        from PIL import Image 

        Image.fromarray(img).save(out_png) 

    except Exception: 

        import matplotlib.pyplot as plt 

        plt.imsave(out_png, img) 

    return img, (min_xy, max_xy), (H, W) 
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Appendix C.  Point Cloud Evaluation Code (Python) 

import open3d as o3d 

import numpy as np 

import pandas as pd 

 

# Optional: convex hull area via SciPy (better than AABB). If SciPy isn't available, 

# the code falls back to AABB area automatically. 

try: 

    from scipy.spatial import ConvexHull 

    SCIPY_OK = True 

except Exception: 

    SCIPY_OK = False 

 

def read_pcd(path): 

    p = o3d.io.read_point_cloud(path) 

    assert len(p.points) > 0, f"Empty point cloud: {path}" 

    return p 

 

def fit_plane_svd(points_xyz): 

    """Least-squares plane fit: returns (a,b,c,d) for ax+by+cz+d=0 and unit normal.""" 

    P = np.asarray(points_xyz) 
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    centroid = P.mean(axis=0) 

    U, S, Vt = np.linalg.svd(P - centroid, full_matrices=False) 

    normal = Vt[-1, :] 

    normal = normal / (np.linalg.norm(normal) + 1e-12) 

    a, b, c = normal 

    d = -centroid @ normal 

    return (a, b, c, d), normal, centroid 

 

def relative_z_from_plane(points_xyz, plane): 

    """Relative height above the plane evaluated at the XY of each point.""" 

    a, b, c, d = plane 

    P = np.asarray(points_xyz) 

    # signed distance to plane 

    dist = (a*P[:,0] + b*P[:,1] + c*P[:,2] + d) / (np.sqrt(a*a+b*b+c*c) + 1e-12) 

    # If you prefer purely vertical height (z minus plane's z at (x,y)), use this instead: 

    # z_plane = ( -d - a*P[:,0] - b*P[:,1]) / (c + 1e-12) 

    # dist = P[:,2] - z_plane 

    return dist 

 

def ground_area_m2(points_xyz, method="convex_hull_or_aabb", cell=None): 
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    """Approximate ground-projected area (m²). Uses convex hull in XY if SciPy is 

present; else AABB. 

       If 'cell' is provided (e.g., 0.1 m), returns raster area as nx*ny*cell^2 (optional).""" 

    XY = np.asarray(points_xyz)[:, :2] 

    if cell is not None: 

        xy_min = XY.min(axis=0); xy_max = XY.max(axis=0) 

        nx, ny = np.ceil((xy_max-xy_min)/cell).astype(int) 

        return float(nx*ny*(cell**2)) 

    if SCIPY_OK: 

        hull = ConvexHull(XY) 

        return float(hull.area)  # in 2D, ConvexHull.area gives perimeter; use volume for 

area 

    # SciPy quirk: in 2D, 'volume' is the polygon area 

    if SCIPY_OK: 

        return float(ConvexHull(XY).volume) 

    # Fallback: AABB area 

    mins = XY.min(axis=0); maxs = XY.max(axis=0) 

    ext = maxs - mins 

    return float(ext[0]*ext[1]) 

 

def average_density_pts_per_m2(pcd, area_m2=None): 

    if area_m2 is None: 
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        area_m2 = ground_area_m2(pcd.points) 

    return len(pcd.points) / max(area_m2, 1e-9) 

 

def percentage_ground_level(relative_z, band=(0.0, 0.03)): 

    """Percent of points within a small band above ground (tune band to your crop).""" 

    lo, hi = band 

    mask = (relative_z >= lo) & (relative_z <= hi) 

    return mask.mean() * 100.0 

 

# Replace with your actual file paths 

UAV_PLY      = r"C:\path\to\uav.ply" 

NANO_PLY     = r"C:\path\to\nano.ply" 

ALIGNED_PLY  = r"C:\path\to\aligned.ply" 

