
Properties of Prefix Lexicalized
Synchronous Grammars

by

Logan Orion Born

B.Sc., University of Calgary, 2016

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
School of Computing Science
Faculty of Applied Sciences

c© Logan Orion Born 2018
SIMON FRASER UNIVERSITY

Summer 2018

Copyright in this work rests with the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Approval

Name: Logan Orion Born

Degree: Master of Science (Computing Science)

Title: Properties of Prefix Lexicalized Synchronous
Grammars

Examining Committee: Chair: Arrvindh Shriraman
Associate Professor

Anoop Sarkar
Senior Supervisor
Professor

Fred Popowich
Supervisor
Professor

Nick Sumner
Internal Examiner
Assistant Professor
School of Computing Science

Date Defended: June 22, 2018

ii

Abstract

Synchronous grammars, which may be broadly characterized as sets of rules for generating
sentence pairs, are used in linguistics and natural language processing (NLP) as a frame-
work for modelling human languages. Prefix lexicalization is a property of some grammars
in which each rule contains a terminal symbol (also called a lexical item) at its left edge.
This work shows that the class of synchronous context-free grammars (SCFG) is not closed
under prefix lexicalization, and presents an algorithm for converting a finitely ambiguous,
ε-free SCFG to a weakly equivalent prefix lexicalized synchronous tree-adjoining grammar
(STAG). This transformation only increases the rank of the grammar by 1; it at most cubes
the grammar size, but we provide empirical results showing that the size increase is generally
much smaller. We show that this result can also be extended to weighted synchronous gram-
mars without affecting the weights they assign to string pairs. Theoretically, these results
serve to generalize extended Greibach normal form from CFGs to SCFGs, and practically
they have potential applications in machine translation. They also serve as an avenue for
investigating the properties of related grammar formalisms in future work.

Keywords: Formal language theory; Synchronous grammars; Context-free grammars; Tree-
adjoining grammars; Weighted grammars; Greibach normal form

iii

Acknowledgements

Þæs ofereode, thesis swa mæg.
—Deor

I would like to express my sincere thanks to Anoop Sarkar for his continued support
and advice over the course of this degree. Thanks especially for forcing me to take breaks
from work by lending me your board games!

Thanks also to Fred Popowich and Nick Sumner for their many insightful and construc-
tive comments as members of my examining committee.

I would also like to thank Dr. Peter Høyer, without whose influence I would probably
not have pursued graduate studies. Your rigor, enthusiasm, and good spirit showed me what
it means to be a great scientist. Thank you for working with me during my undergraduate
studies, even though my work was so far removed from your own research!

Finally, I wish to thank my most amazing Sara, who has encouraged and taken care of
me through this degree. Thank you for helping me to have a life outside of work, and for
supporting me while I was too absorbed to do anything but work. You give me a confidence
which I struggle to muster on my own, and without which I would not have made it to this
point. Ic lufie þē!

iv

Table of Contents

Approval ii

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 Overview . 3

2 Background 4
2.1 Synchronous Grammar Formalisms . 4

2.1.1 Synchronous Context-Free Grammar 4
2.1.2 Synchronous Tree-Adjoining Grammar 5

2.2 Other Terminology . 7
2.3 Synchronous Prefix Lexicalization . 8
2.4 Weighted Grammar Formalisms . 8

2.4.1 Weighted SCFG . 9
2.4.2 Weighted STAG . 10
2.4.3 Weights from Arbitrary Algebras . 10

2.5 Conclusion . 11

3 Prefix Lexicalizing SCFG 12
3.1 Closure under Prefix Lexicalization . 12
3.2 Prefix Lexicalization using STAG . 14
3.3 Complexity & Formal Properties . 19

v

3.4 Experiments . 24
3.5 Applications to Translation . 29
3.6 Related Work . 29
3.7 Conclusion . 30

4 Weighted Grammar Lexicalization 31
4.1 Weighted SCFG . 31
4.2 Probabilistic SCFG . 32

5 Conclusion & Future Work 38

Bibliography 40

Appendix A Proof of Lemma 1 45
A.1 TTLD to STAG . 46
A.2 STAG to TTLD . 50

Appendix B LR Decoding with STAG 55

Appendix C Code 57

vi

List of Tables

Table 3.1 Grammar sizes before and after prefix lexicalization, showing sub-
quadratic growth instead of the worst case cubic growth. |G| and |H|
are the grammar size before and after lexicalization; ppl is the per-
centage of the rules in the original SCFG which were already prefix
lexicalized before applying our transformation; log|G| |H| is the size
increase expressed as a power of the initial size. 25

vii

List of Figures

Figure 2.1 An SCFG which generates {〈a2i+1b2j+1, b2j+1a2i+1〉|i, j ≥ 0}. 5
Figure 2.2 An example of synchronous rewriting in an STAG (left) and the

resulting tree pair (right). The auxiliary tree rooted in A adjoins to
the A 1 node; note how the subtree rooted in A 1 ends up attached
below the foot node of the auxiliary tree. The initial tree rooted in
B simply substitutes into the linked B 1 node, overwriting it. . . . 6

Figure 2.3 An STAG which generates {〈a2i+1b2j+1, b2j+1a2i+1〉|i, j ≥ 0}. 7
Figure 2.4 A WSCFG which generates {〈a2i+1b2j+1, b2j+1a2i+1〉|i, j ≥ 0}. The

weight of a rule is written beside that rule; the grammar assigns
weight 2i · 3j to the string pair 〈a2i+1b2j+1, b2j+1a2i+1〉. 9

Figure 2.5 A WSTAG which generates {〈a2i+1b2j+1, b2j+1a2i+1〉|i, j ≥ 0}. The
weight of a tree pair is written beside that tree pair; the grammar
assigns weight 2i · 3j to the string pair 〈a2i+1b2j+1, b2j+1a2i+1〉. . . . 10

Figure 3.1 A target-side terminal leftmost derivation. a ∈ Σ, A1, A2, B1i, B2i ∈
N for 1 ≤ i ≤ t, and αi, βi, γi ∈ (N ∪ Σ)∗ for 1 ≤ i ≤ t+ 1. 15

Figure 3.2 Tree pairs in GA1A2 and the rules in G from which they derive. . . 16
Figure 3.3 Examples showing steps in the construction of an intermediate gram-

mar GUV for a pair of nonterminals U and V . SCFG rules are shown
on the left, and a tree pair added to GUV on the basis of each rule
is shown to the right. Observe that nonterminals which are not in-
dexed by UV (those which belong to strings abbreviated by Greek
letters in Figure 3.2) retain all their original links in the new tree
pairs. The nonterminals which are indexed by UV have been added
during the construction of the tree pairs. Wrapping adjunction will
occur at the new adjunction sites (links 3 and 1 in pairs two and
three, respectively) which will permit this grammar to generate the
same strings as the SCFG it is based on. 20

Figure 3.4 An SCFG (a) and the intermediate grammars GAA (b) and GBB

(c) produced while lexicalizing it. The grammars GAB and GBA are
omitted, as there are no rules in the original grammars which rewrite
the pairs 〈A,B〉 or 〈B,A〉. 21

viii

Figure 3.5 The complete STAG produced by lexicalizing the grammar in Figure
3.4. 22

Figure 3.6 The STAG from Figure 3.5 with unreachable and unproductive trees
omitted. 23

Figure 3.7 Effect of |G| (initial grammar size) on overall size increase. 27
Figure 3.8 Effect of ppl (the percentage of prefix lexicalized rules in the initial

grammar) on overall size increase. 28

Figure 4.1 Tree pairs rooted in BAA created by prefix lexicalizing (4.1) 33
Figure 4.2 A stochastic bracketing ITG. The grammar consists of two reordering

rules with probabilities p1 and p2, plus n translation pairs. 36
Figure 4.3 Tree-pairs produced by prefix lexicalizing the ITG in Figure 4.2. A

copy of the above trees is created for each translation pair ai, bi;
assuming a vocabulary of size n, this gives a final grammar of 10n
tree pairs, compared to the original grammar size of n+ 2 rules. . 37

Figure A.1 Tree-pairs in GA1A2 and the rules in G from which they derive. . . 45

ix

Chapter 1

Introduction

This thesis presents a variety of formal and empirical results about prefix lexicalized syn-
chronous grammars. We show that the class of synchronous context-free grammars is not
closed under prefix lexicalization, unlike the class of non-synchronous context-free gram-
mars which admits a prefix lexicalized normal form. We then present a method for prefix
lexicalizing a synchronous context-free grammar by converting it to an equivalent grammar
in a more powerful formalism. The remainder of the thesis considers the properties of gram-
mars produced by this transformation, including their size, rank, generative capacity, and
parse complexity. We show that this transformation can be applied to weighted grammars
without affecting the weights of the string pairs which they generate, and we present tech-
niques for normalizing weighted prefix lexicalized grammars into probabilistic grammars.
We additionally discuss existing applications for these grammars and suggest further use
cases to be investigated in future work.

1.1 Motivation

Greibach normal form (GNF; Greibach, 1965) is an important construction in formal lan-
guage theory which allows every context-free grammar (CFG) to be rewritten so that the
first character of each rule is a terminal symbol. A grammar in GNF is said to be prefix
lexicalized, because the prefix of every production is a lexical item.

GNF has a variety of theoretical and practical applications, including for example the
proofs of Shamir’s Theorem and the Chomsky-Schützenberger Theorem (Shamir, 1967;
Chomsky and Schützenberger, 1963; Autebert et al., 1997). Other applications of prefix
lexicalization include proving coverage of parsing algorithms (Gray and Harrison, 1972)
and decidability of equivalence problems (Christensen et al., 1995). Prefix lexicalization
further guarantees finite ambiguity and prevents left-recursion, properties which can be
useful for parsing depending on the parsing strategy used.

Similar prefix-lexicalized normal forms exist for a variety of grammar formalisms, includ-
ing for example definite clause grammars (Dymetman, 1992), context-free valence grammars

1

(Fernau and Stiebe, 2002), and multiple context-free tree grammars (MCFTGs; Engelfriet
et al., 2017).

By using prefix lexicalized synchronous context-free grammars (SCFGs), Watanabe et al.
(2006) and Siahbani et al. (2013) obtain asymptotic and empirical speed improvements on
hierarchical machine translation tasks. Using a prefix lexicalized grammar ensures that,
given an input sentence, candidate translations can be generated from left to right, which
allows the use of beam search to constrain their decoder’s search space as it performs a left-
to-right traversal of translation hypotheses. However, to achieve these results, new grammars
had to be heuristically constructed to include only prefix lexicalized productions, as there
is at present no way to automatically convert an existing SCFG to a prefix lexicalized form.

The above results serve to motivate the work in this thesis. From the perspective of
formal language theory, we seek to generalize Greibach normal form to synchronous gram-
mars, or to prove that no such normal form can exist for this class. From the perspective
of natural language processing, we wish to provide a principled means of constructing pre-
fix lexicalized grammars so that the techniques developed by Watanabe et al. (2006) and
Siahbani et al. (2013) can be used without recourse to heuristically constructed grammars.
In pursuit of these goals we also explore further theoretical and empirical properties of
synchronous prefix lexicalized grammars, thereby enriching our understanding of a class of
grammars with various applications in NLP.

1.2 Contributions

In brief, this work proves new properties about the class of synchronous context-free gram-
mars (SCFG) and defines and characterizes a new subset of the class of synchronous tree-
adjoining grammars (STAG). Concretely, our contributions include the following:

• We prove that SCFG is not closed under prefix lexicalization.

More concretely, we show that an SCFG cannot be converted into an equivalent prefix
lexicalized SCFG if it contains certain discontinuities or if its target projection is
infinitely ambiguous.

• We give a method for converting an SCFG into an equivalent STAG which is prefix
lexicalized.

This can be considered a generalization of (extended) Greibach normal form to syn-
chronous context-free grammars, which is a novel and theoretically interesting con-
tribution in its own right, and which removes the need for heuristically constructed
grammars in work such as Watanabe et al. (2006).

• We show that prefix lexicalized STAGs have formal and empirical properties which
make them feasible to use in NLP applications.

2

In particular, we show that converting an SCFG into an equivalent prefix lexicalized
STAG only increases its rank by 1. Furthermore we show that although STAG is
generally asymptotically slower to parse than SCFG, the prefix lexicalized STAGs
produced by our transformation have the same parse complexity as SCFGs. Lastly,
although our lexicalization may at most cube the size of the input grammar, we show
that in practice the size increase is only quadratic.

• We generalize existing techniques for normalizing weighted CFGs so that they can be
applied to weighted STAGs.

This allows us to further generalize our lexicalization to apply to weighted and prob-
abilistic grammars.

1.3 Overview

Chapter 2 of this thesis reviews synchronous context-free and tree-adjoining grammars, as
well as their weighted and probabilistic variants. This chapter also formally defines impor-
tant concepts such as prefix lexicalization.

Chapter 3 presents the central result that an ε-free SCFG which has a finitely ambiguous
target projection can be converted to an equivalent prefix lexicalized STAG, as well as the
result that SCFG is not closed under prefix lexicalization. We prove various formal results
about our lexicalization, including bounds on grammar rank and size. We show empirically
that the size increase on grammars from real NLP tasks is significantly better than worst
case, and we discuss how these results relate to the work of Watanabe et al. (2006).

Chapter 4 considers weighted and probabilistic grammars, and shows that our transfor-
mation may be applied to these grammars without changing the weights which they assign
to string pairs. We discuss techniques for normalizing a weighted, prefix lexicalized STAG
into a probabilistic prefix lexicalized STAG.

Chapter 5 reviews these results and concludes with a discussion of future work.

