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Abstract

Positron emission tomography (PET) imaging is an invaluable tool in clinical settings as
it captures the functional activity of both healthy anatomy and cancerous lesions. Devel-
oping automatic lesion detection methods for PET images is crucial since manual lesion
segmentation is laborious and prone to inter- and intra-observer variability. We propose a
3D disentanglement method that learns robust disease features and predicts lesion segmen-
tations by disentangling PET images into disease and normal healthy anatomical features.
The proposed method, PET-Disentangler, uses a 3D UNet-like encoder-decoder architecture
for feature disentanglement followed by simultaneous segmentation and image reconstruc-
tion. A critic network encourages the healthy latent features, which are disentangled from
disease samples, to match the distribution of healthy samples and thus do not contain any
lesion-related features. We train and evaluate PET-Disentangler on 3D PET images from
the Cancer Imaging Archive (TCIA) whole-body FDG-PET/CT Dataset consisting of 1014
PET/CT scans, leveraging TotalSegmentator to obtain two anatomically aligned field-of-
views of the whole-body scans referred to as the upper and lower torso regions. Compared
to non-disentanglement segmentation methods, our quantitative results on the upper torso
region show PET-Disentangler has similar performance while having the added advantage of
visualizing, via the pseudo-healthy image, how a healthy (lesion-free) image might look like.
Our quantitative and qualitative results on the lower torso show enhanced performance from
our method as PET-Disentangler reduces the chances of incorrectly declaring high tracer
uptake regions as cancerous lesions, since such uptake pattern would be assigned to the
disentangled normal component.

Keywords: Positron Emission Tomography (PET); Image Segmentation; Disentangled
Representations; Deep Learning; Computer Vision
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Chapter 1

Introduction

1.1 Background and motivation

Positron emission tomography (PET) is a medical imaging modality that measures the
functional activity within the human body. Imaging modalities such as computed tomog-
raphy (CT) and magnetic resonance imaging (MRI) capture mainly structural information
whereas PET captures molecular-level biological changes throughout the body. PET imag-
ing is widely used in oncology to detect, assess, and plan treatment for cancerous lesions,
and it is also used in other areas of medicine including cardiology, neurology and psychiatry
[60].

To acquire a PET image, a patient is injected with a radioactive tracer (i.e., radiotracer)
and the patient will have the PET scan performed after a given time delay period. The
radiotracer has radionuclides (i.e., radioactive isotopes) attached to a molecular compound,
in which positrons will be emitted as the radionuclide decays. As soon as these positrons
encounter electrons within the body, they will annihilate one another and create gamma rays
travelling in opposite directions. The ring detector of the PET scanner detects these gamma
rays and generates a sinogram that can then be reconstructed to produce a PET image [58].
The radiotracer will be distributed throughout the body where the molecular compound is
used in physiological processes such that regions with higher radiotracer localization will
correspond to the higher intensity values in the captured images. An example of a PET
scanner is shown in Figure 1.1 where a patient lying down will be moved throughout the
ring-shaped scanner.

Clinicians will qualitatively analyse these images as their understanding of the radio-
tracer distribution will allow them to delineate healthy radiotracer uptake from disease
activity [44]. The most common radiotracer used in clinical settings for cancer management
is fluoride-18 fluorodeoxyglucose (18F–FDG) [49] as areas in the body that consume signifi-
cant amounts of glucose will correspond to the bright areas in the images. Cells that require
high levels of glucose include those in healthy organs and especially those in growing cancer
tumours, making it a favourable choice in cancer detection.
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Figure 1.1: PennPET Explorer Whole-body PET scanner [36].

Other radiotracers include positron-labelled choline, such as 18F-fluorocholine, as choline
is metabolized as a precursor for cell membrane synthesis and cancer cells that are growing
quickly have increased cell membrane requirements which correspond to higher uptake re-
gions in obtained PET scans [45]. 18F-DOPA is another radiotracer that is used to study
the dopaminergic pathway as 18F-DOPA is an analog of L-DOPA, an immediate precursor
of dopamine [47]. Figure 1.2 shows coronal views of PET scans obtained using the three
mentioned radiotracers, where each radiotracers distribution throughout the body creates
different intensity uptake patterns.

Qualitative analysis of radiotracer distribution may be sufficient for lesion detection al-
though quantitative measures are required for diagnosis and to measure treatment response
over time. There are a number of methods to quantify the radiotracter distribution includ-
ing tumor-to-background ratio (TBR) and total lesion evaluation (TLE), while the most
widely used measure is the standardized uptake value (SUV) that is used to standardize
PET image intensities. SUV represents the concentration of radiotracer throughout the
body as follows:

SUV = Cimage

Cwhole-body
=

C∗
image

Cradiotracer
S

. (1.1)

SUV is calculated using the image-derived concentration of the radiotracer at acquisition
time Cimage normalized by the whole-body concentration of the radiotracer at time of injec-
tion Cwhole-body. Cwhole-body is calculated using the concentration of the injected radiotracer
at time of injection Cradiotracer normalized by the patient’s size S which can be accounted
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Figure 1.2: Coronal view examples of PET images from different radiotracers [15].

for using the patient’s body weight, body surface area or lean body mass. Cimage is further
corrected by a decay factor that accounts for the radiotracer decay between time of injection
to time of PET scan acquisition, producing C∗

image. There are a number of physiological,
physical, and procedural factors that can influence the calculation of SUV including blood
glucose concentration, partial volume effect, respiratory motion artifacts, image reconstruc-
tion algorithm, and resolution of the scanner used [17].

Nonetheless, SUV provides insight into metabolic activity and can help distinguish be-
tween healthy and abnormal levels of radiotracer uptake, in addition to providing measures
of lesion aggressiveness and response to treatment. Segmentation of cancerous lesions facili-
tates diagnosis, treatment planning, and the monitoring of disease progression as segmenta-
tions can provide measures of total metabolic burden that can indicate disease prognostics.
The development of automatic segmentation methods can further alleviate the error intro-
duced and labour required for manual annotation.

1.2 The origins of automatic PET segmentation development

The origins of automatic PET lesion segmentation start with thresholding based techniques
where the PET image is thresholded based on SUV values using either fixed threshold
values, adaptive thresholding [16] or iterative thresholding methods [34]. Hofheinz et al.
[29] provided an algorithm that can be considered an extension of adaptive thresholding by
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determining thresholds on a per-voxel level in which reference values for the calculation are
obtained in each voxel’s neighborhood of voxels. This algorithm improved upon previous
thresholding techniques by being able to delineate strongly heterogeneous lesions while
maintaining performance on more homogeneous lesions.

One of the first approaches moving away from thresholding-based techniques was to
use segmentation algorithms based on hidden Markov models. In the work by Hatt et al.
[26], a modified version of Hidden Markov chains that also introduced the fuzzy model was
proposed with findings that the fuzzy nature can more realistically handle lesion borders.
Another direction for segmentation was introduced at this time in which PET images were
represented as a mixture of Gaussians. Aristophanous et al. [7] introduced a Gaussian mix-
ture model for PET segmentation, where they modeled the PET distribution with three
regions: background, target (for tumor regions), and uncertain. This method used one Gaus-
sian density to represent the uncertain voxels, whereas the number of densities to represent
the background and target were found to be 6 and 3, respectively. User input is also required
to delineate a target region for modeling. More recently, Soffientini et al. [53] segmented
lesions in PET images using an 8 class Gaussian mixture model clustering algorithm. This
method required initial manual guidance of a rough lesion and background area delineation,
and regularized the clustering by using Markov random field (MRF) for spatial priors.

In another direction, Yu et al. [68] approached PET/CT segmentation by using a
decision-tree based k-nearest neighbour algorithm to classify each voxel as normal or ab-
normal based on PET and CT texture features for each voxel. Around the same time, Hatt
et al. [27] introduced a 3D Bayesian statistical methodology that incorporated a fuzzy model
by allowing a voxel to belong to one of a finite number of fuzzy levels in addition to one
of the two hard classes of lesion or background. This method required an initialization step
of delineating a region of interest. This methodology was extended in Hatt et al. [28] to
include 3 hard classes that better handles heterogeneous uptake and has enhanced accuracy
and robustness compared to the original methodology. Dewalle-Vignion et al. [14] aimed to
delineate PET lesions by taking into account the uncertainty in labelling voxels as binary
values, either belonging to the lesion volume or otherwise, by using possibility theory with
maximum intensity projections and an initial selection of a 2D region of interest.

In the following years more methods were developing segmentation algorithms based
on Markon random field models. Han et al. [23] produced a lesion segmentation by co-
segmenting PET and CT using an MRF graph formulation. This method has an energy
term that penalized the difference between PET and CT segmentations and produced the
overall segmentation by computing a single maximum flow. Similarly, Song et al. [54] seg-
mented lesions in both PET and CT scans by approaching co-segmentation as an energy
minimization problem of an MRF model, in which the energy can be minimized using
graph cuts and solved using a single maximum flow. This method encouraged consistency
between segmentations produced for CT and PET images by using a consistency constraint
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that penalized differences between corresponding segmentation labels. This method also
required initial user guidance of three seed points for each tumour volume, where one seed
corresponds to the center point and two seeds are selected along the radius of the tumor
volume.

Furthermore, Bagci et al. [9] approached co-segmentation of PET/CT and PET/MRI
using a fully automated random-walk method that first finds foreground and background
seeds using an automated method. To obtain these seeds, the image is first thresholded
and foreground seeds are assigned to the voxel with maximum SUV in each foreground
region, and the background seeds are assigned to the closest nearby voxels that have SUV
below the threshold value. More recently, Ju et al. [35] used random walk and graph cut
to approach PET/CT lesion segmentation, in which random walk is used to obtain initial
seeds that are then used in the graph cut method. This method also used a context term to
penalize differences between PET and CT segmentation maps, and furthermore introduced
novel energy terms such as the downhill cost and 3D derivative cost for PET and a shape
penalty cost for CT.

Another direction for segmentation has been based on clustering algorithms, particularly
fuzzy c-means clustering. Belhassen and Zaidi [10] proposed a fuzzy c-means clustering algo-
rithm (FCM-SW) that introduced spatial information and considered lesion heterogeneity
by utilizing the results from the non-linear anisotropic diffusion filter and à trous wavelet
transform in addition to the PET image in the FCM algorithm. Lapuyade-Lahorgue et al.
[38] proposed a fuzzy c-means approach that provided a generalization of the algorithm
by utilizing the Hilbertian norm where the norm parameter is estimated per image. This
generalization was to improve accuracy and more accurately represent the non-Gaussian
distributions within PET.