GROUND_PLY   = r"C:\path\to\uav_ground.ply"  # PMF output 

 

pcd_uav     = read_pcd(UAV_PLY) 

pcd_nano    = read_pcd(NANO_PLY) 

pcd_aligned = read_pcd(ALIGNED_PLY) 

pcd_ground  = read_pcd(GROUND_PLY) 

 

# Fit plane to the ground points 
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plane, normal, centroid = fit_plane_svd(pcd_ground.points) 

 

# Compute relative z for each dataset 

rz_uav     = relative_z_from_plane(pcd_uav.points, plane) 

rz_nano    = relative_z_from_plane(pcd_nano.points, plane) 

rz_aligned = relative_z_from_plane(pcd_aligned.points, plane) 

 

area_uav     = ground_area_m2(pcd_uav.points) 

area_nano    = ground_area_m2(pcd_nano.points) 

area_aligned = ground_area_m2(pcd_aligned.points) 

 

dens_uav     = average_density_pts_per_m2(pcd_uav, area_uav) 

dens_nano    = average_density_pts_per_m2(pcd_nano, area_nano) 

dens_aligned = average_density_pts_per_m2(pcd_aligned, area_aligned) 

 

summary_density = pd.DataFrame({ 

    "Cloud": ["UAV","Nano-drone","Aligned"], 

    "Points (N)": [len(pcd_uav.points), len(pcd_nano.points), len(pcd_aligned.points)], 

    "Area (m²)": [area_uav, area_nano, area_aligned], 

    "Avg density (pts/m²)": [dens_uav, dens_nano, dens_aligned], 

}) 
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print(summary_density.round(3)) 

 

# Define your "ground-level" band (meters above the plane) 

BAND = (0, 0.5)  # 0–3 cm; adjust to your site 

 

p_ground_uav     = percentage_ground_level(rz_uav, BAND) 

p_ground_nano    = percentage_ground_level(rz_nano, BAND) 

p_ground_aligned = percentage_ground_level(rz_aligned, BAND) 

 

summary_ground = pd.DataFrame({ 

    "Cloud": ["UAV","Nano-drone","Aligned"], 

    "Ground-level band (m)": [f"{BAND[0]}–{BAND[1]}"]*3, 

    "Ground-level (%)": [p_ground_uav, p_ground_nano, p_ground_aligned], 

}) 

print(summary_ground.round(2)) 

 

import matplotlib.pyplot as plt 

 

# Choose consistent bins for comparability (e.g., -0.05 to 2.0 m in 0.05 m steps) 

bins = np.arange(-0.05, 2.05, 0.05) 
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def plot_hist(rz, title, bins, savepath=None): 

    plt.figure(figsize=(6,4)) 

    plt.hist(rz, bins=bins) 

    plt.xlabel("Relative z (m)") 

    plt.ylabel("Count") 

    plt.title(title) 

    plt.tight_layout() 

    if savepath: 

        plt.savefig(savepath, dpi=300) 

    plt.show() 

 

plot_hist(rz_uav,     "UAV — Relative z distribution", bins, "hist_uav.png") 

plot_hist(rz_nano,    "Nano-drone — Relative z distribution", bins, "hist_nano.png") 

plot_hist(rz_aligned, "Aligned — Relative z distribution", bins, "hist_aligned.png") 

 

# Optional: export the histogram counts for your thesis appendix 

def hist_to_df(rz, bins, name): 

    h, e = np.histogram(rz, bins=bins) 

    centers = 0.5*(e[:-1]+e[1:]) 

    return pd.DataFrame({"Cloud":name, "RelZ_center_m":centers, "Count":h}) 
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hist_df = pd.concat([ 

    hist_to_df(rz_uav, bins, "UAV"), 

    hist_to_df(rz_nano, bins, "Nano-drone"), 

    hist_to_df(rz_aligned, bins, "Aligned"), 

], ignore_index=True) 

hist_df.to_csv("relative_z_histograms.csv", index=False) 
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