3

Chapter 2

Background

This chapter introduces the formalisms and terminology which will be used throughout the
rest of this thesis.

2.1 Synchronous Grammar Formalisms

2.1.1 Synchronous Context-Free Grammar

A synchronous context-free grammar (SCFG) is a tuple G = (N,Σ, P, S) where N is a finite
non-terminal alphabet, Σ is a finite terminal alphabet, S ∈ N is a distinguished nonterminal
called the start symbol, and P is a finite set of synchronous productions of the form

(2.1) 〈A1 → α1, A2 → α2〉

for some A1, A2 ∈ N and strings α1, α2 ∈ (N ∪ Σ)∗.1 Every nonterminal which appears in
α1 must be linked to exactly one nonterminal in α2, and vice versa. We write these links
using numerical annotations, as in (2.2).

(2.2) 〈A→ A 1 B 2 , B → B 2 A 1 〉

Links will not be explicitly written if they are irrelevant to the discussion or are obvious
from context. This will most often be the case when one side of a rule has been abbreviated
as a string α ∈ (N ∪ Σ)∗, as in (2.3):

(2.3) 〈A1 → A2, A3 → α〉

1A variant formalism exists which requires that A1 = A2; this is called syntax-directed transduction
grammar (Lewis and Stearns, 1968) or syntax-directed translation schemata (Aho and Ullman, 1969). This
variant is weakly equivalent to SCFG, but SCFG has greater strong generative capacity (Crescenzi et al.,
2015). Another related formalism is scattered context grammar (Greibach and Hopcroft, 1969), which uses
rules similar to SCFG productions to generate strings rather than string pairs.

4

where A1, A2, A3 ∈ N and α ∈ (N ∪ Σ)∗. Although there is no explicit link written on A2,
we assume that it is linked to some nonterminal in α so that the rule is licit. (Likewise, we
assume that all non-terminals appearing in an abbreviated string like α are properly linked,
despite these links not being shown.)

An SCFG has rank k if no rule in the grammar contains more than k pairs of linked
nonterminals.

In every step of an SCFG derivation, we rewrite one pair of linked nonterminals using
a rule from P , in essentially the same way we would rewrite a single nonterminal in a non-
synchronous CFG. For example, (2.4) shows linked A and B nodes being rewritten using
the production in (2.2):

(2.4) 〈X 1 A 2 , B 2 Y 1 〉 ⇒ 〈X 1 A 2 B 3 , B 3 A 2 Y 1 〉

Note how the 1 and 2 from rule (2.2) are renumbered to 2 and 3 during rewriting,
to avoid an ambiguity with the 1 already present in the derivation. In (2.4), the symbol
⇒ represents the effect of a single rewriting operation; when a derivation involves the
application of multiple rewriting operations we may abbreviate the entire derivation using
⇒∗.

An SCFG derivation is complete when it contains no more nonterminals to rewrite. A
completed derivation represents a string pair generated by the grammar.

For reference, Figure 2.1 gives an example of an entire SCFG which contains 5 syn-
chronous rules. This SCFG generates the language {〈a2i+1b2j+1, b2j+1a2i+1〉|i, j ≥ 0}.

〈S → A 1 B 2 , S → B 2 A 1 〉
〈A→ aA 1 a, A→ aA 1 a〉
〈A→ a, A→ a〉
〈B → bB 1 b, B → bB 1 b〉
〈B → b, B → b〉

Figure 2.1: An SCFG which generates {〈a2i+1b2j+1, b2j+1a2i+1〉|i, j ≥ 0}.

2.1.2 Synchronous Tree-Adjoining Grammar

A synchronous tree-adjoining grammar (STAG; Shieber 1994) is a tuple G = (N,Σ, T, S)
where N is a finite nonterminal alphabet, Σ is a finite terminal alphabet, S ∈ N is a
distinguished nonterminal called the start symbol, and T is a finite set of synchronous tree
pairs of the form

(2.5) 〈t1, t2〉

5

A

A 1

A↓ 2a

a

B 2

B↓ 1b

A

cA∗

B

d〈 〉 〈 〉
〈 A

a A

A

a A ↓ 1

c

B 1

b B

d

〉
Figure 2.2: An example of synchronous rewriting in an STAG (left) and the resulting tree
pair (right). The auxiliary tree rooted in A adjoins to the A 1 node; note how the subtree
rooted in A 1 ends up attached below the foot node of the auxiliary tree. The initial tree
rooted in B simply substitutes into the linked B 1 node, overwriting it.

where t1 and t2 are elementary trees as defined in Joshi et al. (1975). An elementary tree
over the alphabets N and Σ is a tree whose internal nodes are labeled by symbols in N and
whose leaves are labeled by symbols in (N ∪ Σ). A substitution site is a nonterminal leaf
node which is marked by ↓; a foot node is a nonterminal leaf node which is marked by ∗.
An elementary tree can contain at most one foot node, and that node must be labeled by
the same nonterminal symbol as the root node. If a tree contains a foot node, it is called
an auxiliary tree; otherwise it is called an initial tree.

Every substitution site in t1 must be linked to exactly one nonterminal node in t2, and
vice versa. As in an SCFG, we write these links using numbered annotations, and omit these
annotations when they are not relevant to the discussion at hand. Rank is defined for an
STAG in the same way it is defined for an SCFG.

In every step of an STAG derivation, we rewrite one pair of linked nonterminals with
a tree pair from T , using the same substitution and adjoining operations defined for non-
synchronous TAG. Substitution overwrites a substitution site with an initial tree rooted in
the same nonterminal symbol as that substitution site; adjoining “splits” a tree apart at a
given node and inserts an auxiliary tree rooted in the same nonterminal as that node into
the gap that is created. Examples of both operations are shown in Figure 2.2.

We use a variant of STAG which disallows multiple adjunction, which means that any
given node may be linked to at most one other node (Shieber, 1994). This restricts the gen-
erative capacity of the formalism and ensures that it only generates tree-adjoining languages
(TALs).

For the sake of comparison, Figure 2.3 gives an example of an STAG which generates
the language {〈a2i+1b2j+1, b2j+1a2i+1〉|i, j ≥ 0}. This is the same language generated by the
SCFG in Figure 2.1. Note how the a characters are nested using wrapping adjunction, while
the bs are nested using substitution.

6

〈 S

A 1

a

B ↓ 2

S

B ↓ 2 A 1

a

〉
〈 A 1

a A∗ a

A 1

a A∗ a

〉 〈 A

a A∗ a

A

a A∗ a

〉
〈 B

b B ↓ 1 b

B

b B ↓ 1 b

〉 〈 B

b

B

b

〉
Figure 2.3: An STAG which generates {〈a2i+1b2j+1, b2j+1a2i+1〉|i, j ≥ 0}.

2.2 Other Terminology

We use synchronous production as a cover term for either a synchronous rule in an SCFG
or a synchronous tree pair in an STAG.

Following Siahbani et al. (2013), we refer to the left half of a synchronous production
as the source side, and the right half as the target side; this captures the intuition that
synchronous grammars model translational equivalence between a source phrase and its
translation into a target language. Other authors calls these the left and right components
(Crescenzi et al., 2015) or, viewing the grammar as a transducer, the input and the output
(Engelfriet et al., 2017). The source projection of a synchronous grammar G is the non-
synchronous grammar obtained by deleting the target side of every production in G; the
target projection is likewise obtained by deleting the source side of every production.

The language generated by a synchronous grammar G is defined as the set of all string
pairs which can be derived from the start symbol using the productions in G; we write this
as L(G). This parallels the definition for a non-synchronous grammar, except that if G is
non-synchronous then L(G) is a set of strings rather than string pairs.

A pumpable cycle is a sequence of rules where the first rule in the sequence can rewrite
some element produced by the last rule in the sequence. Such a cycle can be “pumped”
(that is, repeated) to create derivations of arbitrary length, as in the pumping lemma for
context-free languages (Bar-Hillel et al., 1961).

We call a grammar ε-free if it contains no productions whose source or target side
produces only the empty string ε. A grammar G is finitely ambiguous if for every string
pair in L(G) there are only a finite number of ways to derive that string pair using the
productions in G. Generally, a grammar is finitely ambiguous if it is ε-free and contains no
pumpable cycles of chain rules (rules which rewrite a single nonterminal without introducing
any other symbols).

7

2.3 Synchronous Prefix Lexicalization

Previous work (Watanabe et al., 2006; Siahbani et al., 2013) has shown that it is useful for
the target side of a synchronous grammar to start with a terminal symbol. For this reason,
we define a synchronous grammar to be prefix lexicalized just in case the leftmost character
of the target side2 of every synchronous production in that grammar is a terminal symbol.

Formally, this means that every synchronous rule in a prefix lexicalized SCFG (or PL-
SCFG) is of the form

(2.6) 〈A1 → α1, A2 → aα2〉

for some A1, A2 ∈ N , α1, α2 ∈ (Σ ∪N)∗, and a ∈ Σ.
Every synchronous tree pair in a prefix lexicalized STAG (or PL-STAG) is of the form

(2.7)

〈 A1

α1

A2

aα2

〉
for some A1, A2 ∈ N , α1, α2 ∈ (Σ ∪N)∗, and a ∈ Σ. The triangle notation in (2.7) is used
throughout this thesis to abbreviate the internal structure of a tree when this structure is
not relevant to the discussion at hand.

2.4 Weighted Grammar Formalisms

Every SCFG or STAG G over an alphabet Σ partitions the set of string pairs Σ∗ ×Σ∗ into
two groups: the set of string pairs which are in L(G), and the set of string pairs which
are not in L(G). Such a coarse partition does not accurately represent the intricacies of
human language, however; within a single language some strings may be comparatively
more acceptable than others, and when translating between languages multiple translations
are usually possible, some being more likely than others.

For this reason a weighted or probabilistic grammar may be used in place of a simple
SCFG or STAG: such a grammar has a weight associated with each production, representing
the likelihood of that production being used in a derivation. Multiplying the weight of each
production used in a derivation gives an overall weight for that derivation, and summing
over the weights of all derivations for a given string pair gives a value representing the
likelihood of that string pair.

2All of the proofs in this document admit a symmetrical variant which lexicalizes the source side instead
of the target. We are not aware of any applications where source-side lexicalization is useful, so we do not
address this case. For the same reason, we do not address the stricter case where both source and target
trees are prefix lexicalized.

8

2.4.1 Weighted SCFG

Formally, every synchronous rule r in a weighted SCFG (WSCFG) is annotated with a
weight wr. If D is a derivation in a WSCFG, then the weight of D is written W (D) and is
the product of the weight of every rule used in the course of D:

(2.8) W (D) =
∏
r∈D

wr

Let D(u, v) be the set of all derivations in the grammar G which produce the string pair
〈u, v〉. Then the weight of 〈u, v〉 is the sum of the weights of every derivation in D(u, v):

(2.9) W (u, v) =
∑

D∈D(u,v)
W (D) =

∑
D∈D(u,v)

∏
r∈D

wr

A probabilistic SCFG (PSCFG) is a WSCFG where, for every pair of nonterminals A1

and A2, the grammar weights define a probability distribution over the rules which rewrite
〈A1, A2〉. If π(A1, A2) is the set of all rules of the form 〈A1 → α1, A2 → α2〉 for any
α1, α2 ∈ (N ∪ Σ)∗, then a PSCFG satisfies

(2.10)
∑

r∈π(A1,A2)
wr = 1

for every choice of A1, A2 ∈ N .
In a PSCFG, the probability of a derivationD is written P (D) and is defined analagously

to the weight of a derivation in a WSCFG; likewise the probability P (u, v) of a string pair
〈u, v〉 is defined like the weight of a string pair in a WSCFG.

Figure 2.4 shows an example of a WSCFG which generates the language {〈a2i+1b2j+1,

b2j+1a2i+1〉 | i, j ≥ 0} and assigns the weight 2i·3j to every string pair 〈a2i+1b2j+1, b2j+1a2i+1〉.

〈S → A 1 B 2 , S → B 2 A 1 〉 w = 1
〈A→ aA 1 a, A→ aA 1 a〉 w = 2
〈A→ a, A→ a〉 w = 1
〈B → bB 1 b, B → bB 1 b〉 w = 3
〈B → b, B → b〉 w = 1

Figure 2.4: A WSCFG which generates {〈a2i+1b2j+1, b2j+1a2i+1〉|i, j ≥ 0}. The weight of
a rule is written beside that rule; the grammar assigns weight 2i · 3j to the string pair
〈a2i+1b2j+1, b2j+1a2i+1〉.

9

2.4.2 Weighted STAG

A weighted STAG (WSTAG) is similarly defined as an STAG where each synchronous tree
pair t is assigned a weight wt; the weight of a derivation (or, equivalently, of a derived tree
pair) is the product of the weights of every elementary tree pair involved in the derivation,
and the weight of a string pair is the sum of the weights of every derivation which produces
that string pair.

Analogously, a probabilistic STAG (PSTAG) is a WSTAG where, for every pair of
nonterminals A1 and A2, the grammar weights define a probability distribution over the
tree pairs rooted in A1 and A2.

We give an example of a weighted STAG in Figure 2.5. This grammar generates the
same language (with the same weights) as the SCFG in Figure 2.4.〈 S

A 1

a

B ↓ 2

S

B ↓ 2 A 1

a

〉
w = 1

w = 2

〈 A 1

a A∗ a

A 1

a A∗ a

〉 〈 A

a A∗ a

A

a A∗ a

〉
w = 2

w = 3

〈 B

b B ↓ 1 b

B

b B ↓ 1 b

〉 〈 B

b

B

b

〉
w = 1

Figure 2.5: A WSTAG which generates {〈a2i+1b2j+1, b2j+1a2i+1〉|i, j ≥ 0}. The weight of a
tree pair is written beside that tree pair; the grammar assigns weight 2i · 3j to the string
pair 〈a2i+1b2j+1, b2j+1a2i+1〉.