PET segmentation approaches have also been developed using the active contour model.
Abdoli et al. [1] used an active contour model that replaced the input PET image with two
transformed images, one being the anisotropic diffusion filtered image and the second being
the contourlet transformed image, and included a curvature regularizing term to ensure the
segmented lesions have a smooth surface. Zhuang et al. [73] used an active contour model
that used transformed variations of the input PET image such as the histogram fuzzy c-
means clustering, bilateral filter, and Gabor transformed image. The level set equation is
also solved using the lattice Boltzmann method.

In more recent years, various other techniques have introduced their own novelties in
PET segmentation. Hanzouli-Ben Salah et al. [25] approached co-segmentation of PET/CT
images by using hidden Markov trees and applying the model to the original images in
addition to the wavelet and contourlet transformed images. Tan et al. [56] proposed an
adaptive region-growing algorithm (ARG_MC) that automatically determines the optimal
relaxing factor for the algorithm using a maximum curvature strategy. Grossiord et al. [21]
used machine learning techniques to first represent PET image as a component tree and
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obtain PET/CT descriptive features for each node in the tree, in which a random forest
classifier used this representation to then predict the segmentation map.

We refer to reader to [17] for an in-depth review on pre-deep learning PET segmentation
methods.

1.3 Deep learning techniques

1.3.1 PET lesion segmentation

Many studies have focused on segmenting lesions in PET images utilizing deep learning
methodologies [39] both in standalone PET images and in hybrid scans (e.g. PET/CT,
PET/MR). These studies have explored datasets encompassing a wide array of lesion loca-
tions.

Wang et al. [61] introduced a cascaded detection segmentation network for 18F-fluciclovine
PET/CT prostate lesion segmentation, in which a fully convolutional one-stage object de-
tection network is used to localize the lesions and provide a volume of interest to the seg-
mentation network. Their method improved upon UNet and cascaded UNet comparisons.

For head and neck tumor segmentation, Afshari et al. [4] segmented lesions in PET
using a fully convolutional network. A weakly supervised annotation approach that used
ground truth bounding boxes and a novel Mumford-Shah piecewise constant loss term are
leveraged to delineate lesions. Andrearczyk et al. [6] segmented head and neck lesions using
VNets in a multi-modal setting with PET, CT, and PET/CT images, where they found the
best performance using PET alone.

To segment lung lesions, Li et al. [41] used a fully convolutional network to create rough
segmentations from CT scans that are then used as a prior to a PET fuzzy variational model
to produce high quality segmentations. Zhong et al. [72] aimed to segment lung lesions in
PET/CT by first using two separate 3D UNets to produce PET and CT based segmenta-
tion maps and then employed a graph co-segmentation model to refine the segmentation
boundaries within the produced maps. Zhao et al. [71] introduced a 3D fully convolutional
neural network for lung cancer PET/CT segmentation that used two separate VNet style
networks for feature extraction with a subsequent feature fusion module that produced
the final segmentation. This method used cropped regions of interest that contained the
entire tumor area. Wu et al. [64] segmented lung lesions in PET by using an adversarial
auto-encoder that took in 2D PET slices as input and produced the corresponding tumor
free PET images, where lesions were found by identifying large differences between original
input and model output.

To segment lymphoma lesions throughout a full-body PET/CT scan, Li et al. [40] trained
a model that performed both segmentation and reconstruction tasks using DenseUNet. Je-
maa et al. [33] also performed segmentation of lymphoma lesions throughout whole-body
scans by first using 2D UNet to perform rough segmentation, then 3 separate 3D UNets
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for segmentation of the top, middle, and bottom regions, where the final segmentations are
the average of 2D and 3D results. Sibille et al. [52] segmented lung and lymphoma lesions
throughout the body by modifying AlexNet to take in multiple inputs (slices of PET/CT
images around candidate center of mass, MIP, atlas position) and produced classification
and segmentation of these regions. Blanc-Durand et al. [11] segmented lymphoma lesions
throughout the body using nnUNet and randomly selected patches throughout the PET/CT
scans. Hu et al. [30] segmented lymphoma lesions throughout the body using 4 networks
trained separately, where the 4 outputs and original input are fused and passed to a single
3D convolutional layer to produce the final segmentation. Weisman et al. [63] segmented
lymphoma lesions throughout the body using a 3D model of three DeepMedic models using
different resolutions of the input, where the final segmentation is the intersection from the
individual model’s output. Liu et al. [42] approached PET lymphoma lesion segmentation
using a multi-task framework in which lesion segmentation is jointly trained with progno-
sis prediction. Their method used a 3D UNet backbone that leveraged multi-scale features
from the decoding stages for classification prediction, and used deep supervision for both
segmentation and prediction tasks. Liu et al. [42] hypothesize that they outperformed com-
peting methods because of the multi-task and deep supervision nature of their proposed
method. Früh et al. [18] proposed a weakly supervised PET segmentation approach for the
segmentation of lymphoma, melanoma, and lung cancer that first applied a VGG-based
classification network to obtain slice level classification of tumor finding or no finding, in
which CAMs of this network are used to obtain the segmentation mask. Yousefirizi et al.
[67] introduced TMTV-Net for lymphoma, lung cancer, and melanoma lesion segmentation
in PET/CT images for total metabolic tumor volume (TMTV) quantification. TMTV-Net
is a cascaded segmentation network in which 5 3D UNets predict segmentations at different
resolutions that are combined using a voting scheme to produce an intermediate prediction.
The intermediate prediction is used with the original PET/CT in an additional 3D UNet
to produce the final segmentation prediction. Yousefirizi et al. [67] found their cascaded
approach improved upon state-of-the-art nnUNet and SWIN UNETR networks. A review
of deep learning PET lesion segmentation methods can be found in [66].

1.3.2 Disentanglement

Disentangled representation learning aims to discern the underlying sources of variation
within a dataset by isolating and encoding these distinct features of variation into separate
latent vectors. Adopting a disentangled representation framework also provides explainabil-
ity for neural network learning and allows the user the ability to manipulate the generated
data. Disentangled representations have been seen in applications such as image-to-image
translation, where domain specific features are separated from those that are domain invari-
ant to map images from a source image domain to a target image domain. Disentanglement
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is often performed using generative models such as generative adversarial networks (GANs)
[20] through regularization, where the disentangled components are learned implicitly.

The use of disentangled representations is growing in medical image analysis. For ex-
ample, Han et al. [24] used disentanglement to separate ribs from chest x-ray images where
they have seen an improvement in downstream task performance in disease classification and
in detection on rib-suppressed chest x-rays. Another application is to disentangle healthy
from disease as seen by Xia et al. [65], where they produced pseudo-healthy images and dis-
ease segmentation maps, while also producing reconstructions of the input given these two
disentangled components. Their results showed they outperformed baselines for generating
pseudo-healthy images and a conducted human study validated their improved performance.

Zhang et al. [69] also disentangled images into pseudo-healthy and disease components
in an adversarial setting where the generator is competing against a segmentor rather than
an image level classifier. This work also proposed a metric for healthiness and showed an
enhancement technique to help downstream segmentation. Tang et al. [57] disentangled chest
x-rays into a normal, healthy chest x-ray image and a disease saliency map, and produced
a reconstruction image of the input, improving binary disease classification and detection
performance. Kobayashi et al. [37] disentangled healthy anatomy from disease in the latent
vector space and provided a framework for content-based image retrieval. Content-based
image retrieval is to support comparative diagnostic reading, where physicians compare
a given example to similar examples without findings or compare examples with similar
abnormal findings.

1.4 Thesis Contributions

Automatic lesion segmentation remains a crucial area of development to alleviate the chal-
lenges associated with annotating medical images manually. The development of lesion
segmentation methods continues to grow rapidly where most methods aim to refine the fea-
tures of disease learned through various architectures, loss functions and data augmentation.
Concurrently, novel computer vision and deep learning ideas are being introduced that may
benefit when used in segmentation frameworks. In this thesis, we investigate the utility of
integrating image disentanglement in the task of lesion segmentation, as better understand-
ing of the components of the image may enhance the disease features learned. We propose
PET-Disentangler to disentangle PET images into healthy and disease features in the latent
space, and re-entangle these features during image reconstruction, to discover the utility of
learning the components of PET for lesion segmentation. PET-Disentangler is the first 3D
disentanglement approach for separating healthy and disease features. PET-Disentangler is
also the first disentanglement of healthy and disease feature approach performed on PET
data. Throughout our experiments, we show that the modelling of healthy anatomy via the
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healthy features reduces the false positive segmentation of healthy uptake patterns in which
other methods fail.

This thesis extends upon our work that has been accepted and presented at the Annual
Meeting of Society of Nuclear Medicine and Molecular Imaging. These extensions include
training on more data, performing experiments on another anatomical region of interest,
and additional evaluation methods.

T. Gatsak, K. Abhishek, H. B. Yedder, S. A. Taghanaki, and G. Hamarneh, “PET-
Disentangler: PET lesion segmentation via disentangled healthy and disease feature
representations,” 2024 SNMMI Annual Meeting Abstracts, Journal of Nuclear Medicine,
vol. 65 (supplement 2) 242461, 2024.
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Chapter 2

Method

2.1 Overview

The current state of the art in automatic lesion detection is based on deep learning methods
that aim at optimizing models to learn disease features. At the same time, the disentangle-
ment of images in the latent space to identify sources of variation is proving beneficial in
many settings [43], including image translation in both medical and non-medical applica-
tions. In this work, we approach lesion segmentation with a disentanglement framework to
disentangle PET images into disease features and normal healthy anatomical features for a
robust and explainable segmentation method.

In this work, we introduce a novel PET segmentation method, PET-Disentangler, that
disentangles 3D PET images in the latent space into healthy and disease components.
PET-Disentangler uses the disease features for lesion segmentation prediction, the healthy
features to estimate pseudo-healthy images per input, and re-entangles both healthy and
disease features for full reconstruction. PET-Disentangler is comparable to segmentation-
only baselines, although it enhances the lesion segmentation task by providing explainability
in the form of a pseudo-healthy image as to what the model expects the lesion-free image
to look like per given input.