2.4.3 Weights from Arbitrary Algebras

In many NLP applications, grammar weights will belong to R, but in general this need not
be the case. In algebraic formal language theory (e.g. Stanat 1972) a more general case
has been considered where grammar weights may belong to arbitrary algebraic structures.
For example, given a commutative semiring (S,⊕,⊗), we may define a weighted grammar
with weights belonging to S. The weight of a derivation or string in such a grammar is
exactly as defined above, except that we compute the sums and products using the semiring
operations ⊕ and ⊗. We require the semiring to be commutative because, in general, the
rewriting operations involved in a derivation are not ordered relative to one another and
there is no principled way to impose an ordering over them. We do not consider weights

10

from more general structures than semirings, as we are not aware of any applications where
such weights are used.

2.5 Conclusion

This chapter has introduced the concepts needed to prove the results in the following chap-
ters. We will now consider the central question of this thesis, which is whether or not the
class SCFG admits a prefix lexicalized normal form, and how to convert grammars into this
form if it exists.

11

Chapter 3

Prefix Lexicalizing SCFG

This chapter considers the problem of prefix lexicalizing the class SCFG. Section 3.1 proves
that SCFG is not closed under prefix lexicalization; we then provide an algorithm which
prefix lexicalizes an SCFG by converting it to an equivalent STAG in Section 3.2. Section
3.3 considers the formal properties of the grammars produced by our lexicalization, and
Section 3.4 details an empirical investigation into the size increase which our lexicalization
incurs. Section 3.5 discusses how to use these grammars for hierarchical translation in place
of SCFGs, and Section 3.6 closes with an examination of other related work.

3.1 Closure under Prefix Lexicalization

Theorem 1. There exists an SCFG which cannot be converted to an equivalent PL-SCFG;
thus SCFG is not closed under prefix lexicalization.

Proof. The SCFG in (3.1) generates the language L = {〈aibjci, bjai〉| i ≥ 0, j ≥ 1}, but we
will show that this language cannot be generated by any PL-SCFG:

(3.1)

〈S → A 1 , S → A 1 〉
〈A→ aA 1 c, A→ A 1 a〉
〈A→ bB 1 , A→ bB 1 〉
〈A→ b, A→ b〉
〈B → bB 1 , B → bB 1 〉
〈B → b, B → b〉

Suppose, for the purpose of contradiction, that some PL-SCFG does generate L; call this
grammar G. Then the following derivations must all be possible in G for some nonterminals
U, V,X, Y :

12

(i) 〈U 1 , V 1 〉 ⇒∗ 〈bkU 1 bm, bnV 1 bp〉, where k +m = n+ p and n ≥ 1

(ii) 〈X 1 , Y 1 〉 ⇒∗ 〈aqX 1 cq, arY 1 as〉, where q = r + s and r ≥ 1

(iii) 〈S 1 , S 1 〉 ⇒∗ 〈α1X 1 α2, bα3Y 1 α4〉, where α1, ..., α4 ∈ (N ∪ Σ)∗

(iv) 〈X 1 , Y 1 〉 ⇒∗ 〈α5U 1 α6, α7V 1 α8〉, where α5, α6, α8 ∈ (N ∪Σ)∗ and α7 ∈ Σ ·(N ∪Σ)∗

(i) and (ii) follow from the same arguments used in the pumping lemma for (non-
synchronous) context free languages (Bar-Hillel et al., 1961): strings in L can contain arbi-
trarily many as, bs, and cs, so there must exist some pumpable cycles which generate these
characters. In (i), k + m = n + p because the final derived strings must contain an equal
number of bs, and n ≥ 1 because G is prefix lexicalized; in (ii) the constraints on q, r and
s follow likewise from L. (iii) follows from the fact that, in order to pump on the cycle
in (ii), this cycle must be reachable from the start symbol. (iv) follows from the fact that
a context-free production cannot generate a discontinuous span. Once the cycle in (i) has
generated a b in the source string, it is impossible for (ii) to generate an a on one side of
the b and a c on the other. Therefore (i) must always be derived strictly later than (ii), as
shown in (iv).

Now we obtain a contradiction. Given that G can derive all of (i) through (iv), the
following derivation is also possible:

(3.2)

〈S 1 , S 1 〉
⇒∗ 〈α1X 1 α2, bα3Y 1 α4〉
⇒∗ 〈α1a

qX 1 cqα2, bα3a
rY 1 asα4〉

⇒∗ 〈α1a
qα5U 1 α6c

qα2, bα3a
rα7V 1 α8a

sα4〉
⇒∗ 〈α1a

qα5b
kU 1 bmα6c

qα2, bα3a
rα7b

nV 1 bpα8a
sα4〉

But since n, r ≥ 1 the derived target string contains an a before a b and thus does not
belong to L.

This is a contradiction: if G is a PL-SCFG then it must generate (i) through (iv), but if
so then it also generates strings which do not belong to L. Thus no PL-SCFG can generate
L, and SCFG must not be closed under prefix lexicalization. �

The language in 3.1 is resistant to prefix lexicalization because context-free productions
cannot generate discontinuous spans: this fact enforces an ordering on how various parts
of a string pair can be generated relative to other parts of that string pair, as shown in
(iv). This in turn permits spurious derivations of the shape in (3.2) which generate strings
outside the desired language. It is also interesting to note that the grammar in (3.1) has
rank 1: it is therefore among the simplest of grammars in the class SCFG. This reinforces
the intuition that discontinuities, and not high rank or complex reorderings, are the quality
which makes an SCFG resistant to prefix lexicalization.

13

There also exist grammars which cannot be prefix lexicalized because their target pro-
jections are not finitely ambiguous. If an SCFG can derive a cycle such as 〈X 1 , Y 1 〉 ⇒∗

〈xX 1 , Y 1 〉 for some x ∈ Σ and X,Y ∈ N \ {S}, then this cycle can be pumped to gen-
erate arbitrarily many symbols in the source string without adding anything to the target
string. Prefix lexicalizing the grammar would force it to generate some terminal symbol in
the target string at each step of the derivation, making it impossible to generate the orig-
inal language in which the length of a source string may be unboundedly greater than the
length of its corresponding target string. The target projection of such a grammar will not
be finitely ambiguous, because it will contain a cycle of chain rules which can be pumped
to create infinitely many derivations for a single string. Since lexicalized grammars must
be finitely ambiguous, lexicalizing such a grammar will by necessity change the language it
generates.

For this reason, the rest of this thesis will focus on lexicalizing grammars with source
discontinuities rather than those with infinitely ambiguous target projections. Unless oth-
erwise specified, all grammars discussed from this point on are assumed to have a finitely
ambiguous target projection; we make the additional requirement that grammars are ε-free,
to avoid the case where trees are “lexicalized” by the empty string.1 We do not consider
this restriction to be a major drawback, because when dealing with natural language it is
reasonable to assume finite ambiguity: to take an example from translation, although lan-
guages may vary in the number of words used to express a given concept, the length of a
sentence in one language will at least be proportional to the length of its translation, and
will not be unboundedly longer or shorter.

3.2 Prefix Lexicalization using STAG

We now show that an ε-free SCFG with a finitely ambiguous target projection can be prefix
lexicalized by converting it to an equivalent STAG.

Theorem 2. Given a rank-k SCFG G which is ε-free and has a finitely ambiguous target
projection, an STAG H exists such that H is prefix lexicalized and L(G) = L(H). The rank
of H is k + 1, and |H| = O(|G|3).

Proof. Let G = (N,Σ, P, S) be an ε-free SCFG with a finitely ambiguous target projection.
We provide a constructive method for prefix lexicalizing the target side of G.

We begin by constructing an intermediate grammar GA1A2 for each pair of nonterminals
A1, A2 ∈ N \ {S}. For each A1, A2 ∈ N \ {S}, GA1A2 will be constructed to generate the

1In some applications (such as word alignment) it is acceptable to have a tree lexicalized by the empty
string, for example to represent the deletion of a word between two languages. For the sake of formal
correctness, however, we prefer to focus on the case where every tree is lexicalized by an overt string from
Σ, so that our transformation is a lexicalization in the strict formal sense.

14

〈A1 1 , A2 1 〉 ⇒ 〈α1B11 1 β1, B21 1 γ1〉 ⇒ 〈α1α2B12 1 β2β1, B22 1 γ2γ1〉

⇒∗ 〈α1 · · ·αtB1t 1 βt · · ·β1, B2t 1 γt · · · γ1〉 ⇒ 〈α1 · · ·αtαt+1βt · · ·β1, aγt+1γt · · · γ1〉

Figure 3.1: A target-side terminal leftmost derivation. a ∈ Σ, A1, A2, B1i, B2i ∈ N for
1 ≤ i ≤ t, and αi, βi, γi ∈ (N ∪ Σ)∗ for 1 ≤ i ≤ t+ 1.

language of sentential forms derivable from 〈A1, A2〉 via a target-side terminal leftmost
derivation (TTLD). A TTLD is a derivation of the form in Figure 3.1, where the leftmost
nonterminal in the target string is expanded until it produces a terminal symbol as the first
character. We write 〈A1, A2〉 ⇒∗TTLD 〈u, v〉 to mean that 〈A1, A2〉 derives 〈u, v〉 by way of
a TTLD; in this notation, LA1A2 = {〈u, v〉|〈A1, A2〉 ⇒∗TTLD 〈u, v〉}.

Given a pair A1, A2 ∈ N \ {S} we formally define GA1A2 as an STAG over the terminal
alphabet ΣA1A2 = (N ∪ Σ) and nonterminal alphabet NA1A2 = {YA1A2 |Y ∈ N}, with
start symbol SA1A2 . NA1A2 contains nonterminals indexed by A1A2 to ensure that two
intermediate grammars GA1A2 and GB1B2 do not interact as long as 〈A1, A2〉 6= 〈B1, B2〉.
GA1A2 contains four kinds of tree pairs: 2

• For each rule in G of the form 〈A1 → α1, A2 → aα2〉, a ∈ Σ, α1, α2 ∈ (N ∪ Σ)∗, we
add a tree pair of the form in Figure 3.2(a).

• For each rule in G of the form 〈B1 → α1, B2 → aα2〉, a ∈ Σ, α1, α2 ∈ (N ∪ Σ)∗,
B1, B2 ∈ N \ {S}, we add a tree pair of the form in Figure 3.2(b).

• For each rule in G of the form 〈B1 → α1C1 1 β1, B2 → C2 1 α2〉, α1, α2, β1 ∈ (N ∪Σ)∗,
B1, B2, C1, C2 ∈ N \ {S}, we add a tree pair of the form in Figure 3.2(c).

As a special case, if B1 = C1 we collapse the root node and adjunction site to produce
a tree pair of the following form:

(3.3)

〈 C1A1A2 1

α1C1A1A2 ∗ β1

C2A1A2

α2B2A1A2 ↓ 1

〉
• For each rule in G of the form 〈A1 → α1B1 1 β1, A2 → B2 1 α2〉, α1, α2, β1 ∈ (N ∪Σ)∗,
B1, B2 ∈ N \ {S}, we add a tree pair of the form in Figure 3.2(d).

2In all cases, we assume that symbols inN (notNA1A2) retain any links they bore in the original grammar,
even though they belong to the terminal alphabet in GA1A2 and therefore do not participate in rewriting
operations. In the final constructed grammar, these symbols will belong to the nonterminal alphabet again,
and the links will function normally.

15

〈 SA1A2

α1

SA1A2

aα2

〉
(a) 〈A1 → α1, A2 → aα2〉

〈 SA1A2

B1A1A2 1

α1

SA1A2

aα2B2A1A2 ↓ 1

〉
(b) 〈B1 → α1, B2 → aα2〉〈 C1A1A2

B1A1A2 1

α1 C1A1A2∗ β1

C2A1A2

α2 B2A1A2 ↓ 1

〉
(c) 〈B1 → α1C1 1 β1, B2 → C2 1 α2〉

〈 B1A1A2

α1 B1A1A2∗ β1

B2A1A2

α2

〉
(d) 〈A1 → α1B1 1 β1, A2 → B2 1 α2〉

Figure 3.2: Tree pairs in GA1A2 and the rules in G from which they derive.

Lemma 1. GA1A2 generates the language LA1A2.

Proof. This can be shown by induction over derivations of increasing length. The proof is
straightforward but tedious, so we provide only a sketch; the complete proof is provided in
Appendix A.

As a base case, observe that a tree of the shape in Figure 3.2(a) corresponds straight-
forwardly to the derivation

(3.4) 〈A1 1 , A2 1 〉 ⇒ 〈α1, aα2〉

which is a TTLD starting from the pair 〈A1, A2〉. By construction, therefore, every TTLD
of the shape in (3.4) corresponds to some tree in GA1A2 of shape 3.2(a); likewise every
derivation in GA1A2 comprising a single tree of shape 3.2(a) corresponds to a TTLD of the
shape in (3.4).

As a second base case, note that a tree of the shape in Figure 3.2(b) corresponds to the
last step of a TTLD like (3.5):

(3.5) 〈A1 1 , A2 1 〉 ⇒∗TTLD 〈uB1 1 v,B2 1 w〉 ⇒ 〈uα1v, aα2w〉

In the other direction, the last step of any TTLD of the shape in (3.5) will involve some
rule of the shape 〈B1 → α1, B2 → aα2〉 for some B1, B2 ∈ N \ {S}; by construction GA1A2

must contain a corresponding tree pair of shape 3.2(b).