Furthermore, PET-Disentangler shows that learning the healthy component provides a
solution to a critical challenge in PET lesion segmentation [5] where segmentation models
can incorrectly segment healthy, high-intensity areas as disease. This challenge has seen
solutions that focus on localizing healthy, high intensity regions [3] whereas the proposed
PET-Disentangler can both capture the healthy anatomy features and delineate lesions
through the learned disentangled representations.

2.2 Proposed network architecture

In this work, we propose approaching lesion segmentation using a deep learning disentan-
glement framework that learns to separate an input PET image into healthy and disease
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Figure 2.1: Proposed architecture of PET-Disentangler that consists of an encoder,
segmentation decoder, reconstruction decoder and a critic network to enforce feature
disentanglement. The encoder produces two latent vectors zh and zd that represent the
healthy and disease features, respectively. The black arrows represent the utilization of
features throughout the network. The blue arrows represent the skip connections between
the encoder and two decoders. The green arrow represents the use of the mask prediction
in the image decoder to combine healthy and disease features, via SPADE blocks, for
image reconstruction.

features in the latent space. The disentanglement framework facilitates the learning of dis-
ease features in a segmentation prediction path and via re-entangling healthy and disease
features in an image reconstruction path. This framework includes an additional critic net-
work that is used to ensure healthy features do not contain lesion features. An overview of
the proposed architecture is shown in Figure 2.1.

The proposed method, PET-Disentangler, adopts a UNet architecture that is further
extended for the task of disentanglement. UNet is a fully convolutional network initially
introduced for and widely utilized in semantic segmentation [51]. Additionally, UNet can be
adapted for various other tasks, such as image generation. The name UNet arises from the
u-shaped architecture of the network, consisting of symmetric contracting and expanding
paths, where the input and output from the model have the same spatial resolution.

The contracting path, also known as the encoder, extracts features from the input via
a series of convolution, batch normalization, ReLU and maxpooling operations to obtain a
compressed representation of the features, referred to as the bottleneck latent vector. The
expanding path, also known as the decoder, uses the bottleneck latent vector to generate
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the output for the given task through a series of convolution, transpose convolution, batch
normalization and ReLU operations. Between encoding and decoding blocks of the same
spatial resolution, skip connections are used to pass output from an encoding block to the
corresponding decoding block where it will be concatenated with the input features for
decoding. In deep convolutional networks, important features can be lost and gradients can
diminish with the depth of the network. Skip connections are used to provide features that
otherwise can be lost and provide a better flow of gradients during backpropagation, which
facilitates the overall model learning better representations and generating high quality
output.

In PET-Disentangler, the UNet architecture is extended from 2D to 3D and modified
such that there is one encoder and two decoders for segmentation prediction and image
reconstruction. The encoder takes as input a PET image, X, and outputs two bottleneck
latent vectors, zh and zd, which encode the healthy and disease features of the input image,
respectively. The disease features are passed to the segmentation decoder that predicts a
segmentation mask, M . The healthy features are passed along with the segmentation mask
to the image decoder to re-entangle the healthy and disease features and produce a recon-
struction of the input, R. Skip connections are used between each encoder and segmentation
decoder block. In contrast, the skip connections between the encoder and image decoder
are modified to prevent introducing disease features through these connections as the dis-
ease features, if any exist, should be introduced via the segmentation mask. The ground
truth segmentation masks, GT , are binary such that voxels labelled as 0 belong to either
background or healthy anatomy whereas voxels labelled as 1 belong to cancerous lesions.

2.2.1 Modified encoder architecture

The encoder, E takes in a 3D PET image of size 64 × 64 × 64 voxels and applies a series of
encoding blocks, consisting of a 3D convolution, batch normalization and ReLU, repeated
once, to produce the latent vectors zh and zd:

zh, zd = E(X). (2.1)

The first encoding block takes X as input and produces an output vector that is then split
into healthy and disease features via the application of two separate encoding blocks. For the
rest of the encoding process, separate encoding blocks, followed by max-pooling to reduce
the dimensions, are applied to healthy and disease features with identical operations. This
design is to ensure the spatial dimensions are the same between vectors at each stage of
encoding without sharing weights in the encoding process. All convolutions in the encoder
have a kernel size of 3 × 3 × 3 with a stride of 1.
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2.2.2 Segmentation decoder and prediction

The disease features zd are passed to the segmentation decoder, DS , with the corresponding
skip connections to generate a segmentation mask prediction, M , via a series of decoding
blocks, as described by:

M = DS(zd). (2.2)

Each decoding block consists of a transposed 3D convolution to upsample the spatial dimen-
sions of the feature vector, concatenation between the feature vector and skip connection
from the encoder, followed by a sequence of 3D convolution, batch normalization and ReLU,
repeated once as seen in the encoding blocks. The transpose convolution layers have a kernel
size 2 × 2 × 2 and stride of 2. The final layer of the decoder consists of a single convolution
followed by sigmoid activation. Given the task at hand is binary segmentation, we can use
the decoder to produce output with two channels where each class is represented by its own
channel. We use the argmax operation to obtain which channel, and subsequently which
class label, has higher activation at each voxel to generate the segmentation prediction.

To optimize the segmentation mask prediction, ComboLoss [55] is used between the
predicted mask and the ground truth mask, MGT :

Lseg = LComboLoss(M, MGT ) = LDice + Lcross−entropy. (2.3)

ComboLoss takes the weighted sum of a Dice loss term and cross-entropy loss term. The
Dice loss is commonly used for semantic segmentation and measures the overlap between
ground truth and predicted segmentations whereas the cross-entropy loss penalizes false
positive and false negative results. In our experiments, the Dice and cross-entropy terms
are weighted equally. The Dice loss is written as follows:

LDice = 1 − 2 ∑N
i=1 mi · m̂i∑N

i=1 mi + ∑N
i=1 m̂i

(2.4)

where mi and m̂i represent the ground truth and predicted label at voxel i, respectively,
over the total number of voxels N . The cross-entropy loss is written as follows:

Lcross−entropy = − 1
N

N∑
i=1

w0 mi log(m̂i) + w1(1 − mi) log(1 − m̂i) (2.5)

where, in our experiments, we use equal weights for w0 and w1.

2.2.3 Image decoder and reconstruction

The image decoder, DI , uses the healthy features zh and corresponding skip connections
along with the segmentation prediction M during decoding to generate image reconstruc-
tions. When the mask prediction contains lesion features, the output of the image decoder
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will be the full reconstruction of the input, R:

R = DI(zh, M). (2.6)

When the mask prediction is set to empty such that it contains all zeros, M0, the image
decoder will only be using healthy features to generate the output and will therefore predict
a healthy estimate of the input image, P :

P = DI(zh, M0). (2.7)

For input images that have no tumours, the reconstruction and the healthy estimate should
be identical.

The image decoder re-entangles the healthy and disease features using spatially-adaptive
normalization (SPADE) blocks to combine the healthy features at each resolution during
image decoding with a downsampled version of the segmentation mask of the same spatial
dimensions. SPADE blocks were initially introduced for semantic image synthesis where
semantic masks are used to produce photorealistic images [50]. This work was motivated
by the limitation of using semantic masks directly as input to an image synthesis model
as normalization layers tend to lose the information contained in the masks. SPADE alter-
natively combines features from semantic masks with generated features in a conditional
normalization layer, where activations are adjusted by an affine transformation based on
external data. In SPADE, the activations are modulated by learned scale and bias tensors
that are obtained from applying a two-layer convolution block to the segmentation mask,
in which the scale and bias are then element-wise multiplied and added to the previous
features. Figure 2.2 describes the two-layer convolution structure of the SPADE block as
seen in the original paper. To obtain downsampled masks, a series of convolutions with
kernel size 3 × 3 × 3 and stride of 2, followed by batch normalization and LeakyReLU are
repeatedly applied to the segmentation prediction.

The decoding blocks in the image decoder are similar to those in the segmentation
decoder, with the key difference being the introduction of SPADE blocks following the
transpose convolutions to combine healthy and disease features. Another difference is that
the skip connections are removed from the last three decoding blocks to prevent disease
features from potentially being introduced from outside of the mask prediction. The final
layer of the image decoder consists of the following series of operations: convolution, batch
normalization, ReLU, convolution, sigmoid activation. All convolutions in the segmentation
and image decoder, including the SPADE blocks, have a kernel size of 3×3×3 with a stride
of 1.

To optimize the model to learn the reconstruction R, L1 and L2 reconstruction losses
are used:
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Figure 2.2: SPADE block structure [50].

Lrecon = ||X − R||1 + ||X − R||2. (2.8)

The L1 loss minimizes the mean absolute error between X and R whereas the L2 loss
minimizes the mean squared error between the two. Both loss functions are used in image
reconstruction tasks, where L2 is commonly seen in image restoration and L1 has seen more
advantageous in super resolution applications. L2 is beneficial as it penalizes large errors
and facilitates faster convergence but it also tends to produce over-smoothed output images.
In contrast, L1 can produce images with sharper details and has also been shown to reach
better minima during optimization than L2 as the L2 tends to get stuck in local minima
[70]. Overall, the L1 and L2 loss functions are used in combination to obtain the benefits
of both independent functions.

2.2.4 Critic network for healthy distribution matching

To ensure that zh only contains features relating to healthy anatomy regardless of whether
the input image has lesions, a critic network C is used in a similar manner to Kobayashi et al.
[37] in which the Wasserstein GAN (WGAN) with gradient penalty is used to align healthy
features to a healthy distribution. A set of images X can be partitioned into those without
any tumour lesions (i.e., negative findings), X−, and those with tumor lesions (i.e., positive
findings), X+, where the corresponding healthy feature vectors are z−

h and z+
h , respectively.

Ideally, the healthy feature vectors should only contain features for healthy anatomy re-
gardless of whether the input image has disease, and the distributions corresponding to the

15



sets of healthy feature vectors should match. As such, WGAN with gradient penalty is used
to ensure the distribution of healthy feature vectors obtained from X+ matches the dis-
tribution obtained from X−. As the only features that could cause a discrepancy between
distributions correspond to those of disease, the process of distribution matching should
eliminate the disease features ensuring zh from all examples only contain healthy features.

The loss to optimize the critic network is described as follows:

Lcritic =
(
−

(
C(z−

h ) − C(z+
h )

)
+ λGP (||∇zmC(zm)||2 − 1)2

)
· wc. (2.9)

The first term in the critic loss Lcritic corresponds to the Wasserstein distance between the
z−

h and z+
h distributions. The critic is learning to identify healthy feature vectors originating

from the two different distributions such that this distance is maximized. To ensure the
distance is maximized while aiming to minimize the overall loss, the negative of the distance
is used.

To use Wasserstein distance in the provided form, the critic network must be Lipschitz
continuous meaning that the derivative of the network is less than or equal to a constant K

everywhere, where K ≥ 0. The original WGAN paper proposed to enforce this constraint
by clipping the weights to a certain value range [−c, c], although the most significant lim-
itation in this approach is the careful selection of a clipping value parameter [8]. Selecting
a parameter too large results in slow training and potentially exploding gradients whereas
a parameter too small results in vanishing gradients. Gradient penalty was introduced to
replace the usage of weight clipping by enforcing 1-Lipschitz continuity in the critic by
adding a term to the critic loss that ensures the gradients have L2 norm values close to 1
everywhere [22].

The gradient penalty corresponds to the second term in Lcritic, where λGP scales the
magnitude of contribution of the gradient penalty to the critic loss and wc weighs the overall
loss. The gradient penalty is calculated by first interpolating an image zm between z−

h and
z+

h using a random variable α to weigh the contribution of each vector, as follows:

zm = αz−
h + (1 − α)z+

h . (2.10)

Using the critics score on this interpolated image, the gradient and gradient norm are
calculated and the final value is the squared difference between the norm and 1.

As the critic network is learning to identify the difference between sets of healthy feature
vectors, the encoder is trying to produce healthy feature vectors that appear from the same
distribution. As such, the corresponding WGAN term used in the overall model loss is
referred to as the pseudo-healthy loss Lpseudo-healthy, described by:

Lpseudo-healthy = −C(z+
h ). (2.11)
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The overall model is trying to maximize the critic’s score on the “fake” healthy vectors z+
h

such that they are recognized as “real” healthy vectors, where the negative of this value is
used as the overall loss to be minimized.

The architecture of the critic network consists of three 3D convolutions with LeakyReLU
activations with slope of 2 in between. The first convolution has a kernel size of 4 × 4 × 4
with stride of 2, whereas the second and third convolutions have a kernel size of 3 × 3 × 3
with stride of 1.

2.2.5 Overall objective function

To train the proposed architecture, the critic network is optimized separately from the rest
of the network components. The critic loss is used to optimize the critic whereas the overall
objective function to optimize the encoder, segmentation decoder, and image decoder is:

Loverall = ws Lseg + wr Lrecon + wph Lpseudo-healthy. (2.12)

The parameters ws, wr, and wph refer to the weights of the contribution for the segmentation,
reconstruction, and pseudo-healthy losses to the overall loss, Loverall.

2.3 Experimental design and implementation details

2.3.1 Dataset

We use the Whole-body FDG-PET/CT dataset [19] obtained from The Cancer Imaging
Archive (TCIA) that is publicly available and has been used in both autoPET and au-
toPET2 challenges. This dataset consists of 900 patients and a total of 1014 scans, where
513 scans have no cancerous lesions and 501 scans have lesions from either lymphoma,
melanoma, or lung cancer. Although additional information is provided to identify cancer
type per scan, we do not consider cancer type when predicting lesion segmentation masks as
the goal of this work is to investigate the impact of disentanglement on lesion segmentation.

In the dataset, 819 patients have a single scan, 59 patients have two scans, 14 patients
have 3 scans, 5 patients have 4 scans and 3 patients have 5 scans. For every scan, the axial
slices have dimensions of 400×400 pixels where the number of axial slices ranges from 200
to 661 slices throughout the dataset. The voxel size for every scan is 2.04 × 2.04 × 3.0mm.

These scans were obtained at the University Hospital Tübingen using a single Siemens
Biograph mCT PET/CT scanner, and the data is provided in anonymised DICOM files. A
radiologist and nuclear medicine physician analysed the dataset to identify and manually
segment all lesions in agreement. The authors of the dataset have also made available
preprocessing scripts to register and resample the available PET and CT images, in addition
to transforming the PET images from raw PET intensities to SUV intensities.
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Figure 2.3: Upper (red) and lower (yellow) torso regions selected based on aorta and
bladder locations.

2.3.2 Data preprocessing

A core contribution of our method is the ability to model and learn the healthy anatomy
component of given PET images to ultimately distinguish disease features when they are
present. This requires volumes of the same relative area between all healthy and disease ex-
amples to learn from. TotalSegmentator [62] is leveraged to obtain anatomical segmentations
for each whole-body scan, where these segmentations can act as landmarks to center spatial
croppings around to obtain a set of aligned subvolumes for the dataset. TotalSegmentator
is an automatic segmentation tool built off of a nnUNet backbone [31] that can produce
segmentations for 117 classes of anatomical structures in CT images. We can leverage the
aligned CT scans corresponding to each PET scan in the dataset to obtain anatomical
structure segmentations based on the CT images and use the corresponding locations in the
PET images. As this dataset consists of scans that are mainly covering from eyes to thighs,
two subregions are selected to cover the span of the full-body scans.

The first selected region covers the anatomy of the upper half of the torso, capturing
the lung and heart field-of-view, and is obtained using the aorta segmentation mask as the
aorta lays roughly in the center of this region. To produce the set of upper-region cropped
volumes, the middle voxel location of the aorta from the aorta mask is used to center a
128 × 128 × 128 crop in the PET scans.

The second region covers the lower half of the torso, with a field-of-view containing the
kidneys and bladder. This region is obtained using the location of the bladder, where similar
to the aorta-based cropping, a 128 × 128 × 128 volume is cropped from the PET scan using
the center pixel coordinate of the bladder segmentation mask. An example of both regions
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is shown on a coronal slice in Figure 2.3, where the upper-torso region is outlined by the red
box and the lower-torso region is outlined by the yellow box, with a slight overlap between
the two regions.

As larger volumes require more computational resources, the cropped volumes are resized
to smaller dimensions to maximize the amount of volumes that can be used in a single
batch during model training. The volumes are resized to 64 × 64 × 64 voxels using bilinear
interpolation. The PET scans have SUV values clipped from [0, 15] and further normalized
between [0, 1].

The dataset is split into approximately 80:10:10 splits for training, validation, and testing
sets where the ratio of healthy and disease examples is approximately the same between
each split. For the upper-torso region, 460 healthy and 352 disease examples are used for
training, and 58 healthy and 43 disease examples are used for both validation and testing.
For the lower-torso region, 566 healthy and 244 disease examples are used for training, and
71 healthy and 31 disease examples are used for validation and testing.

2.3.3 Experiments

As the goal of this work is to investigate whether disentanglement of healthy and disease
features can improve lesion segmentation in PET images, PET-Disentangler will be com-
pared to a baseline segmentation-only method in addition to a few variations to study the
importance of each modification introduced in PET-Disentangler.

We compare PET-Disentangler to the following methods:

• SegOnly: a method that performs segmentation only, with a 3D UNet architecture
of one encoder that produces disease features that are passed to a segmentation de-
coder that produces the final segmentation prediction. This method is the baseline
segmentation method for which we introduce or modify components in the following
experiments to investigate their impact on segmentation performance.

• SegRecon: a method for simultaneous segmentation and reconstruction without fea-
ture disentanglement, that uses a modified 3D UNet architecture in which the encoder
produces two sets of features: disease features that are passed to a segmentation de-
coder and image features that are passed to an image reconstruction decoder. In
this method, we are observing the impact of learning more than disease features has
on lesion segmentation, as PET-Disentangler extends upon this method by learning
semantically disentangled features in addition to re-entangling these features.

• SegReconHealthy: a method that learns disease and healthy features via a modified
3D UNet architecture, in which the encoder produces a set of healthy and disease
features, and the disease features are passed to a segmentation decoder and the healthy
features are passed to an image reconstruction decoder. In SegReconHealthy, only
examples that are healthy are passed to the reconstruction path of the model, such
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Table 2.1: Summary of deep learning components used in each experiment

Method Segmentation Reconstruction Disentanglement SPADE Critic
SegOnly ✓ ✗ ✗ N/A N/A
SegRecon ✓ ✓ ✗ N/A N/A
SegReconHealthy ✓ Healthy examples ✗ N/A N/A
PET-Disentangler-withoutCritic ✓ ✓ ✓ ✓ ✗

PET-Disentangler-withoutSpade ✓ ✓ ✓ ✗ ✓

PET-Disentangler ✓ ✓ ✓ ✓ ✓

that the healthy features encode only healthy anatomy and the decoder produces
only healthy reconstructions. This method is used to investigate the impact of simply
learning healthy and disease features has on the task of lesion segmentation. However
unlike PET-Disentangler, SegReconHealthy does not see examples with disease in the
image reconstruction path, and furthermore it does not re-entangle both healthy and
disease features for reconstruction.

• PET-Disentangler-withoutCritic: a method of the optimal PET-Disentangler con-
figuration without the critic network to enforce that the healthy features only contain
healthy anatomy. This method assumes that the features in the healthy vector may
contain disease features as it is not regularized via the critic network. Therefore, it
investigates how incorporating disease features during image reconstruction affects
the overall lesion segmentation task.

• PET-Disentangler-withoutSpade: a method of the optimal PET-Disentangler con-
figuration without SPADE blocks in the image decoder such that only healthy features
are used during image reconstruction. This method is used to investigate the impact
of disentangling healthy and disease features alone has on lesion segmentation, com-
pared to PET-Disentangler where additionally re-entanglement of healthy and disease
features is learned in the SPADE blocks.

• PET-Disentangler-n: the proposed method for PET-Disentangler with modified
skip connections, where n represents the skip connections dropped between the first n

encoding blocks and the last n decoding blocks. These methods are used to investigate
the impact of skip connections of the quantitative results of lesion segmentation and
the qualitative impact on healthy and disease feature disentanglement. The optimal
skip connection configuration based on the qualitative and quantitative results will
correspond to the final PET-Disentangler architecture.