16

Together, these base cases establish a one-to-one correspondence between single-tree
derivations in GA1A2 and the last step of a TTLD starting from 〈A1, A2〉.

Now, assume that the last n steps of every TTLD starting from 〈A1, A2〉 correspond to
some derivation over n trees in GA1A2 , and vice versa. Then the last n + 1 steps of that
TTLD will also correspond to some n+ 1 tree derivation in GA1A2 , and vice versa.

To see this, consider the step n + 1 steps before the end of the TTLD. This step may
be in the middle of the derivation, or it may be the first step of the derivation. If it is in
the middle, then this step must involve a rule of the shape

(3.6) 〈B1 → α1C1 1 β1, B2 → C2 1 α2〉

for some nonterminals B1, B2, C1, C2 ∈ N \ {S}. The existence of such a rule in G implies
the existence of a corresponding tree pair in GA1A2 of the shape in Figure 3.2(c). Adding
this tree to the existing n-tree derivation yields a new n+1 tree derivation corresponding to
the last n+ 1 steps of the TTLD.3 In the other direction, if the n+ 1th tree4 of a derivation
in GA1A2 is of the shape in Figure 3.2(c), then this implies the existence of a production in G
of the shape in (3.6). By assumption the first n trees of the derivation in GA1A2 correspond
to some TTLD in G; by prepending the rule from (3.6) to this TTLD we obtain a new
TTLD of length n+ 1 which corresponds to the entire n+ 1 tree derivation in GA1A2 .

Finally, consider the case where the TTLD is only n+ 1 steps long. The first step must
involve a rule of the form

(3.7) 〈A1 → α1B1 1 β1, A2 → B2 1 α2〉

for some B1, B2 ∈ N \ {S}. The existence of such a rule implies the existence of a corre-
sponding tree pair in GA1A2 of the shape in Figure 3.2(d). Adding this pair to the derivation
which corresponds to the last n steps of the TTLD yields a new n+ 1 tree derivation cor-
responding to the entire n + 1 step TTLD. In the other direction, if the last tree pair of
an n + 1 tree derivation in GA1A2 is of the shape in Figure 3.2(d), then this implies the
existence of a production in G of the shape in (3.7). By assumption the first n trees of the
derivation in GA1A2 correspond to some TTLD in G; by prepending the rule from (3.7) to

3It is easy to verify by inspection of Figure 3.2 that whenever one rule from G can be applied to the
output of another rule, then the tree pairs in GA1A2 which correspond to these rules can compose with one
another. Thus we can add the new tree to the existing derivation and be assured that it will compose with
one of the trees that is already present.

4Although trees in GA1A2 may contain symbols from the nonterminal alphabet of G, these symbols belong
to the terminal alphabet in GA1A2 . Only nonterminals in NA1A2 will be involved in this derivation, and by
construction there is at most one such nonterminal per tree. Thus a well-formed derivation structure in
GA1A2 will never branch, and we can refer to the n + 1th tree pair as the one which is at depth n in the
derivation structure.

17

this TTLD we obtain a new TTLD of length n + 1 which corresponds to the entire n + 1
tree derivation in GA1A2 .

Taken together, these cases establish a one-to-one correspondence between derivations
in GA1A2 and TTLDs which start from the pair 〈A1, A2〉. In turn they show, in sketch form,
that GA1A2 generates the desired language LA1A2 .

Once we have constructed an intermediate grammarGA1A2 for each pair A1A2 ∈ N\{S},
we obtain the final STAG H as follows:

1. Convert the input SCFG G to an equivalent STAG. For each rule 〈A1 → α1, A2 → α2〉,
where Ai ∈ N , αi ∈ (N ∪ Σ)∗, create a tree pair of the form

(3.8)

〈 A1

α1

A2

α2

〉
where each pair of linked nonterminals in the original rule become a pair of linked
substitution sites in the tree pair. The terminal and nonterminal alphabets and start
symbol are unchanged. Call the resulting STAG H.

2. For all A1, A2 ∈ N \ {S}, add all of the tree pairs from the intermediate grammar
GA1A2 to the new grammar H. Expand N to include the new nonterminal symbols in
NA1A2 .

3. For every A1, A2 ∈ N , in all tree pairs where the target tree’s leftmost leaf is labeled
with A2 and this node is linked to an A1, replace this occurrence of A2 with SA1A2 .
Also replace the linked A1 node in the source tree.

4. For every A1, A2 ∈ N , let RA1A2 be the set of all tree pairs rooted in SA1A2 , and
let TA1A2 be the set of all tree pairs whose target tree’s leftmost leaf is labeled with
SA1A2 . For every 〈s, t〉 ∈ TA1A2 and every 〈s′, t′〉 ∈ RA1A2 , substitute s′ and t′ into the
linked SA1A2 nodes in s and t, respectively. Add the derived trees to H.

5. For all A1, A2 ∈ N , let TA1A2 be defined as above. Remove all tree pairs in TA1A2 from
H.

6. For all A1, A2 ∈ N , let RA1A2 be defined as above. Remove all tree pairs in RA1A2

from H.

We now claim that H generates the same language as the original grammar G, and that
all of the target side trees in H are prefix lexicalized.

The first claim follows directly from the construction. Step 1 merely rewrites the gram-
mar in a new formalism. From Lemma 1 it is clear that steps 2–3 do not change the generated

18

language: the set of string pairs generable from a pair of SA1A2 nodes is identical to the set
generable from 〈A1, A2〉 in the original grammar. Step 4 replaces some nonterminals by all
possible alternatives; steps 5–6 then remove the trees which were used in step 4, but since
all possible combinations of these trees have already been added to the grammar, removing
them will not alter the language.

The second claim follows from inspection of the tree pairs generated in Figure 3.2.
Observe that, by construction, for all A1, A2 ∈ N every target tree rooted in SA1A2 is
prefix lexicalized. Thus the trees created in step 4 are all prefix lexicalized variants of non-
lexicalized tree pairs; steps 5–6 then remove the non-lexicalized trees from the grammar.

�

Figure 3.3 gives some concrete examples showing the construction of an intermediate
grammar from an SCFG. Figures 3.4, 3.5 and 3.6 demonstrate the entire transformation,
in steps, as it is applied to a small grammar.

3.3 Complexity & Formal Properties

The set of all grammars produced by our transformation is a subset of the class of prefix
lexicalized STAGs in regular form (regular form for TAG is defined in Rogers 1994); we
abbreviate this set as PL-RSTAG. This section discusses some formal properties of PL-
RSTAG.

Generative Capacity PL-RSTAG is weakly equivalent to the class of ε-free SCFGs
with finitely ambiguous target projections: this follows immediately from the proof that our
transformation does not change the language generated by the input SCFG. As an aside,
observe that the source and target projections of any STAG produced by our transformation
will be TAGs in regular form. Every TAG in regular form is strongly equivalent to some
CFG (Rogers, 1994), which gives some intuitive insight into why the STAGs produced by
our transformation necessarily generate synchronous context-free languages despite TAGs
being able to generate strictly more languages than CFGs in general.5

5This observation appears at a glance to contradict our previous result that SCFG is not closed under
prefix lexicalization: since each side of the transformed STAG is strongly equivalent to some CFG, it should
be possible to construct a prefix lexicalized SCFG with these equivalent grammars as source and target
projections. This is not possible in the general case, however, because the two grammars will not necessarily
derive strings in the same order as one another. That is, the CFG which is equivalent to the STAG’s source
projection may generate the parts of a string in one order, while the CFG which is equivalent to the target
projection generates the parts of the corresponding string in a different order. Thus the nonterminals which
would need to be linked together will never be present on both sides of the derivation at the same time as
one another and so it will be impossible to link them.

19

〈U →W 1 X 2 , V → aX 2 W 1 〉:

〈 SUV

W ↓ 1 X ↓ 2

SUV

a X ↓ 2 W ↓ 1

〉

〈W → Y 1 Y 2 , X → aY 2 bY 1 c〉:

〈 SUV

WUV 3

Y ↓ 1 Y ↓ 2

SUV

a Y ↓ 2 b Y ↓ 1 c XUV ↓ 3

〉

〈W → aY 1 bZ 2 c,X → Y 1 Z 2 a〉:

〈 YUV

WUV 1

a YUV ∗ b Z ↓ 2 c

YUV

Z ↓ 2 a XUV ↓ 1

〉
〈U → aW 1 bX 2 c, V →W 1 X 2 a〉:

〈 WUV

a WUV ∗ b X ↓ 1 c

WUV

X ↓ 1 a

〉
Figure 3.3: Examples showing steps in the construction of an intermediate grammar GUV
for a pair of nonterminals U and V . SCFG rules are shown on the left, and a tree pair
added to GUV on the basis of each rule is shown to the right. Observe that nonterminals
which are not indexed by UV (those which belong to strings abbreviated by Greek letters
in Figure 3.2) retain all their original links in the new tree pairs. The nonterminals which
are indexed by UV have been added during the construction of the tree pairs. Wrapping
adjunction will occur at the new adjunction sites (links 3 and 1 in pairs two and three,
respectively) which will permit this grammar to generate the same strings as the SCFG it
is based on.

20

〈S → B 2 cA 1 , S → A 1 cB 2 〉
〈A→ B 2 cA 1 , A→ A 1 cB 2 〉

〈A→ a,A→ a〉
〈B → b, B → b〉

(a)

〈 SAA

a

SAA

a

〉 〈 SAA

AAA 1

a

SAA

a AAA ↓ 1

〉 〈 SAA

BAA 1

b

SAA

b BAA ↓ 1

〉
〈 AAA 1

B ↓ 2 c AAA∗

AAA

c B ↓ 2 AAA ↓ 1

〉 〈 AAA

B ↓ 1 c AAA∗

AAA

c B ↓ 1

〉
(b)

〈 SBB

b

SBB

b

〉 〈 SBB

ABB 1

a

SBB

a ABB ↓ 1

〉 〈 SBB

BBB 1

b

SBB

b BBB ↓ 1

〉
〈 ABB 1

B ↓ 2 c ABB∗

ABB

c B ↓ 2 ABB ↓ 1

〉
(c)

Figure 3.4: An SCFG (a) and the intermediate grammars GAA (b) and GBB (c) produced
while lexicalizing it. The grammars GAB and GBA are omitted, as there are no rules in the
original grammars which rewrite the pairs 〈A,B〉 or 〈B,A〉.

21

〈 S

B ↓ 2 c SAA

a

S

SAA

a

c B ↓ 2

〉 〈 S

B ↓ 2 c SAA

AAA 1

a

S

SAA

a AAA ↓ 1

c B ↓ 2

〉
〈 S

B ↓ 2 c SAA

BAA 1

b

S

SAA

b BAA ↓ 1

c B ↓ 2

〉 〈 A

B ↓ 2 c SAA

a

A

SAA

a

c B ↓ 2

〉
〈 A

B ↓ 2 c SAA

AAA 1

a

A

SAA

a AAA ↓ 1

c B ↓ 2

〉 〈 A

B ↓ 2 c SAA

BAA 1

b

A

SAA

b BAA ↓ 1

c B ↓ 2

〉
〈 AAA 1

B ↓ 2 c AAA∗

AAA

c B ↓ 2 AAA ↓ 1

〉 〈 AAA

B ↓ 1 c AAA∗

AAA

c B ↓ 1

〉
〈 ABB 1

B ↓ 2 c ABB∗

ABB

c B ↓ 2 ABB ↓ 1

〉 〈 A

a

A

a

〉 〈 B

b

B

b

〉
Figure 3.5: The complete STAG produced by lexicalizing the grammar in Figure 3.4.

22

〈 S

B ↓ 1 c SAA

a

S

SAA

a

c B ↓ 1

〉 〈 S

B ↓ 2 c SAA

AAA 1

a

S

SAA

a AAA ↓ 1

c B ↓ 2

〉
〈 AAA 1

B ↓ 2 c AAA∗

AAA

c B ↓ 2 AAA ↓ 1

〉 〈 AAA

B ↓ 1 c AAA∗

AAA

c B ↓ 1

〉
〈 B

b

B

b

〉
Figure 3.6: The STAG from Figure 3.5 with unreachable and unproductive trees omitted.

Alignments and Reordering PL-RSTAG generates the same set of reorderings (align-
ments) as SCFG. Observe that our transformation does not cause nonterminals which were
linked in the original grammar to become unlinked. Thus subtrees which are generated by
linked nonterminals in the original grammar will still be generated by linked nonterminals
in the final grammar, so no reordering information is lost or added.6

Grammar Rank If the input SCFG G has rank k, then applying our transformation
directly to G will produce an STAG H with rank at most 2k. To see this, observe that
the construction of the intermediate grammars increases the rank by at most 1, as seen
in Figure 3.2(b). When a prefix lexicalized tree is substituted at the left edge of a non-
lexicalized tree, the link on the substitution site will be consumed, but up to k+1 new links
will be introduced by the substituting tree, so that the final tree will have rank at most 2k.

By modifying the input grammar slightly before applying our transformation, however,
it is possible to obtain an STAG of rank k + 1 rather than 2k. To achieve this, for every
rule in the original grammar of the form in (3.9)

(3.9) 〈A1 → α1, A2 → aα2〉

6Although we consume one link whenever we substitute a prefix lexicalized tree at the left edge of an
unlexicalized tree, that link can still be recorded and used to reconstruct the reorderings which occurred
between the two sentences.