Table 2.1 summarizes the deep learning components used in each experiment. As the
SPADE and critic components are only used during disentanglement, the non-disentanglement
experiments have these fields set to N/A to specify they are not applicable components.
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Table 2.2: Losses used during each experiment

Method Lseg Lrecon Lpseudo-healthy Lcritic

SegOnly All examples — — —
SegRecon All examples All examples — —
SegReconHealthy All examples Healthy examples — —
PET-Disentangler-withoutCritic All examples All examples — —
PET-Disentangler-withoutSpade All examples All examples Disease examples All examples
PET-Disentangler All examples All examples Disease examples All examples

Table 2.2 further describes each method with respect to the losses and data seen during
training. For learning disease features, each experiment uses all the examples during training
and uses Lseg between the predicted and ground truth segmentation masks. SegRecon and
SegReconHealthy both perform image reconstruction using Lrecon differing in that SegRecon
uses all examples and learns image features whereas SegReconHleathy only uses healthy
examples to learn healthy features. PET-Disentangler extends upon these experiments to
use all examples for image reconstruction, and additionally uses Lcritic and Lpseudo-healthy

to enforce the learning of healthy features where Lcritic uses data from all examples and
Lpseudo-healthy only uses data from disease examples.

2.3.4 Evaluation methods

To evaluate the proposed method, we will first evaluate the observed disentanglement of
PET-Disentangler-n variants to determine an optimal configuration. Subsequently, we will
evaluate the lesion segmentations produced by each method.

Determining optimal PET-Disentangler configuration based on feature disen-
tanglement: To determine the optimal configuration of PET-Disentangler, we will investi-
gate which configuration is successfully disentangling healthy and disease features. Disease
features may be incorrectly introduced in the method, referred to as disease feature leakage,
in two ways. The first being in the healthy vectors if the input image has disease and the
distributing matching is not correctly removing these disease features. This prevents the
model from learning to disentangle the healthy and disease components. The second possi-
bility is via the image decoder through the skip connections as these skip connections are
not regularized to ensure they contain only healthy information as done with the healthy
feature vector. This disease leakage can prevent the image decoder from learning how to
re-entangle the healthy features with the disease features for image reconstruction. The
optimal configuration of PET-Disentangler will be tuned based on the number of skip con-
nections used between the encoder and image decoder. There are 5 possible skip connections
that can be used and dropping the last 1 to 5 skip connections will be analysed.
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To identify whether the healthy and disease features are disentangled, TSNE plots cap-
turing the 2D embeddings of zh and zd are analysed to determine whether these features
belong to distinct clusters capturing different semantic information or whether there is
overlap between the information stored. Furthermore, TSNE plots of the 2D embeddings
belonging to z−

h and z+
h will be analysed to determine if the healthy vectors obtained from

disease input, z+
h , appear the same as z−

h . This comparison is to determine if the healthy fea-
tures belong to the same distribution or whether there is disease leakage in z+

h . The TSNE
plots will be generated for each PET-Disentangler-n variant to determine if the results are
consistent regardless of the skip connections used.

To identify whether skip connections introduce disease features, the healthy reconstruc-
tions from input examples with disease, generated by variants of PET-Disentangler-n, will
be visually inspected for the appearance of lesions.

Evaluating segmentation results: To evaluate the quality of the segmentations pro-
duced, we use the Dice-Sørensen coefficient (also referred to as Dice similarity coefficient)
to measure the overlap between ground truth and predicted segmentations, normalized by
the size of both segmentations. Given a mask prediction M and ground truth mask, MGT ,
the Dice can be computed as:

Dice(M, MGT ) = 2|M ∩ MGT |
|M | + |MGT |

. (2.13)

We can further rewrite the Dice coefficient using confusion matrix variables, true positive
(TP), true negative (TN), false positive (FP), false negative (FN), as follows:

Dice(M, MGT ) = 2TP

2TP + FP + FN
. (2.14)

Referring to Equation 2.13, if a given example has lesions and the model correctly
predicts the exact lesion segmentation, then the size of the ground truth segmentation,
predicted segmentation, and overlap between the segmentations will all be equal. In this
scenario, the size of the overlap doubled divided by the sum of both segmentation sizes
will be equal and the perfect Dice value will be 1. In the case where lesions exist but the
predicted segmentation has no overlap with the ground truth, the Dice value will go to 0
corresponding to the worst Dice possible.

Furthermore, if an example is healthy and the model correctly predicts no lesions, then
both the numerator and denomator would go to zero. As this is the ideal scenario, an offset
variable is added to both the numerator and denominator such that when there are no
lesion pixels in the ground truth or predicted segmentations, the Dice value will go to 1.
Dice values below 1 for healthy examples indicate the presence of false positives in the lesion
prediction.
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We also measure the sensitivity of the lesion segmentation which is the proportion of
lesion voxels that are accurately detected as lesion voxels. The sensitivity is calculated based
on confusion matrix variables as follows:

Sensitivity = TP

TP + FN
. (2.15)

The sensitivity can be calculated per volume and lesion level, where the volume level
sensitivity would simply use the confusion matrix variables directly obtained from the pre-
dicted and ground truth segmentations. For lesion level segmentation, the ground truth
segmentation is first processed by a connected components algorithm to identify each indi-
vidual lesion and its location. Once these ground truth lesions are identified, the sensitivity
per lesion can be calculated by locating the corresponding lesions in the predicted segmen-
tations.

Ideally, we would report more lesion level metrics in addition to sensitivity although
reporting metrics such as specificity and precision would require calculation from non-trivial
graph matching algorithms. This is because these metrics require the false positive values
associated with each ground truth lesion although to obtain false positives would require
graph-matching algorithms to match pixels from the ground truth to predicted segmentation
masks. Thus for the current investigation we will only report lesion sensitivity whereas future
work can explore additional lesion-level metrics.

2.4 Training and implementation details

All development of this work was done in the Python programming language and PyTorch
was used to develop the neural network architectures, in addition to the use of predefined
loss functions, optimizers, and dataset handling operations. The Medical Open Network for
Artificial Intelligence (MONAI) library [12] is an open-source library built off of PyTorch
to support medical imaging workflows and it was used in this work for their predefined
loss functions and data transformation operations such as intensity scaling, resizing, and
transformation of data into tensor objects.

To train the proposed method, two separate optimizers are required to optimize the
critic and overall model architecture. We use the Adam optimizer to optimize both the
critic and overall model architecture, in addition to optimizing each of the models in the
proposed experiments, with a learning rate of 1e-3. In each experiment, the models are
trained using 300 epochs with a batch size of 4 consisting of 2 healthy and 2 disease examples
per batch. Although the model is trained for 300 epochs, the model may not be at it’s optimal
performance at the 300th epoch, such that a better performing model was seen earlier during
training. To obtain the best performing model for each experiment, the version of the model
with the lowest ComboLoss on the validation set is saved as the best model. To balance the
model’s objective function during training, the weights on the individual loss terms were
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tuned on the validation set and found empirically to be 100, 10, 0.001, and 0.01 for ws, wr,
wph, and wc, respectively.

To train the critic and overall model to optimal solutions, the critic is updated multiple
times per training iteration while the model is updated only once. As introduced in the
original WGAN paper, this is to train the critic well such that the generator model has high
quality gradients to learn from [8]. We refer to the number of critic updates per iteration
as ncritic and set it to 5 as proposed in the original work.

To ensure reproducibility of the experiments performed, we use random seeding at the
beginning of each experiment to initialize the random seed of Python, NumPy, and PyTorch
variables. To execute the experiments, the hardware used consists of an AMD EPYC 7543
32-core CPU with 64GB of RAM and a single NVIDIA RTX A5000 24GB GPU. As the
purpose of this work is to investigate the utility of image disentanglement in lesion segmen-
tation, we do not pretrain any PET-Disentangler path or module such that we can have a
direct performance comparison to non-disentanglement methods.
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Chapter 3

Results and Discussion

In this chapter, we present a discussion on determining the optimal PET-Disentangler con-
figuration based on analysis of TSNE plots of healthy and disease features, visual inspection
of pseudo-healthy images, and Dice values of the PET-Disentangler-n variants (Section 3.1).
Next, we present and discuss the qualitative and quantitative results of PET-Disentangler
on the upper torso region (Section 3.2) and on the lower torso region (Section 3.3). We also
present an analysis of the observed denoising effect of PET-Disentangler in image recon-
struction (Section 3.4). Finally, we present a summary of our key findings and observations
(Section 3.5).

3.1 Determining the optimal PET-Disentangler configura-
tion

Figure 3.1 shows the TSNE plots of zh and zd embeddings from the upper torso region
across PET-Disentangler-n variants, where there is consistently a large separation between
healthy and disease embedding clusters in each variant. This shows the semantic information
captured between healthy and disease vectors is significantly different, and as there is no
overlap between the clusters, this shows there is no leakage of disease information in the
healthy vectors.

Figure 3.2 shows the TSNE plots obtained from the healthy feature vectors z−
h and z+

h

across PET-Disentangler-n variants. In each plot, the healthy feature embeddings form a
distribution in which z−

h and z+
h blend together and cannot not be separated. These plots

show that the healthy features belong to the same distribution across all PET-Disentangler-
n variants, ensuring the critic network is working on the task of distribution matching. As
the TSNE findings are consistent between PET-Disentangler-n variant, these plots show
that the healthy and disease features are disentangled and that healthy features match the
same distribution regardless of the number of skip connections used.

Figure 3.3 shows the reconstructions of the disentangled healthy component from PET-
Disentangler-n with n ranging from 1 to 5. For the model variations with 1 and 2 skip
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Figure 3.1: TSNE plots capturing the 2D embeddings of the healthy and disease latent
vectors zh and zd from the upper torso region. These plots show the clear distinction
between healthy and disease features by the large distance between the healthy and
disease embedding clusters.

Figure 3.2: TSNE plots capturing the 2D embeddings of the healthy latent vectors z−
h

and z+
h across the variants of PET-Disentangler-n for the upper torso region. These plots

show the healthy features from both sets are captured in the same embedding space and
indistinguishable.

connections removed, the healthy reconstructions appear to have lesion information as the
healthy reconstructions have similar appearance to the input images in the location of
the lesions. A disentanglement of disease and healthy features seems to begin when the
model has 3 skip connections removed as lesions appear to be removed or blurred out when
comparing to the input image. Furthermore, PET-Disentangler with 4 or 5 skip connections
removed appears to enhance the disentangled component as they do not reconstruct lesion
features although at the expense of producing less sharp, blurrier images. In particular,
PET-Disentangler-5 produces output images that lose a lot of visual features and structure
of the anatomy while appearing quite faint opposed to the other generated images.

From the analysis of the TSNE plots in Figures 3.1 and 3.2 in addition to Figure 3.3, it
appears that the healthy and disease feature vectors are disentangled although it appears
the skip connections can introduce a leakage of disease features. As the image decoder
should only introduce disease features via the SPADE blocks, removing skip connections
can ensure the model is producing disentangled healthy and disease representations.

Given the visual inspection, it appears that disentanglement begins when 3 skip con-
nections are removed thus the proposed architecture will be evaluated on the test set with
3 or more skip connections removed before a single configuration is chosen.

26



Figure 3.3: Qualitative analysis of disentanglement by viewing the reconstructed healthy
component from the upper torso region: (a) Coronal slices of sample input PET. (b) The
ground truth segmentation mask. (c, d, e, f, g) The healthy component reconstructed from
the disentangled healthy representation from the model with the last 1, 2, 3, 4, and 5 skip
connections removed, respectively.

Table 3.1: Dice metrics on the test set for the PET-Disentangler-n variants

Method Healthy (57) Disease (43) Overall (100)
PET-Disentangler-3 0.7946 ± 0.3877 0.7084 ±0.2387 0.7575 ± 0.3332
PET-Disentangler-4 0.7716 ±0.3899 0.6998 ±0.2336 0.7434 ±0.3326
PET-Disentangler-5 0.7075 ±0.4126 0.7178 ± 0.2179 0.7119 ±0.3413

Table 3.1 summarizes the Dice metric of the PET-Disentangler with 3, 4, and 5 skip con-
nections removed on the test set. PET-Disentangler-3 produces the highest Dice on healthy
examples and overall set of examples, while PET-Disentangler-5 outperforms slightly on
the disease examples. As PET-Disentangler-5 produces poor quality reconstructions, PET-
Disentangler-3 demonstrates a more optimal configuration as it produces a high-quality
image reconstruction at the expense of having slight disease leakage via the skip connec-
tions. Given PET-Disentangler-3 has the highest healthy and overall example Dice values
while performing similarly to PET-Disentangler-5 on the disease examples, in addition to
the high quality image reconstructions, PET-Disentangler-3 will be used as the optimal
architecture.

Figure 3.4 shows the TSNE plots of healthy and disease feature embeddings for the lower
torso region. Across all PET-Disentangler-n variants, there is a clear separation between
sets of features although PET-Disentangler-3 shows a smaller distance separating the two
clusters. Figure 3.5 shows the TSNE plots of healthy feature embeddings for the lower
torso region. All healthy features are indistinguishable across all the PET-Disentangler-n
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Figure 3.4: TSNE plots capturing the 2D embeddings of the healthy and disease latent
vectors zh and zd from the lower torso region. These plots show there is consistent
distinction between healthy and disease features.

Figure 3.5: TSNE plots capturing the 2D embeddings of the healthy latent vectors z−
h

and z+
h across the variants of PET-Disentangler-n for the lower torso region. These plots

show the healthy features from both sets are indistinguishable among all
PET-Disentangler-n variants.

variants, although PET-Disentangler-3 and PET-Disentangler-5 have larger, more spread
out clusters.

Figure 3.6: Qualitative analysis of disentanglement by viewing the reconstructed healthy
component from the lower torso region: (a) Coronal slices of sample input PET. (b) The
ground truth segmentation mask. (c, d, e, f, g) The healthy component reconstructed from
the disentangled healthy representation from the model with the last 1, 2, 3, 4, and 5 skip
connections removed, respectively.
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Figure 3.7: Qualitative performance of PET-Disentangler for the upper torso region: (a)
Coronal slices of sample input PET volume. (b, c) The ground truth and the predicted
segmentation masks, respectively. (d) The healthy component that is reconstructed from
the disentangled healthy representation. (e) The reconstructed output using healthy and
disease components.

Figure 3.6 shows the same patterns as Figure 3.3 where disease leakage is present in
PET-Disentangler-1 and PET-Disentangler-2, in addition to PET-Disentangler-5 producing
significantly blurry reconstructions. Furthermore, PET-Disentangler-4 appears to introduce
structures that are not present in the input image, such as bones along the spine in the first
two rows.

As PET-Disentangler-3 has disentangled healthy and disease features, healthy features
that match the same distribution, and produces pseudo-healthy images with minimal issues,
PET-Disentangler-3 will also be used as the optimal configuration for the lower torso region.
In addition, this will ensure the method used for the lower torso is consistent with the upper
region.

3.2 Upper torso experiments

Figure 3.7 shows the qualitative results from PET-Disentangler. By comparing the seg-
mented lesions and pseudo-healthy images from columns (c) and (d), the pseudo-healthy
images show an absence of lesion features that correspond to high intensity and abnormal
shape. The pseudo-healthy images fill in these lesion regions with the expected "healthy"
appearance. These lesion features re-appear in the full reconstructions of the images in col-
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Figure 3.8: Qualitative performance of PET-Disentangler in which disentanglement of
disease from healthy appears to fail: (a) Coronal slices of sample input PET volume. (b, c)
The ground truth and the predicted segmentation masks, respectively. (d) The healthy
component that is reconstructed from the disentangled healthy representation. (e) The
reconstructed output using healthy and disease components.

umn (e) which are obtained by re-entangling the healthy and disease components via the
SPADE blocks in the image decoder.

Figure 3.8 shows examples where the disentanglement of healthy and disease features are
not as strong as in Figure 3.7. By examining the pseudo-healthy images, we can see that in
areas that correspond to lesions in the ground truth segmentation, there are high intensity
patterns in the pseudo-healthy images. These regions look similar to the corresponding
appearance in the input PET images indicating that the disease features seem to be leaked
into the pseudo-healthy images. From the previous discussion, this is likely due to the use
of skip connections. These lesions have high intensities and likely have strong features that
are present even in the later blocks of encoding, which are then used as skip connections
in the image decoder. This is a tradeoff of using skip connections to stabilize training as it
will produce pseudo-healthy images with disease leakage for examples with high intensity
lesions.

Table 3.2 presents the average Dice coefficients obtained on the test set from the various
experiments on the upper torso region. The results are shown for the healthy examples,
disease examples, and the overall test set of all healthy and disease examples combined.
SegOnly achieves the best performance on the healthy examples and overall test set, while
the PET-Disentangler-withoutSpade achieves the best performance on the disease exam-
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Table 3.2: Dice metric for lesion segmentation from the upper torso region

Method Healthy (57) Disease (43) Overall (100)
SegOnly 0.8085 ± 0.3770 0.7084 ±0.2341 0.7654 ± 0.3267
SegRecon 0.6742 ±0.4523 0.6966 ±0.2411 0.6838 ±0.3749
SegReconHealthy 0.5579 ±0.4530 0.7026 ±0.2369 0.6201 ±0.3809
PET-Disentangler-withoutCritic 0.7848 ±0.3766 0.7048 ±0.2451 0.7504 ±0.3276
PET-Disentangler-withoutSpade 0.7794 ±0.3950 0.7091 ± 0.2256 0.7492 ±0.3333
PET-Disentangler 0.7946 ±0.3877 0.7084 ±0.2387 0.7575 ±0.3332

Table 3.3: Sensitivity of lesion segmentation from the upper torso region

Method ≤ 10 voxels (165) 10 ≤ 50 voxels (157) 50+ voxels (122) Overall (444)
SegOnly 0.3692 ± 0.4382 0.6243± 0.3839 0.7237± 0.3457 0.5242±0.4309
SegRecon 0.3972 ±0.4607 0.6633 ± 0.4010 0.7610 ±0.3239 0.5577 ± 0.4448
SegReconHealthy 0.4108±0.4551 0.6084 ±0.4065 0.7749± 0.3063 0.5501 ±0.4370
PET-Disentangler-withoutCritic 0.3491 ±0.4363 0.6012 ±0.4056 0.6821±0.3480 0.4986 ±0.4343
PET-Disentangler-withoutSpade 0.3686 ±0.4332 0.5884 ±0.3837 0.7172±0.3404 0.5115 ±0.4247
PET-Disentangler 0.2864 ±0.4082 0.5805 ±0.3982 0.7062±0.3511 0.4676 ±0.4320

ples. However, it is worth noting that all methods have similar performance on the disease
examples. The PET-Disentangler-withoutSpade performance on the disease examples high-
lights that learning to disentangle slightly improves on lesion segmentation compared to
the baseline segmentation method, SegOnly. As this method is PET-Disentangler without
SPADE blocks, this indicates that the architecture of the image decoder with SPADE blocks
can be further fine-tuned and improved.

The baseline segmentation method and PET-Disentangler achieve similar performance
on the disease examples. Although the baseline segmentation method slightly outperforms
PET-Disentangler on the healthy examples, PET-Disentangler has comparable performance
while also providing explainability using the disentangled components. SegOnly model
learns disease features without any reasoning to how it determines lesions from background,
whereas PET-Disentangler uses the segmentation mask in the image decoder for image re-
construction where the re-entanglement of disease and healthy features offers explainaibility
in the shapes and sizes of the segmented lesions as they correspond to the features that are
absent from the pseudo-healthy image.

Referring to Table 3.2 and the discussion of Dice scores on healthy examples in Section
2.3.4, each method has more false positives than the baseline segmentation model on healthy
examples evident by the lower Dice values. SegRecon and SegReconHealthy in particular
must have significantly more false positives than the other methods.