23

for some a ∈ Σ, αi ∈ (N ∪ Σ)∗, we remove this rule from the grammar and replace it with
the following pair of rules:

〈A1 → A′1 1 , A2 → aA′2 1 〉(3.10)

〈A′1 → α1, A
′
2 → α2〉(3.11)

where A′1 and A′2 are new nonterminals which appear only in this pair of productions.
Now every prefix lexicalized rule in the original grammar has rank 1, which means that

all of the initial trees constructed in the intermediate grammars will have rank at most 2.
Thus when we substitute these trees at the left edge of unlexicalized tree pairs, we only
increase the rank to k + 1 rather than to 2k.

Parse Complexity Because the grammar produced is in regular form, each side can be
parsed in time O(n3) (Rogers, 1994), for an overall parse complexity of O(n3k), where n is
sentence length and k is the grammar rank.

Grammar Size If H is the PL-RSTAG produced by applying our transformation to
an SCFG G, then H contains O(|G|3) elementary tree pairs, where |G| is the number of
synchronous productions in G. When the set of nonterminals N is small relative to |G|, a
tighter bound is given by O(|N |2|G|2).

To derive these bounds, observe that each intermediate grammar contains O(|G|) tree
pairs, since we create at most two pairs per production in G. There are |N |2 such grammars,
so that adding the trees from each intermediate grammar will increase the size to O(|N |2|G|)
tree pairs. Finally, since there are O(|G|) prefix lexicalized tree pairs in each intermediate
grammar, substituting these at the left edge of productions which are not lexicalized will
increase the grammar size by another factor of O(|G|) to O(|N |2|G|2). In the worst case
where each pair of nonterminals appears as the left hand side of some production, this
simplifies to O(|G|3).

To supplement these asymptotic bounds, we have also performed an empirical evalua-
tion to determine the actual size increase incurred by our transformation on some grammars
taken from existing NLP applications. These evaluations are detailed in the following sec-
tion.

3.4 Experiments

The asymptotic bounds in Section 3.3 show that applying our transformation to an SCFG
containing |G| synchronous productions produces an STAG containing at most O(|G|3) tree
pairs. In this section, we empirically show that the size increase on grammars which are
used in real-world NLP applications is much smaller, always within O(|G|2).

24

General Results and Effect of |N | Table 3.1 shows the actual size increase incurred
by applying our transformation to two likely use cases: here |G| is the size of the initial
grammar, |H| is the size after applying our transformation, and log|G| |H| is a measure of
the size increase as a power of the original grammar size. The table also shows ppl, which
is the percentage of rules in the original SCFG which were already prefix lexicalized before
applying our transformation.

The first grammar used for this experiment is a stochastic bracketing ITG (SBITG; Wu
1997), a simple kind of SCFG which can be used for word or phrase alignment. Previous
work (Zhang and Gildea, 2005) has shown that lexicalizing these grammars leads to better
alignments, suggesting SBITGs as a likely use case for our transformation. We also consider
the grammar used by Siahbani and Sarkar (2014b), which was created for a Chinese-English
translation task known to involve complex reorderings which cannot be modeled by a prefix
lexicalized SCFG (Siahbani and Sarkar, 2014a). This therefore represents another likely use
case for the transformation developed in this work.

Grammar |G| |H| ppl log|G| |H|
SBITG (10000 translation pairs) 10k 170k 99.9% 1.31
Siahbani and Sarkar (2014b) (Zh-En) 18.5M 23.6T 37.1% 1.84

Table 3.1: Grammar sizes before and after prefix lexicalization, showing sub-quadratic
growth instead of the worst case cubic growth. |G| and |H| are the grammar size before
and after lexicalization; ppl is the percentage of the rules in the original SCFG which were
already prefix lexicalized before applying our transformation; log|G| |H| is the size increase
expressed as a power of the initial size.

These experiments show that, on the two use cases we have considered, the grammar
size increase incurred by our transformation is significantly smaller than the worst case. We
believe that this is due to the fact that |N | is small relative to |G| in both cases: since the
overall size increase is bounded by O(|N |2|G|2), we should expect at most quadratic rather
than cubic growth when |N | is small. Given that stochastic bracketing ITGs and ITGs used
for machine translation tend to have at most two nonterminals, it is not surprising that our
transformation causes such small growth when applied to such grammars.

We offer this as an explanation for the small growth shown in Table 3.1, but we did
not perform additional experiments to precisely determine the effect of |N | on our trans-
formation. This is because we are not aware of any real-world NLP applications which use
grammars with a large |N |: formal grammars tend to be used as a means for compactly
generalizing across common linguistic patterns, so it is in a grammar designer (or learner)’s
interests to make rules as generic as possible. That is, there is incentive to use few, generic
constructions rather than many, finely-grained ones, and any grammar constructed in this
way may be expected to grow approximately quadratically under our transformation.

25

Effect of |G| To test the effect of initial grammar size on our transformation, we sampled
grammars of various sizes from the SCFG used by Siahbani and Sarkar (2014b). Each sample
was constructed to contain 50% prefix lexicalized rules and 50% non-prefix lexicalized rules;
in this way it is guaranteed that the size of the grammar is the only factor that varies between
samples. Each sample was subjected to the prefix lexicalizing transformation described in
this chapter, and the size of the resulting STAG H was calculated. Note that useless tree
pairs (those which are unreachable or unproductive) were not pruned from the final STAG,
so the numbers reported in this section represent the size of the grammar exactly as it is
returned by our algorithm.

Figure 3.7 shows the results of this experiment. We find that small grammars grow
disproportionately slower than larger ones: our smallest sample (1,000 synchronous rules)
grows by a power of 1.92 while the largest (100,000 synchronous rules) grows by a power
of nearly 1.95. The size increase levels off as the initial grammar size increases, tending
towards an asymptote around 1.95.

Effect of ppl We also investigated the effect of ppl, the percentage of productions in
the initial SCFG which were already prefix lexicalized before applying our transformation.
We extracted samples of 15,000 synchronous rules from the grammar used by Siahbani
and Sarkar (2014b), where each sample varied in the number of prefix lexicalized rules it
contained. Each sample was subjected to our prefix lexicalization and the size increase was
recorded; as in the previous experiment, unproductive and unreachable trees were left in
the transformed grammar. The results of this experiment are shown in Figure 3.8.

Observe that the size of the final STAG does not vary linearly with respect to ppl.
Counterintuitively, we observe the largest growth when exactly half of the original SCFG
is already prefix lexicalized, and considerably smaller growth when most of the grammar is
or is not lexicalized.

We believe this results from an interaction between two separate factors affecting the
size of the final grammar. For every prefix lexicalized rule in the initial SCFG, we create
several lexicalized tree pairs in the intermediate grammars, which increases the final blowup
when these trees are substituted into unlexicalized tree pairs. At the same time, for every
rule which is not prefix lexicalized in the original SCFG, we must construct a family of
lexicalized tree pairs around this rule, again increasing the size of the final grammar. When
half of the input SCFG is prefix lexicalized, there are both a large number of rules needing
lexicalization and a large number of rules with which to lexicalize them. Thus the blowup
is greatest in this case, analogous to how the function f(x) = x(1− x) takes its maximum
at x = 1

2 .
We have now established the general properties of the grammars produced by our trans-

formation. Next, we briefly discuss how to use these grammars in the tasks considered by

26

Watanabe et al. (2006) and Siahbani et al. (2013), and we consider other work related to
these results.

0 20k 40k 60k 80k 100k

0

2bn

4bn

6bn

8bn

10bn

|G|

|H
|

|H|
|G|2

|G|3

(a) Final grammar size (|H|) vs. initial grammar size (|G|). Lines depicting O(n2) growth and O(n3)
(worst-case) growth are also given for reference.

0 20k 40k 60k 80k 100k

1.92

1.93

1.94

1.95

|G|

lo
g |
G
||
H
|

(b) Size increase (log|G| |H|) vs. initial grammar size (|G|).

Figure 3.7: Effect of |G| (initial grammar size) on overall size increase.

27

10 20 30 40 50 60 70 80 90
4 · 107

6 · 107

8 · 107

1 · 108

1.2 · 108

ppl

|H
|

(a) Final grammar size (|H|) vs. percentage of prefix lexicalized rules in the initial grammar (ppl).

10 20 30 40 50 60 70 80 90
1.82

1.84

1.86

1.88

1.9

1.92

1.94

ppl

lo
g |
G
||
H
|

(b) Size increase (log|G| |H|) vs. percentage of prefix lexicalized rules in the initial grammar (ppl).

Figure 3.8: Effect of ppl (the percentage of prefix lexicalized rules in the initial grammar)
on overall size increase.

28

3.5 Applications to Translation

The LR decoding algorithm from Watanabe et al. (2006) relies on prefix lexicalized rules
to generate a prefix of the target sentence during machine translation. At each step, a
translation hypothesis is expanded by rewriting the leftmost nonterminal in its target string
using some grammar rule; the prefix of this rule is appended to the existing translation and
the remainder of the rule is pushed onto a stack, in reverse order, to be processed later.
Translation hypotheses are stored in stacks according to the length of their translated prefix,
and beam search is used to traverse these hypotheses and find a complete translation. During
decoding, the source side is processed by an Earley-style parser, with the dot moving around
to process nonterminals in the order they appear on the target side.

Since the trees on the target side of our transformed grammar are all of depth 1, and
none of these trees can compose via the adjunction operation, they can be treated like
context-free rules and used as-is in this decoding algorithm. The only change required to
adapt LR decoding to use a PL-RSTAG is to make the source side use a TAG parser instead
of a CFG parser; an Earley-style parser for TAG already exists (Joshi and Schabes, 1997), so
this is a minor adjustment. Pseudocode for this decoding algorithm is provided in appendix
B, with the changes required to handle PL-RSTAG highlighted.

Combined with the transformation in Section 3.2, this suggests a method for using LR
decoding without sacrificing translation quality. Previously, LR decoding required the use
of heuristically generated PL-SCFGs, which cannot model some reorderings (Siahbani and
Sarkar, 2014b). Now, an SCFG tailored for a translation task can be transformed directly to
PL-RSTAG and used for decoding; unlike a heuristically induced PL-SCFG, the transformed
PL-RSTAG will generate the same language as the original SCFG so translation quality
should not be affected. It remains to empirically test this hypothesis, however, and to
determine whether the increased grammar rank or larger set of non-terminals offsets the
speed improvements gained by using LR decoding. See Appendix B for comments on the
work involved in such an evaluation.

3.6 Related Work

The transformation discussed in this chapter continues a long line of work studying lexical-
ized TAGs (e.g. Joshi et al. 1975; Schabes and Waters 1993). Schabes and Waters (1995)
show that TAG can strongly lexicalize CFG, whereas CFG only weakly lexicalizes itself;
we show a similar result for SCFGs. Kuhlmann and Satta (2012) show that TAG is not
closed under strong lexicalization, and Maletti and Engelfriet (2012) show how to strongly
lexicalize TAG using simple context-free tree grammars.

We employ STAG to overcome the limited power of SCFG. STAG has previously been
used in a similar fashion by Johnson and Charniak (2004) and Zwarts et al. (2010), who
employ STAGs to repair speech errors which cannot be accurately modeled by SCFGs.

29

Other extensions of GNF to new grammar formalisms include Dymetman (1992) (for
definite clause grammars), Hoogeboom (2002) (for CF valence grammars), and Engelfriet
et al. (2017) (for multiple CFGs).

Lexicalization of synchronous grammars was addressed in Zhang and Gildea (2005) for
SCFGs of rank 2, but these authors consider lexicalization rather than prefix lexicalization.
Furthermore, their transformation is not a lexicalization in the formal sense, because they
do not introduce a terminal symbol into every production; rather, they annotate the non-
terminals in the grammar to record which terminal symbols they will eventually produce.

Analogous to our closure result, Aho and Ullman (1969) prove that SCFG does not
admit a normal form with bounded rank like Chomsky normal form.

Blum and Koch (1999) use intermediate grammars like our GA1A2s to transform a CFG
to GNF. Another GNF transformation (Rosenkrantz, 1967) is used by Schabes and Waters
(1995) to define tree insertion grammars (which are also weakly equivalent to CFG).

We rely on Rogers 1994 to show that our transformed grammars generate context-free
languages despite allowing wrapping adjunction; an alternative argument could employ the
results of Swanson et al. 2013, who develop their own context-free TAG variant known as
osTAG.

3.7 Conclusion

This chapter has shown that SCFG is not closed under prefix lexicalization, and has pre-
sented a technique for converting an SCFG into an equivalent prefix lexicalized STAG. We
have given an overview of the formal properties of the resulting grammar and considered
possible applications for the transformation. We now turn to the problem of lexicalizing
grammars with weighted productions.

30

Chapter 4

Weighted Grammar Lexicalization

Section 3.2 demonstrated a method for prefix lexicalizing an ε-free SCFG with a finitely
ambiguous target projection by converting it to an equivalent STAG. This chapter demon-
strates that the same transformation may be applied to a weighted or probabilistic SCFG
without affecting the weight assigned to string pairs generated by that grammar.

4.1 Weighted SCFG

We begin by considering the case where our transformation is applied to a WSCFG. Recall
that every tree pair in the intermediate grammars and the final prefix lexicalized STAG H

will be created on the basis of some synchronous rule from the original WSCFG G. Suppose
that each of these tree pairs is assigned the same weight as the WSCFG rule on which it is
based. Then the following result obtains:

Lemma 2. For every A1, A2 ∈ N , whenever a derivation in the intermediate grammar
GA1A2 corresponds to a TTLD in G, both derivations have the same weight.