Table 3.3 presents the lesion sensitivities obtained on the test set, where the results are
summarized for lesions with less than or equal to 10 voxels, lesions within 10 to 50 voxels,
lesions greater than 50 voxels, and for all lesions combined to obtain an overall sensitivity
measure. Before comparing methods, one thing to note is that the sensitivity of lesion

31



Table 3.4: Dice metric for lesion segmentation from the lower torso region

Method Healthy (71) Disease (31) Overall (102)
SegOnly 0.0007 ±0.0026 0.1864 ±0.2474 0.0572 ±0.1598
SegRecon 0.0013 ±0.0048 0.1847 ±0.2474 0.0570 ±0.1593
SegReconHealthy 0.0008 ±0.0012 0.1791 ±0.2403 0.0550 ±0.1547
PET-Disentangler-withoutCritic 0.7271 ±0.4115 0.5540 ± 0.2910 0.6745 ±0.3937
PET-Disentangler-withoutSpade 0.6196 ±0.4306 0.5378 ±0.2790 0.5947 ±0.3912
PET-Disentangler 0.7174 ±0.4200 0.5153 ±0.2843 0.6560 ±0.3937

segmentation increases as lesion sizes increase. This can be seen as the lesion sensitivities
for lesions with less than 10 voxels are significantly lower than those corresponding to lesions
with more than 50 voxels.

SegReconHealthy achieves the highest sensitivity for lesions less than 10 voxels and
lesions greater than 50 voxels, whereas SegRecon achieves the highest sensitivity for lesions
between 10 and 50 voxels and for the overall set of lesions. These results are in direct
contrast to the Dice values in Table 3.2 where SegRecon and SegReconHealthy have the
lowest Dice among healthy, disease, and overall examples. Referring to Equation 2.15, a
higher sensitivity would occur for a given lesion if there are more true positives and less
false negatives. These results show that the SegRecon and SegReconHealthy methods have
more true positive and false negative predictions, whereas the Dice performance is lower
due to more false positive predictions. In comparison to SegOnly, the enhanced sensitivity
from SegRecon and SegReconHealthy indicates that learning additional features, compared
to only disease features, enhances lesion sensitivities.

PET-Disentangler has the lowest sensitivity for lesions less than 10 voxels, lesions be-
tween 10 and 50 voxels, and the overall set of lesions, where they values are significantly
lower than the highest per category. As PET-Disentangler has Dice results on par with
SegOnly, this highlights that PET-Disentangler has more false negatives while less false
positives compared to the other methods. Although reducing false positives is valuable,
decreasing false negatives is of equal or higher importance.

3.3 Lower torso experiments

Table 3.4 presents the average Dice coefficients obtained on the test set from the various
experiments on the lower torso region. SegOnly, SegRecon, and SegReconHealthy have sig-
nificantly lower values compared to PET-Disentangler variants for healthy, disease, and
overall examples. In addition, SegOnly, SegRecon, and SegReconHealthy each have values
close to 0 for healthy examples. Given the healthy example Dice values and the previ-
ous discussion, these methods must have significant false positives compared to the PET-
Disentangler variants. The disease examples show that PET-Disentangler is still significantly
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Figure 3.9: PET-Disentangler compared to SegOnly for the lower torso region,
highlighting that SegOnly produces false positives for healthy uptake whereas
PET-Disentangler does not: (a) Coronal slices of sample input PET volume. (b, c, d): The
ground truth, baseline UNet predicted segmentation masks, and PET-Disentangler
segmentation masks, respectively. (e) The healthy component from PET-Disentangler
using the healthy components. (f) The reconstructed output from PET-Disentangler.
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Table 3.5: Sensitivity of lesion segmentation from the lower torso region

Method ≤ 10 voxels (165) 10 ≤ 50 voxels (134) 50+ voxels (74) Overall (373)
SegOnly 0.4341± 0.4527 0.5762± 0.3943 0.7155± 0.3260 0.5410± 0.4233
SegRecon 0.4963 ±0.4599 0.6052 ±0.3656 0.6831 ±0.3561 0.5725± 0.4149
SegReconHealthy 0.4024 ±0.4573 0.5580 ±0.3777 0.6331 ±0.3465 0.5040 ±0.4201
PET-Disentangler-withoutCritic 0.4501±0.4461 0.5914 ±0.3863 0.7155 ±0.0.3101 0.5535 ±0.4137
PET-Disentangler-withoutSpade 0.5061 ± 0.4614 0.5956 ±0.3646 0.6868 ±0.3264 0.5741 ±0.4097
PET-Disentangler 0.3883±0.4598 0.5727 ±0.4178 0.7175 ± 0.3029 0.5199 ±0.4368

outperforming the competing methods and likely due to the same false positive source as
on healthy examples. Furthermore, PET-Disentangler-withoutCritic appears to be the best
performing model, in addition to PET-Disentangler-withoutSpade performing better than
PET-Disentangler on disease examples. As both PET-Disentangler variants improve upon
PET-Disentangler on disease examples, this shows that PET-Disentangler can be further
fine-tuned to leverage the benefit of both the SPADE blocks and the critic network to
become the best performing configuration.

When looking at examples from the lower torso region, Figure 3.9 shows qualitative
results from SegOnly in column (c) and the PET-Disentangler segmentation in column
(d) as well as the PET-Disentangler pseudo-healthy image and reconstruction in columns
(e) and (f), respectively. SegOnly results show that the bladder is consistently segmented
incorrectly as lesions. Additionally, the second and third rows indicate that high intensity
activity that corresponds to healthy kidney uptake is also incorrectly segmented as lesions.
In contrast, PET-Disentangler has learned the healthy anatomy component of the images
and can identify these high uptake regions as healthy activity and focus on the remaining
activity to delineate the lesions.

When reviewing the lesion sensitivities for the lower region in Table 3.5, PET-Disentangler-
withoutSpade have the highest sensitivity for lesions with less than 10 voxels, SegRecon the
highest sensitivity for lesions between 10 and 50 voxels, and the overall set of lesions, whereas
PET-Disentangler has the highest sensitivity for lesions greater than 50 voxels. Similar to
as seen in the upper torso results, SegOnly does not achieve the highest sensitivity in any
category indicating that learning more than disease features enhances lesion sensitivity.

The lower torso results indicate that PET-Disentangler can accurately learn high inten-
sity uptake although there are instances where PET-Disentangler can succeed or fail nearby
these areas. For example, Figure 3.10 shows two instances of lesions nearby high intensity
pixels of the bladder. The first row highlights a failure of the model to detect abnormal
high intensity uptake where the bladder normally is located and PET-Disentangler wrongly
assumes this uptake corresponds to bladder activity. To contrast, the second row shows
that tumors that are outside of the bladder can be detected and delineated even with their
close proximity to the bladder. These examples show that PET-Disentangler can delineate
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Figure 3.10: Analysis of PET-Disentangler performance nearby high intensity uptake of
normal activity compared to Segonly for the lower torso region: (a) coronal slices of input
PET, (b) ground truth segmentation, (c) SegOnly segmentation prediction, (d, e, f)
PET-Disentangler segmentation prediction, pseudo-healthy image, and reconstruction,
respectively.

lesions nearby healthy anatomy uptake although may not recognize abnormal uptake in
regions where its expected that healthy uptake occurs.

3.4 The importance of learning the healthy anatomy compo-
nent

As discussed in the previous sections, PET-Disentangler is able to reduce false positive
segmentations due to healthy anatomy uptake by learning the healthy anatomy component
of PET images. This finding also raises the question of whether disentanglement is necessary
to model and subsequently omit healthy organ uptake. For example, we have healthy organ
segmentations obtained from TotalSegmentator that could be leveraged to mask the false
positive uptake patterns in the produced segmentations. This would eliminate the need
for disentanglement as we would have already identified healthy uptake regions from these
organ segmentations. Secondly, as we obtained aligned regions between upper and lower
torso examples, we can model the healthy anatomy uptake by taking the average healthy
PET image. This would alleviate the need for disentanglement as we can easily identify
healthy uptake and furthermore lesions by subtracting this average healthy component
from examples with disease.

To address the discussion on leveraging TotalSegmentators’ organ segmentations, we
first look at Figure 3.11 that shows examples with uptake from the heart, bladder, and
kidneys outlined in blue and lesions outlined in red contours. This figure highlights that
the bladder segmentations obtained from using the CT scan and TotalSegmentator do not
fully correspond to the contours of the PET image uptake. This shows we cannot always
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Figure 3.11: Bladder contours in blue highlight that the segmentations obtained from
CT scan and TotalSegmentator may not fully align with the corresponding uptake
patterns in PET images.

assume the organ segmentations obtained from the CT scan will have a 1:1 correspondence
for PET uptake segmentation.

Furthermore, Figure 3.12 shows in (a) and (b) that lesions overlap the bladder segmenta-
tion contour, and that lesions overlap the heart uptake in (c). Figure 3.13 shows examples of
lesion uptake overlapping healthy kidney uptake in (a), (b), and (c). Both Figures 3.12 and
3.13 show that we cannot use organ segmentations to omit healthy uptake regions as there
are examples where lesions are in these healthy organs and have overlapping segmentations.

Secondly, as we obtained aligned regions between upper and lower torso examples, we
can model the healthy anatomy uptake by taking the average healthy PET image. This
would alleviate the need for disentanglement as we can easily identify healthy uptake and
furthermore lesions by subtracting this average healthy component from examples with
disease.

To discuss whether an average healthy image can be computed and then used to remove
healthy uptake patterns, we first look at the histogram of SUV values within the heart,
kidneys, and bladder in Figure 3.14. This histogram shows the number of occurrences for
SUV intensities of each pixel from these 3 organs, where heart pixels correspond to the
blue bars, right kidney pixels to the orange bars, left kidney pixels to the green bars, and
bladder pixels to the red bars. The heart and kidney histograms show a spread of the pixel
intensities between 0-6 SUV indicating heterogeneity, whereas the histogram for the bladder
intensities show significant heterogeneity from the wide SUV distribution ranging from SUV
0 to 15.

Figure 3.15 shows examples of PET images with disease (a), alongside their correspond-
ing ground truth segmentation (b), the corresponding average PET image (c), and the
residual image between (c) and (a) thresholded by 0.3. Figure 3.15 (c) shows that the aver-
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Figure 3.12: Red contours outline the lesion uptake that is overlapping the organ
segmentations outlined in blue in the bladder (a), (b), and heart (c).

Figure 3.13: Red contours outline the lesion uptake overlapping the kidney segmentation
contours outlined in blue in (a), (b), and (c).
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Figure 3.14: Histogram of pixel SUV intensities from heart, kidney, and bladder pixels.

age PET image signal is blurry and that it does not have the same uptake contours as seen
in (a). The residual images also show that the differences between average healthy image
and PET example with disease do not correspond to lesions rather they indicate healthy
uptake patterns not seen in the average PET image. The first row also shows the lesions
overlap with the average PET image such that no lesions are identified in the residual. The
results in Figure 3.15, along with the heterogeneity observed in Figure 3.14, indicate that
calculating a mean healthy PET image cannot model healthy uptake patterns and delineate
lesions as can be done by PET-Disentangler.

3.5 Evaluating denoising effect on reconstruction

From Figures 3.7 and 3.9, the reconstructed images from PET-Disentangler show that the
images appear to be denoised. To investigate this denoising effect, patches of 10×10×10 were
sampled from the liver between examples of the model input and the reconstructed output
from the healthy examples. These patches were sampled from the liver due to its consistent
appearance across patients, both in terms of size and intensity distribution. Additionally,
the liver’s size allows for the selection of relatively large foreground 3D patches.

These samples of patches were compared using the signal-to-noise ratio (SNR), described
as:

SNR = µsignal

σnoise
, (3.1)

where µsignal and σnoise represent the mean of the signal and standard deviation of the
noise, respectively.

These patches before being passed to the model had an average SNR of 4.98 ± 1.15,
whereas the average SNR of the reconstructed patches was 15.46 ± 10.29. This significant
SNR increase shows that PET-Disentangler can significantly denoise and smooth the signal
from the noisy PET input. This denoising effect is likely due to the modification of skip
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Figure 3.15: Examples of (a) coronal PET images, (b) corresponding ground truth
segmentation, (c) corresponding average PET image, (d) residual image thresholded by
0.3.
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connections between the encoder and image decoder. When all skip connections are used,
the image decoder is able to restore high frequency information more easily such as noise.
This is due to the skip connections being able to provide and reintroduce features that
would otherwise be lost in the depths of the encoding and subsequent decoding blocks.

Ulyanov et al. [59] further discuss that although it is in theory possible for a neural
network to learn parameters that fit both the noise and signal during image reconstruction,
it is much more likely for a network to capture a smoother signal and filter out noise. Due to
the high frequency, unstructured nature of noise, the network would need to make many fine
adjustments to capture these fluctuations whereas the network’s parameters easily adjust
to the smooth signal within the image. This suggests that it would take significantly more
parameter optimization to reach a point in which PET-Disentangler would lose its denoising
effect and begin to recover high frequency noise features.

To evaluate whether the denoising effect improves the contast-to-noise ratio (CNR) of
lesions after reconstruction, we report the CNR values of lesions for upper and lower torso
disease examples in the test sets using the following formula:

CNR = µsignal − µbackground

σbackground
, (3.2)

where µsignal is the mean lesion intensity, and µbackground and σbackground are the mean and
standard deviation of the background area surrounding the lesion. The lesion CNRs between
original PET images and PET-Disentangler reconstructions are 4.50 ± 2.81 and 2.73 ± 2.84
for the upper torso examples and 4.60 ± 2.79 and 2.51 ± 2.53 for the lower torso examples,
respectively. Unfortunately in both upper and lower torso examples, the CNR of lesions
decreases after reconstruction indicating that although PET-Disentangler appears to have
a denoising effect, the resulting reconstructions are not enhancing the contrast of lesions to
the surrounding areas.

3.6 Summary

Given the results and discussion presented in the previous sections, we identify the following
key observations:

• Healthy and disease features are disentangled as seen in the TSNE plots in Figures 3.1
and 3.2, where it is also observed that healthy features match the same distribution
with no disease leakage. In contrast, skip connections can introduce disease feature
leakage seen in the analysis of pseudo-healthy images.

• PET-Disentangler performs similarly to the segmentation baseline on Dice metrics
while providing additional explainability in the shapes and sizes of lesions segmented
as they correspond to missing features in the pseudo-healthy images.
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• PET-Disentangler significantly reduces false positives in segmentation of healthy up-
take patterns compared to non-disentangling methods by modelling the healthy anatomy
as discussed in Section 3.3. This is seen visually in Figure 3.9 and reflected quantita-
tively in the Dice values in Table 3.4.

• Network architectures that learn more than disease features have enhanced lesion
sensitivity compared to a baseline segmentation only method as seen in Tables 3.3
and 3.5.

• PET-Disentangler has a denoising effect such that when comparing the SNR in liver
patches between original and reconstructed images, the SNR improves from 4.98 ±
1.15 to 15.46 ± 10.29.
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Chapter 4

Conclusion and Future Work

Development of automatic lesion segmentation tools to facilitate the annotation of clinical
PET images remains an important task. Many automatic segmentation tools focus on opti-
mizing the learning of disease features while concurrently there are increasing advancements
in novel computer vision and deep learning techniques that could potentially provide utility
in lesion segmentation.

This thesis investigated the use of image disentanglement for lesion segmentation by
decomposing a PET image into sources of variation, specifically healthy and disease features.
We proposed PET-Disentangler, a modified UNet architecture that learns to disentangle
PET images into healthy and disease features in the latent space, produce segmentation
predictions using the disease features, and re-entangles healthy and disease features to
produce reconstructed images. A critic network is used to ensure the healthy features match
the same distribution to prevent leakage of disease features. When healthy features alone
are use for image reconstruction, a pseudo-healthy image is generated such that all lesions
are removed and replaced with what PET-Disentangler expects the healthy anatomy to
look like in those locations. Through experiments on the upper torso region, we showed
learning additional features to disease features enhances lesion segmentation sensitivity. We
also observed PET-Disentangler performing similarly to a segmentation only baseline, in
which PET-Disentangler has the additional benefit of explainability as the disease features
produced correspond to the missing features in the pseudo-healthy image estimate. Through
experiments on the lower torso region, we also noted that PET-Disentangler greatly reduces
the false positive segmentation of healthy uptake patterns by modelling the healthy anatomy
component. Overall, we also observed that detecting and segmenting small lesions remains a
challenging task as lesion sensitivity is significantly lower for lesions with 10 or fewer voxels
in volume.

Throughout the development and evaluation of PET-Disentangler, it became apparent
that working in 3D and requiring anatomically-aligned inputs were the major limitations of
this work. As PET-Disentangler used 3D inputs and produced 3D outputs, in addition to
utilizing multiple 3D model components, this produced a large computational cost on the
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GPU. This computational cost limited the batch size that could be used during training in
addition to the size of the input and output volumes. Furthermore, requiring anatomically
aligned PET volumes is a limitation of this approach as the PET inputs much be aligned
such that healthy anatomy can be accurately modeled. This limits the direct use of PET-
Disentangler on full-body PET scans as more pre-processing is required to select regions
that capture the whole-body scans and solutions must be developed to accommodate the
differences between how much of the body is captured between scans (i.e., eyes-to-thighs,
head-to-feet, etc.)

To separate healthy from disease in PET images, we require the disentanglement frame-
work to accurately model the healthy component as it is not feasible to separate the two
in other ways such as by classifying pixel-by-pixel healthy vs disease regions as this would
require a reference for all healthy uptake in PET. Tools like TotalSegmentator can be lever-
aged to segment many anatomical landmarks in CT/MRI that can be subsequently used
for PET although these tools do not account for all healthy uptake such as that from brown
fat or in the urinary tract, thus a robust model that can model all these healthy variations
is required.

Given the proposed method and conclusions, future work could explore the following
directions:

• Network Architecture: Exploring the choice of architecture to use for disentangle-
ment. In this work, a 3D UNet was extended to perform the disentanglement although
as seen from the analysis of skip connections, they are required in UNet to produce
high quality image reconstructions, although can introduce disease feature leakage. In
contrast, other architectures without skip connections could potentially alleviate the
disease leakage problem while producing high quality output. In addition, methods
have been proposed to improve the UNet architecture with transformers [13] and fur-
ther investigation of the use of transformers and additional state-of-the-art frameworks
may alleviate the limitations seen in this work.

• Multimodal analysis: With the availability of hybrid PET/CT and PET/MRI scan-
ners, PET scans are often accompanied with corresponding scans of another modality.
PET scans have a low signal to noise ratio and modalities such as CT and MRI can
provide additional anatomical information that is not clearly captured in PET. Fu-
ture work can investigate the use of a multimodal framework in which an additional
modality in combination with PET is used to enhance the disease and healthy features
learned.

• Data generation: As public datasets for PET are limited, future work can investigate
using the proposed method for data generation as a data augmentation technique. As
the model produces pseudo-healthy images, these images can be used as additional
data samples. Additionally, the method could produce unique disease examples by
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sampling various healthy features and segmentation predictions, or even artificial seg-
mentation masks, to produce unique disease images.

• Denoising: Another source of variation in PET images that was not explicitly mod-
elled via the healthy and disease features is the noise component. As the proposed
method has a denoising effect, this work can further be extended to disentangle and
model the noise features within PET which may subsequently enhance the disease
features modelled and improve lesion segmentation. Izadi et al. [32] introduced a dis-
entangled approach for image denoising in which smooth signal and noise features are
separated in the latent space. Future work can extend upon this direction to include
the disentanglement of noise in the PET-Disentangler framework and can be further
modified to account for the noise properties unique to PET images.

• Error attribution: It can be difficult to explain in which cases segmentation fails
and sources of these errors. To better understand the sources of error for segmentation,
training a model to predict error can be used to highlight regions of uncertainty in
addition to exploring causal discovery to address this issue.

• Shape priors: As discussed by Nosrati and Hamarneh [48], introducing prior knowl-
edge into segmentation algorithms, such as appearance, shape, topology, distance be-
tween regions, etc., enhances the segmentations produced. Mirikharaji and Hamarneh
[46] also showed the benefit of integrating shape priors into a deep learning segmenta-
tion framework. Future work can investigate the use of prior knowledge, particularly
shape priors, to enhance lesion segmentation in PET.

• Management prediction: As introduced by Abhishek et al. [2], segmentation of
skin lesions is commonly performed to identify a diagnosis, and other works may
produce a diagnosis based directly off the input image, although there has not been a
focus on predicting the management of disease itself. Future work can investigate the
clinical applications of PET lesion segmentation and whether there are opportunities
to directly predict the management of disease and additional clinical tasks without
first obtaining lesion segmentations.
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