Proof. This is easily seen by adapting the proof in Appendix A to record the weight of the
string pair being derived at each step of the induction. Every time a derivation in GA1A2

(resp. a TTLD in G) is extended by adding a new tree pair (WSCFG rule), this pair (rule)
will by construction have the same weight as the corresponding WSCFG rule (tree pair).
Thus the weight of the corresponding derivations will remain equal at every step of the
induction. This result holds for the usual case where the grammar weights belong to R, but
can trivially be generalized to a grammar with weights in a commutative semiring.

Now, suppose as well that when we lexicalize a tree pair by substituting a lexicalized
tree pair at the left corner, we assign the combined tree pair a weight equal to the product
of the weights of the component tree pairs. Then it follows immediately that the weight
assigned to a given string pair by the final prefix lexicalized WSTAG H will be the same as
the weight assigned by the original grammar G.

31

To see this, note first that rewriting the original SCFG as an STAG trivially preserves
the weight of every derivation. Next, recall that Lemma 1 established a one-to-one cor-
respondence between derivations in the intermediate grammars and those in the original
WSCFG G, while Lemma 2 shows that this correspondence conserves weight. Thus when we
replace a pair of linked 〈A1, A2〉 nodes with a pair of 〈SA1A2 , SA1A2〉 nodes during the trans-
formation, we change neither the number of derivations which can proceed from that pair of
nodes nor the weight of these derivations. Finally, by multiplying together the tree weights
whenever we substitute a prefix lexicalized tree pair into these 〈SA1A2 , SA1A2〉 nodes, we per-
form the same computation which would have been performed if these tree pairs composed
during a normal derivation. We have simply performed this computation during grammar
construction, rather than during the derivation as would be more common.

Thus for any weighted SCFG, our transformation does not affect the weight of the string
pairs generated by the grammar.

4.2 Probabilistic SCFG

Since every PSCFG is also a WSCFG, the preceding result guarantees that we can apply
our transformation to a PSCFG without affecting the probabilities of the strings generated
by the grammar. However, there is no guarantee that the final STAG produced by our
transformation will still be a PSTAG — although the weight of each string pair generated
by the final grammar will be unchanged, the weights on the individual tree pairs may be
changed so that they no longer sum to 1.

It is easy to find cases where this issue occurs: for example, when the PSCFG in (4.1) is
lexicalized, the final STAG will contain exactly six tree pairs rooted in 〈BAA, BAA〉, shown
in Figure 4.1. Observe that the weights on these tree pairs do not sum to 1, so this will be
a WSTAG rather than a PSTAG:

(4.1)

〈S → A 1 , S → A 1 〉 p = 1
〈A→ a,A→ a〉 p = 0.75
〈A→ B 1 A 2 , A→ B 1 A 2 〉 p = 0.25
〈B → b, B → b〉 p = 1

Thus if we wish the final grammar to be probabilistic, we must perform renormalization
after applying our transformation.

32

p = 0.1875

〈 BAA

BAA∗ SAA

a

BAA

SAA

a

〉 〈 BAA

AAA 1

BAA∗ SAA

a

BAA

SAA

a

AAA ↓ 1

〉
p = 0.1875

p = 0.1875

〈 BAA

BAA∗ SAA

AAA 1

a

BAA

SAA

a AAA ↓ 1

〉 〈 BAA

AAA 1

BAA∗ SAA

AAA 2

a

BAA

SAA

a AAA ↓ 2

AAA ↓ 1

〉
p = 0.1875

p = 0.25

〈 BAA

BAA∗ SAA

BAA 1

b

BAA

SAA

b BAA ↓ 1

〉 〈 BAA

AAA 1

BAA∗ SAA

BAA 2

b

BAA

SAA

b BAA ↓ 2

AAA ↓ 1

〉
p = 0.25

Figure 4.1: Tree pairs rooted in BAA created by prefix lexicalizing (4.1)

33

Given a WSTAG H obtained by lexicalizing the PSCFG G, we renormalize H as follows.
First, let Ω(H) be the set of all tree pairs which can be derived by the grammar H, and let
Ω(G) be defined likewise for G. Define H’s partition function as

(4.2) ZH =
∑

〈σ,τ〉∈Ω(H)
w(σ, τ)

This is the sum of the weights of every tree pair generated by the grammar H. Likewise,
ZG is the partition function for G, and is equal to the sum of the weights of every string
pair generated by G.

Because the weight assigned to string pairs by H is the same as the weight assigned by
the original grammar G, the following equality holds:

(4.3) ZH =
∑

〈σ,τ〉∈Ω(H)
w(σ, τ) =

∑
〈σ,τ〉∈Ω(G)

p(σ, τ) = ZG

That is, the partition function for the WSTAG H equals the partition function for the
original PSCFG G. From this it is easily shown that ZH ≤ 1, because G is a probabilistic
grammar and therefore ZG ≤ 1 (cf. Smith and Johnson 2007).

Next, given a pair of nonterminals X,Y ∈ N , let Ω(X,Y) be the set of all tree pairs
rooted in 〈X,Y 〉 that can be derived using H. We define a partition function for the pair
X,Y as

(4.4) ZXY =
∑

〈σ,τ〉∈Ω(X,Y)
w(σ, τ)

Now we show that ZXY is finite for every pair X,Y ∈ N . This is necessary because we
will later use 1/ZXY as a normalizing constant. In the simplest case, ZSS = ZH is simply
the partition function for the entire grammar, which is already known to be at most 1. Next
suppose 〈σ, τ〉 is an initial tree pair from H rooted in 〈S, S〉 with weight w〈σ,τ〉. Let σi be
the ith nonterminal1 occurring in σ, and let τi be the nonterminal in τ which is linked to σi.
Then, if there are n nonterminals in 〈σ, τ〉, the sum of the weights of all tree pairs rooted
in 〈σ, τ〉 is w〈σ,τ〉 · Zσ1τ1 · · ·Zσnτn . The following inequality holds:

(4.5) ZSS ≥ w〈σ,τ〉 · Zσ1τ1 · · ·Zσnτn

1Here we require only that some total ordering is imposed on the nonterminals in σ, such that “the ith
nonterminal” is well-defined. The actual choice of ordering is not relevant to the proof. One option is to
order the nonterminals according to the order in which they are encountered in a depth-first traversal of the
tree.

34

The inequality is tight just in case 〈σ, τ〉 is the only tree pair rooted in 〈S, S〉. Since
ZSS is finite, and Zσiτi > 0 for 1 ≤ i ≤ n it follows that every Zσiτi must also be finite.2

Furthermore, we may assume without loss of generality that H contains no unreachable
trees, so that for any pair of nonterminals 〈X,Y 〉 occurring at the root of some tree pair in
H, there exists a sequence of adjunction and substitution operations which derive a tree pair
containing 〈X,Y 〉 starting from a tree pair rooted in 〈S, S〉. By induction, we can obtain
an inequality resembling (4.5) for each pair of nonterminals occurring along this sequence,
including 〈X,Y 〉 itself. Thus ZXY ≤ 1 for every X,Y ∈ N .

Now, for every tree pair 〈σ, τ〉 in H, let σi, τi, n, and w〈σ,τ〉 be defined as before. Let
〈X,Y 〉 be the pair of nonterminals at the root of 〈σ, τ〉, and define a new weight w′〈σ,τ〉 as

(4.6) w′〈σ,τ〉 =
w〈σ,τ〉

∏n
i=1 Zσiτi

ZXY

Since we proved that the partition functions are all finite and nonzero, the value w′〈σ,τ〉
will be well defined. Furthermore, these new weights define a probability distribution over
every pair of nonterminals in H. To see that this is true, let ω(X,Y) denote the set of all
elementary tree pairs in H rooted in 〈X,Y 〉, and observe that the following equality is true
for every pair X,Y ∈ N :

(4.7)
∑

〈σ,τ〉∈ω(X,Y)
w′〈σ,τ〉 = 1

ZXY

∑
〈σ,τ〉∈ω(X,Y)

w〈σ,τ〉

n∏
i=1

Zσiτi = 1
ZXY

∑
〈σ,τ〉∈Ω(X,Y)

w(σ, τ) = 1

Thus reweighting every tree pair 〈σ, τ〉 in H using the weight w′〈σ,τ〉 will make the grammar
a PSTAG instead of a WSTAG.

Note that the partition functions ZXY are related to one another by equations of the
form

(4.8) ZXY =
∑

〈σ,τ〉∈ω(X,Y)
w〈σ,τ〉

n∏
i=1

Zσiτi

These comprise a system of nonlinear polynomial equations which must be solved in order
to compute the normalized weights for H. In the general case, a numerical solver may be
required to compute the solution to this system; we will not comment on the most effective
way to solve these equations, but will direct the reader to Nederhof and Satta (2008), Smith
and Johnson (2007), and Chi (1999), who address related problems for non-synchronous
grammars.

2We assume without loss of generality that the partition functions are nonzero. If ZXY is zero for some
X,Y ∈ N , then every tree pair rooted in 〈X,Y 〉 will be unproductive and can be removed from the grammar.
By removing all unproductive and unreachable tree pairs from the grammar we ensure that only nonterminals
with nonzero partition functions will remain.

35

There are, fortunately, cases in which the partition functions are easily solved through
purely analytic means; these include grammars with one non-terminal (ignoring the start
symbol), and those with two non-terminals (ignoring the start symbol) where each nonter-
minal appears on only one side of the grammar. Stochastic bracketing ITGs belong to the
first category, so given the grammar depicted in 4.2 we may easily solve for the normalized
grammar weights to obtain the PSTAG shown in Figure 4.3.

Note as well that renormalizing the grammar weights requires dividing the original
weights by the values of the partition functions ZXY . This procedure is therefore only
applicable to grammars whose weights belong to an algebraic structure where multiplicative
inverses are well-defined. Thus, although our transformation will preserve the weights of
string pairs whenever the original grammar weights come from a commutative semiring, we
cannot necessarily renormalize the grammar in this case, because elements in a semiring do
not have multiplicative inverses. In NLP applications, however, weights are typically taken
from a field (most commonly R), making normalization possible.

We have now shown that our prefix lexicalizing transformation may be applied to
weighted or probabilistic SCFGs, and that the resulting WSTAG will assign the same
weights to string pairs as did the original SCFG. We can also normalize the resulting
WSTAG to obtain a PSTAG; finding the normalized weights may require solving a system
of nonlinear polynomial equations, but for grammars such as stochastic bracketing ITGs
the system is simple enough to solve analytically.

〈S → X 1 , S → X 1 〉 p = 1
〈X → X 1 X 2 , X → X 1 X 2 〉 p = p1
〈X → X 1 X 2 , X → X 2 X 1 〉 p = p2
〈X → a1, X → b1〉 p = u1
〈X → a2, X → b2〉 p = u2

· · ·
〈X → an, X → bn〉 p = un

Figure 4.2: A stochastic bracketing ITG. The grammar consists of two reordering rules with
probabilities p1 and p2, plus n translation pairs.

36

ui

〈 S

SXX

ai

S

SXX

bi

〉 〈 S

SXX

XXX 1

ai

S

SXX

bi XXX ↓ 1

〉
p1+p2

1−p1−p2
ui

p1ui

〈 XXX 1

XXX∗ SXX

ai

XXX

SXX

bi

XXX ↓ 1

〉 〈 XXX 1

SXX

ai

XXX∗

XXX

SXX

bi

XXX ↓ 1

〉
p2ui

p1+p2
1−p1−p2

p1ui

〈 XXX 1

XXX∗ SXX

XXX 2

ai

XXX

SXX

bi XXX ↓ 2

XXX ↓ 1

〉 〈 XXX 1

SXX

XXX 2

ai

XXX∗
XXX

SXX

bi XXX ↓ 2

XXX ↓ 1

〉
p1+p2

1−p1−p2
p2ui

p1ui

〈 XXX

XXX∗ SXX

XXX 1

ai

XXX

SXX

bi XXX ↓ 1

〉 〈 XXX

SXX

XXX 1

ai

XXX∗
XXX

SXX

bi XXX ↓ 1

〉
p2ui

1−p1−p2
p1+p2

p1ui

〈 XXX

XXX∗ SXX

ai

XXX

SXX

bi

〉 〈 XXX

SXX

ai

XXX∗

XXX

SXX

bi

〉
1−p1−p2
p1+p2

p2ui

Figure 4.3: Tree-pairs produced by prefix lexicalizing the ITG in Figure 4.2. A copy of the
above trees is created for each translation pair ai, bi; assuming a vocabulary of size n, this
gives a final grammar of 10n tree pairs, compared to the original grammar size of n + 2
rules.

37

Chapter 5

Conclusion & Future Work

We have demonstrated a method for prefix lexicalizing an SCFG by converting it to an
equivalent STAG. This process is applicable to any SCFG which is ε-free and has a finitely
ambiguous target projection. Our transformation may be considered a generalization of the
(extended) Greibach normal form transformation to synchronous grammars, and like the
original GNF transformation for CFGs our construction at most cubes the grammar size.
However, when applied to the kinds of synchronous grammars used in machine translation,
the size is merely squared. Our transformation preserves all of the alignments generated by
SCFG, and only increases the rank of the grammar by 1. By using a version of STAG that
is weakly equivalent to SCFG, we additionally manage to retain O(n3k) parsing complexity
for grammars of rank k.

We have also shown that our transformation may be applied to a weighted or proba-
bilistic SCFG without affecting the weights of the string pairs generated by the grammar.
Renormalizing the grammar after the transformation may require solving a system of non-
linear polynomial equations, but for common grammars such as stochastic bracketing ITGs
these equations are easy to solve analytically.

As future work we wish to re-examine the questions in this thesis from the perspective
of algebraic formal language theory, in order to give our results a better formal grounding.
More precisely, we wish to consider the results of Ésik and Leiß (2005), who show the
existence of a normal form in all semirings where least-fixed-points satisfy certain properties.
The semiring of context-free languages over an alphabet Σ satisfies these properties, which
implies the existence of the classic GNF theorem for CFGs. Notably, however, the normal
form developed by Ésik and Leiß is “applicable to all algebraically complete semirings” (Ésik
and Leiß 2005:192), not just the context-free languages; thus there is a good theoretical basis
for considering this normal form a generalization of GNF.

This suggests the following course for future work. First, we seek to formally define
the semiring of synchronous context-free languages over an alphabet Σ, which is a natural
extension of the semiring of context-free languages over the same alphabet. Next, we wish
to determine what are the formal properties of this semiring: is it algebraically complete,

38

and does it satisfy the properties required for the existence of Ésik and Leiß’s normal form?
If not, this yields more insight into the reasons why SCFG does not admit an analogue
to GNF. If the semiring does satisfy these properties, then we may determine what Ésik
and Leiß’s normal form looks like when applied to this semiring. From the results in this
thesis we know that this normal form must not involve a prefix lexicalized target projection;
whatever form it takes, however, that form would have a strong theoretical claim to being
a generalization of GNF to synchronous CFGs.

We additionally intend to empirically evaluate prefix lexicalized STAGs on tasks such
as word alignment to see how they compare to other lexicalized (but not prefix lexicalized)
grammars. Since existing lexicalizations for synchronous grammars (e.g. Zhang and Gildea
2005) are not actually lexicalizations in the formal sense, it is not clear how they will com-
pare to prefix lexicalized grammars in their ability to capture structural information about
natural languages. Such an evaluation will also help to establish whether prefix lexicaliza-
tion is useful in tasks which do not make explicit use of the structural properties of the
grammar.

The prefix lexicalized STAGs discussed in this thesis may also be of use in proving an
unpublished conjecture due to Aravind Joshi. This conjecture speculates that multicompo-
nent STAGs (MC-STAGs) with prefix lexicalized target sides are less powerful than general
MC-STAGs, in that they have smaller generative capacity and are therefore easier to parse.
MC-STAGs are STAGs where the source and target side of a tree pair may comprise a set
of trees rather than a single tree; during a derivation, all of the trees in such a set must
compose at the same time as one another. Proving this conjecture would first require for-
malising prefix lexicalization for MC-STAGs: a plausible definition could impose an order
on elements in the multicomponent set, and require that the first tree in this ordering be
prefix lexicalized according to the definition used elsewhere in this work. A proof of the
conjecture could then proceed by showing a mapping between MC-STAGs in this format
and prefix lexicalized STAGs of the kind discussed in this thesis. Since the grammars in
this thesis are known to be equivalent to SCFGs, such a mapping would imply that prefix
lexicalized MC-STAGs are also no more powerful than SCFGs.

Proving this conjecture would have important ramifications for the field of linguistics,
where MC-STAG is used to model the syntax and semantics of human language. Parsing
MC-TAG is known to be NP-complete even in the non-synchronous case (Nesson, 2009).
Additionally, many of the linguistic theories which use MC-STAG contain tree sets where
some tree has a lexical item in its left corner (typically this is a λ-term from some expression
in the lambda calculus). However prefix lexicalization is defined for MC-STAG, these tree
sets are likely to satisfy the definition. Thus proving that MC-STAG is more computationally
tractable when trees are prefix lexicalized would add to the psychological plausibility of
these linguistic analyses, e.g. Han and Hedberg 2008; Storoshenko 2017; Han and Sarkar
2017 among many others.

39

Bibliography

Alfred V. Aho and Jeffrey D. Ullman. Syntax directed translations and the pushdown
assembler. Journal of Computer and System Sciences, 3(1):37–56, 1969. ISSN 0022-0000.

Jean-Michel Autebert, Jean Berstel, and Luc Boasson. Context-free languages and push-
down automata. In Grzegorz Rozenberg and Arto Salomaa, editors, Handbook of Formal
Languages, Vol. 1, pages 111–174. Springer-Verlag New York, Inc., New York, NY,
USA, 1997. ISBN 3-540-60420-0. URL http://dl.acm.org/citation.cfm?id=267846.
267849.

Yehoshua Bar-Hillel, M. Perles, and Eliahu Shamir. On formal properties of sim-
ple phrase structure grammars. Zeitschrift für Phonetik, Sprachwissenschaft und
Kommunikationsforschung, 14:143–172, 1961. Reprinted in Y. Bar-Hillel. (1964).
Language and Information: Selected Essays on their Theory and Application, Addison-
Wesley 1964, 116–150.

Norbert Blum and Robert Koch. Greibach normal form transformation revisited.
Information and Computation, 150(1):112–118, 1999. doi: 10.1006/inco.1998.2772. URL
https://doi.org/10.1006/inco.1998.2772.

Zhiyi Chi. Statistical properties of probabilistic context-free grammars. Computational
Linguistics, 25, 1999.

Noam Chomsky and Marcel-Paul Schützenberger. The algebraic theory of context-free
languages. In P. Braffort and D. Hirschberg, editors, Computer Programming and Formal
Systems, volume 35 of Studies in Logic and the Foundations of Mathematics, pages 118–
161. Elsevier, 1963.

Søren Christensen, Hans Hüttel, and Colin Stirling. Bisimulation equivalence is decidable
for all context-free processes. Information and Computation, 121(2):143–148, 1995. ISSN
0890-5401.

Pierluigi Crescenzi, Daniel Gildea, Andrea Marino, Gianluca Rossi, and Giorgio Satta.
Synchronous context-free grammars and optimal linear parsing strategies. Journal
of Computer and System Sciences, 81(7):1333–1356, 2015. ISSN 0022-0000. doi:
10.1016/j.jcss.2015.04.003. URL http://www.sciencedirect.com/science/article/
pii/S0022000015000409.

Marc Dymetman. A generalized Greibach normal form for definite clause grammars. In
Proceedings of the 14th Conference on Computational Linguistics - Volume 1, COLING
’92, pages 366–372, Stroudsburg, PA, USA, 1992. Association for Computational Linguis-
tics. doi: 10.3115/992066.992126. URL https://doi.org/10.3115/992066.992126.

40

http://dl.acm.org/citation.cfm?id=267846.267849
http://dl.acm.org/citation.cfm?id=267846.267849
https://doi.org/10.1006/inco.1998.2772
http://www.sciencedirect.com/science/article/pii/S0022000015000409
http://www.sciencedirect.com/science/article/pii/S0022000015000409
https://doi.org/10.3115/992066.992126

Joost Engelfriet, Andreas Maletti, and Sebastian Maneth. Multiple context-free tree
grammars: Lexicalization and characterization. arXiv preprint, 2017. URL http:
//arxiv.org/abs/1707.03457.

Zoltán Ésik and Hans Leiß. Algebraically complete semirings and Greibach normal form.
Annals of Pure and Applied Logic, 133(1):173–203, 2005. ISSN 0168-0072. doi: https:
//doi.org/10.1016/j.apal.2004.10.008. URL http://www.sciencedirect.com/science/
article/pii/S0168007204001332. Festschrift on the occasion of Helmut Schwichten-
berg’s 60th birthday.

Henning Fernau and Ralf Stiebe. Sequential grammars and automata with valences.
Theoretical Computer Science, 276(1):377–405, 2002. ISSN 0304-3975. doi: 10.1016/
S0304-3975(01)00282-1. URL http://www.sciencedirect.com/science/article/
pii/S0304397501002821.

James N. Gray and Michael A. Harrison. On the covering and reduction problems for
context-free grammars. Journal of the ACM, 19(4):675–698, October 1972. ISSN 0004-
5411. doi: 10.1145/321724.321732. URL http://doi.acm.org/10.1145/321724.321732.

Sheila A. Greibach. A new normal-form theorem for context-free phrase structure grammars.
Journal of the ACM, 12(1):42–52, 1965. doi: 10.1145/321250.321254. URL http://doi.
acm.org/10.1145/321250.321254.

Sheila A. Greibach and John E. Hopcroft. Scattered context grammars. Journal of Computer
and System Sciences, 3(3):233–247, 1969. doi: 10.1016/S0022-0000(69)80015-2. URL
https://doi.org/10.1016/S0022-0000(69)80015-2.

Chung-Hye Han and Nancy Hedberg. Syntax and semantics of it-clefts: A tree adjoining
grammar analysis. Journal of Semantics, 25(4):345–380, 2008. doi: 10.1093/jos/ffn007.
URL http://dx.doi.org/10.1093/jos/ffn007.

Chung-hye Han and Anoop Sarkar. Coordination in TAG without the conjoin operation.
In Proceedings of the 13th International Workshop on Tree Adjoining Grammars and
Related Formalisms, pages 43–52. Association for Computational Linguistics, 2017. URL
http://aclweb.org/anthology/W17-6205.

Hendrik Jan Hoogeboom. Context-free valence grammars - revisited. In Werner Kuich,
Grzegorz Rozenberg, and Arto Salomaa, editors, Developments in Language Theory:
5th International Conference, DLT 2001 Wien, Austria, July 16–21, 2001 Revised
Papers, pages 293–303. Springer Berlin Heidelberg, Berlin, Heidelberg, 2002. ISBN
978-3-540-46011-4. doi: 10.1007/3-540-46011-X_25. URL https://doi.org/10.1007/
3-540-46011-X_25.

Mark Johnson and Eugene Charniak. A TAG-based noisy-channel model of speech repairs.
In Donia Scott, Walter Daelemans, and Marilyn A. Walker, editors, Proceedings of the
42nd Annual Meeting of the Association for Computational Linguistics, 21-26 July, 2004,
Barcelona, Spain, pages 33–39. ACL, 2004. URL http://aclweb.org/anthology/P/
P04/P04-1005.pdf.

Aravind Joshi and Yves Schabes. Tree-adjoining grammars. In G. Rozenberg and A. Sa-
lomaa, editors, Handbook of Formal Languages, Vol. 3: Beyond Words, chapter 2, pages
69–124. Springer-Verlag New York, Inc., New York, NY, USA, 1997.

41

http://arxiv.org/abs/1707.03457
http://arxiv.org/abs/1707.03457
http://www.sciencedirect.com/science/article/pii/S0168007204001332
http://www.sciencedirect.com/science/article/pii/S0168007204001332
http://www.sciencedirect.com/science/article/pii/S0304397501002821
http://www.sciencedirect.com/science/article/pii/S0304397501002821
http://doi.acm.org/10.1145/321724.321732
http://doi.acm.org/10.1145/321250.321254
http://doi.acm.org/10.1145/321250.321254
https://doi.org/10.1016/S0022-0000(69)80015-2
http://dx.doi.org/10.1093/jos/ffn007
http://aclweb.org/anthology/W17-6205
https://doi.org/10.1007/3-540-46011-X_25
https://doi.org/10.1007/3-540-46011-X_25
http://aclweb.org/anthology/P/P04/P04-1005.pdf
http://aclweb.org/anthology/P/P04/P04-1005.pdf

Aravind Joshi, Leon Levy, and Masako Takahashi. Tree adjunct grammars. Journal
of Computer and System Sciences, 10(1):136–163, 1975. doi: 10.1016/S0022-0000(75)
80019-5. URL https://doi.org/10.1016/S0022-0000(75)80019-5.

Marco Kuhlmann and Giorgio Satta. Tree-adjoining grammars are not closed under strong
lexicalization. Computational Linguistics, 38(3):617–629, 2012. doi: 10.1162/COLI_a_
00090. URL https://doi.org/10.1162/COLI_a_00090.

Philip M. Lewis and Richard E. Stearns. Syntax-directed transduction. Journal of the
ACM, 15(3):465–488, July 1968. ISSN 0004-5411. doi: 10.1145/321466.321477. URL
http://doi.acm.org/10.1145/321466.321477.

Andreas Maletti and Joost Engelfriet. Strong lexicalization of tree adjoining grammars. In
The 50th Annual Meeting of the Association for Computational Linguistics, Proceedings
of the Conference, July 8-14, 2012, Jeju Island, Korea - Volume 1: Long Papers, pages
506–515. The Association for Computational Linguistics, 2012. ISBN 978-1-937284-24-4.
URL http://www.aclweb.org/anthology/P12-1053.

Mark-Jan Nederhof and Giorgio Satta. Computing partition functions of PCFGs. Research
on Language and Computation, 6(2):139–162, Oct 2008. ISSN 1572-8706. doi: 10.1007/
s11168-008-9052-8. URL https://doi.org/10.1007/s11168-008-9052-8.

Rebecca Nesson. Synchronous and Multicomponent Tree-Adjoining Grammars:
Complexity, Algorithms and Linguistic Applications. Dissertation, Har-
vard University, 2009. URL https://pdfs.semanticscholar.org/754b/
6acaf2660748967d1937a25222538207aabc.pdf.

James Rogers. Capturing CFLs with tree adjoining grammars. In Proceedings of the
32nd Annual Meeting of the Association for Computational Linguistics, ACL ’94, pages
155–162, Stroudsburg, PA, USA, 1994. Association for Computational Linguistics. doi:
10.3115/981732.981754. URL http://dx.doi.org/10.3115/981732.981754.

Daniel J. Rosenkrantz. Matrix equations and normal forms for context-free grammars.
Journal of the Association for Computing Machinery, 14(3):501–507, 1967.

Anoop Sarkar. Practical experiments in parsing using tree adjoining grammars. In
Proceedings of the 5th International Workshop on Tree Adjoining Grammars and Related
Formalisms, pages 193–198, 2000.

Yves Schabes and Richard C. Waters. Lexicalized context-free grammars. In L. Schubert,
editor, 31st Annual Meeting of the Association for Computational Linguistics, 22-26 June
1993, Ohio State University, Columbus, Ohio, USA, Proceedings, pages 121–129. ACL,
1993. URL http://aclweb.org/anthology/P/P93/P93-1017.pdf.

Yves Schabes and Richard C. Waters. Tree insertion grammar: Cubic-time, parsable
formalism that lexicalizes context-free grammar without changing the trees produced.
Computational Linguistics, 21(4):479–513, 1995.

Eliahu Shamir. A representation theorem for algebraic and context-free power series in
noncommuting variables. Information and Control, 11(1/2):239–254, 1967. doi: 10.1016/
S0019-9958(67)90529-3. URL https://doi.org/10.1016/S0019-9958(67)90529-3.

42

https://doi.org/10.1016/S0022-0000(75)80019-5
https://doi.org/10.1162/COLI_a_00090
http://doi.acm.org/10.1145/321466.321477
http://www.aclweb.org/anthology/P12-1053
https://doi.org/10.1007/s11168-008-9052-8
https://pdfs.semanticscholar.org/754b/6acaf2660748967d1937a25222538207aabc.pdf
https://pdfs.semanticscholar.org/754b/6acaf2660748967d1937a25222538207aabc.pdf
http://dx.doi.org/10.3115/981732.981754
http://aclweb.org/anthology/P/P93/P93-1017.pdf
https://doi.org/10.1016/S0019-9958(67)90529-3

Stuart M. Shieber. Restricting the weak-generative capacity of synchronous tree-adjoining
grammars. Computational Intelligence, 10:371–385, 1994. doi: 10.1111/j.1467-8640.1994.
tb00003.x. URL http://dx.doi.org/10.1111/j.1467-8640.1994.tb00003.x.

M. Siahbani, R. M. Seraj, B. Sankaran, and A. Sarkar. Incremental translation using hier-
archichal phrase-based translation system. In 2014 IEEE Spoken Language Technology
Workshop (SLT), pages 71–76, Dec 2014. doi: 10.1109/SLT.2014.7078552.

Maryam Siahbani and Anoop Sarkar. Two improvements to left-to-right decoding for hier-
archical phrase-based machine translation. In A. Moschitti, B. Pang, and W. Daelemans,
editors, Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a
Special Interest Group of the ACL, pages 221–226. ACL, 2014a. ISBN 978-1-937284-96-1.
URL http://aclweb.org/anthology/D/D14/D14-1028.pdf.

Maryam Siahbani and Anoop Sarkar. Expressive hierarchical rule extraction for left-to-
right translation. In Proceedings of the 11th Biennial Conference of the Association for
Machine Translation in the Americas (AMTA-2014), Vancouver, Canada, 2014b.

Maryam Siahbani, Baskaran Sankaran, and Anoop Sarkar. Efficient left-to-right hierarchical
phrase-based translation with improved reordering. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Processing, pages 1089–1099. Association for
Computational Linguistics, 2013. URL http://www.aclweb.org/anthology/D13-1110.

Noah A. Smith and Mark Johnson. Weighted and probabilistic context-free grammars are
equally expressive. Computational Linguistics, 33(4):477–491, December 2007. ISSN
0891-2017. doi: 10.1162/coli.2007.33.4.477. URL http://dx.doi.org/10.1162/coli.
2007.33.4.477.

Donald F. Stanat. A homomorphism theorem for weighted context-free grammars.
Journal of Computer and System Sciences, 6(3):217–232, 1972. ISSN 0022-0000.
doi: 10.1016/S0022-0000(72)80003-5. URL http://www.sciencedirect.com/science/
article/pii/S0022000072800035.

Dennis Ryan Storoshenko. Scope, time, and predicate restriction in Blackfoot using MC-
STAG. In Proceedings of the 13th International Workshop on Tree Adjoining Grammars
and Related Formalisms, pages 53–60. Association for Computational Linguistics, 2017.
URL http://aclweb.org/anthology/W17-6206.

Ben Swanson, Elif Yamangil, Eugene Charniak, and Stuart M. Shieber. A context free TAG
variant. In Proceedings of the 51st Annual Meeting of the Association for Computational
Linguistics, ACL 2013, 4-9 August 2013, Sofia, Bulgaria, Volume 1: Long Papers, pages
302–310. The Association for Computational Linguistics, 2013. ISBN 978-1-937284-50-3.
URL http://aclweb.org/anthology/P/P13/P13-1030.pdf.

Taro Watanabe, Hajime Tsukada, and Hideki Isozaki. Left-to-right target generation for
hierarchical phrase-based translation. In N. Calzolari, C. Cardie, and P. Isabelle, editors,
ACL 2006, 21st International Conference on Computational Linguistics and 44th Annual
Meeting of the Association for Computational Linguistics, Proceedings of the Conference,
Sydney, Australia, 17-21 July 2006. The Association for Computational Linguistics, 2006.
URL http://aclweb.org/anthology/P06-1098.

43

http://dx.doi.org/10.1111/j.1467-8640.1994.tb00003.x
http://aclweb.org/anthology/D/D14/D14-1028.pdf
http://www.aclweb.org/anthology/D13-1110
http://dx.doi.org/10.1162/coli.2007.33.4.477
http://dx.doi.org/10.1162/coli.2007.33.4.477
http://www.sciencedirect.com/science/article/pii/S0022000072800035
http://www.sciencedirect.com/science/article/pii/S0022000072800035
http://aclweb.org/anthology/W17-6206
http://aclweb.org/anthology/P/P13/P13-1030.pdf
http://aclweb.org/anthology/P06-1098

Dekai Wu. Stochastic inversion transduction grammars and bilingual parsing of parallel
corpora. Computational Linguistics, 23(3):377–403, 1997.

Hao Zhang and Daniel Gildea. Stochastic lexicalized inversion transduction grammar for
alignment. In K. Knight, H. T. Ng, and K. Oflazer, editors, ACL 2005, 43rd Annual
Meeting of the Association for Computational Linguistics, Proceedings of the Conference,
25-30 June 2005, University of Michigan, USA, pages 475–482. The Association for Com-
putational Linguistics, 2005. URL http://aclweb.org/anthology/P/P05/P05-1059.
pdf.

Simon Zwarts, Mark Johnson, and Robert Dale. Detecting speech repairs incrementally
using a noisy channel approach. In Chu-Ren Huang and Dan Jurafsky, editors, COLING
2010, 23rd International Conference on Computational Linguistics, Proceedings of the
Conference, 23-27 August 2010, Beijing, China, pages 1371–1378. Tsinghua University
Press, 2010. URL http://aclweb.org/anthology/C10-1154.

44

http://aclweb.org/anthology/P/P05/P05-1059.pdf
http://aclweb.org/anthology/P/P05/P05-1059.pdf
http://aclweb.org/anthology/C10-1154

Appendix A

Proof of Lemma 1

This appendix contains the complete proof for Lemma 1. We repeat Figure 3.2 from Chapter
3 as figure A.1 for ease of reference.

〈 SA1A2

α1

SA1A2

aα2

〉
(a) 〈A1 → α1, A2 → aα2〉

〈 SA1A2

B1A1A2 1

α1

SA1A2

aα2B2A1A2 ↓ 1

〉
(b) 〈B1 → α1, B2 → aα2〉〈 C1A1A2

B1A1A2 1

α1 C1A1A2∗ β1

C2A1A2

α2 B2A1A2 ↓ 1

〉
(c) 〈B1 → α1C1 1 β1, B2 → C2 1 α2〉

〈 B1A1A2

α1 B1A1A2∗ β1

B2A1A2

α2

〉
(d) 〈A1 → α1B1 1 β1, A2 → B2 1 α2〉

Figure A.1: Tree-pairs in GA1A2 and the rules in G from which they derive.

Lemma 3. GA1A2 generates the language LA1A2 = {〈u, v〉|〈A1 1 , A2 1 〉 ⇒∗TTLD 〈u, v〉}.

Proof. We prove this lemma by induction over derivations of increasing length. We show
first that every TTLD starting from 〈A1 1 , A2 1 〉 corresponds to a unique derivation in
GA1A2 ; we then show the other direction, that each derivation in GA1A2 corresponds to a
TTLD starting from 〈A1 1 , A2 1 〉.

45

A.1 TTLD to STAG

We first consider the direction from TTLDs in G to derivations in GA1A2 . For the sake
of brevity, the rest of this section uses TTLD as shorthand for “TTLD starting from
〈A1 1 , A2 1 〉”. We show that the last n steps of every TTLD correspond to some deriva-
tion over n trees from GA1A2 . We show as well that whenever the derivation in GA1A2 is
complete (there are no open substitution sites left) it generates the same sentential form as
the TTLD.

Base Cases As a base case, consider a TTLD of length 1, as in (A.1):

(A.1) 〈A1 1 , A2 1 〉 ⇒ 〈α1, aα2〉

where a ∈ Σ, and αi ∈ (N ∪ Σ)∗. Such a derivation involves the application of one rule
which must be of the form in (A.2):

(A.2) 〈A1 → α1, A2 → aα2〉

By construction, we know that if such a rule exists in G, then GA1A2 must contain a
corresponding tree pair of the shape depicted in Figure 3.2(a). This implies that the following
is a valid derived tree in GA1A2 :

(A.3)

〈 SA1A2

α1

SA1A2

aα2

〉
This derived tree produces the same string pair as the TTLD in (3.4). Thus we see that for
every single-step TTLD in G there exists a (unique) derivation in GA1A2 which produces
the same sentential form.

As a second base case, consider a TTLD of length > 1. This will be a derivation of the form
in (A.4)

(A.4) 〈A1 1 , A2 1 〉 ⇒∗TTLD 〈uB1 1 v,B2 1 w〉 ⇒ 〈uα1v, aα2w〉

where B1, B2 ∈ N \ {S}, a ∈ Σ, and u, v, w, αi ∈ (N ∪Σ)∗. Now the last step of this TTLD
must involve the application of some rule of the form in (A.5)

(A.5) 〈B1 → α1, B2 → aα2〉

By construction, we know that if such a rule exists in G, then GA1A2 must contain a
corresponding tree pair of the shape in Figure 3.2(b). This implies that the following is a

46

valid derived tree pair in GA1A2 :

(A.6)

〈 SA1A2

B1A1A2 1

α1

SA1A2

aα2B2A1A2 ↓ 1

〉
This tree pair does not constitute a complete derivation, however, as there remains an
open substitution site in the target-side tree. This derivation produces the sentential form
〈α1, aα2B2A1A2〉, which is the same form produced by the last step of the TTLD in question,
up to the addition of a B2A1A2 in the target string. Finally, note that this derivation contains
an open B1A1A2 adjunction site on the source side linked to the B2A1A2 substitution site on
the target side.

Taken together, these base cases show the following:

• Every TTLD of length 1 has a corresponding derivation in GA1A2 which produces the
same sentential form as that TTLD.

• For every TTLD of length > 1, the last step of that TTLD corresponds to some
single-tree derivation in GA1A2 . This correspondence satisfies the following:

– the last step of the TTLD produces the same sentential form as the derivation
in GA1A2 , up to the addition of some nonterminal in the target string;

– if the last step of the TTLD involves overwriting some pair of nonterminals
〈B1 1 , B2 1 〉, then the derivation in GA1A2 contains a B1A1A2 adjunction site in
the source tree linked to a B2A1A2 substitution site in the target tree.

Inductive Step Assume that the following inductive hypotheses are true for some n:

For every TTLD of length > n, the last n steps of that TTLD correspond to some
derivation in GA1A2 over n trees. This correspondence satisfies the following:

• the last n steps of the TTLD produce the same sentential form as the
derivation in GA1A2 , up to the addition of some nonterminal in the target
string;

• if the nth-from-last step of the TTLD involves overwriting some pair of
nonterminals 〈B1 1 , B2 1 〉, then the derivation in GA1A2 contains a B1A1A2

adjunction site in the source tree linked to a B2A1A2 substitution site in
the target tree.

Also, for every TTLD of length exactly n, that TTLD corresponds to some
derivation in GA1A2 over n trees. This correspondence satisfies the following:

• the TTLD produces the same sentential form as the derivation in GA1A2 .

47

• the derivation in GA1A2 contains no open adjunction or substitution sites.

We now prove that if these hypotheses hold for some n, then they must also hold for n+ 1.
There are two cases to consider: either a TTLD contains more than n+1 steps, or it contains
exactly n+ 1 steps.

First Case: TTLD of length > n+ 1 Consider the last n+ 1 steps of such a TTLD,
as shown in (A.7)

(A.7) 〈B1 1 , B2 1 〉 ⇒ 〈α1C1 1 β1, C2 1 α2〉 ⇒∗TTLD 〈α1γ1β1, aγ2α2〉

where B1, B2, C1, C2 ∈ N \ {S}, a ∈ Σ, and αi, βi, γi ∈ (N ∪ Σ)∗. By the first inductive
hypothesis, the last n of these steps correspond to some derivation over n trees in GA1A2 .
Since the first of these n steps must involve rewriting the C2 which is at the left edge of
the target string, the inductive hypothesis implies that the derivation in GA1A2 contains a
C2A1A2 substitution site linked to a C1A1A2 adjunction site. Furthermore, by the inductive
hypothesis this derivation produces the same sentential form as the last n steps of the
TTLD, up to the addition of a C2A1A2 at the edge of the target string.

Now, from (A.7) we also see that the step n + 1 operations before the end of the TTLD
involves a rule of the form

(A.8) 〈B1 → α1C1 1 β1, B2 → C2 1 α2〉

for some B1, B2, C1, C2 ∈ N \ {S}. By construction, the existence of this rule in G implies
that GA1A2 contains a tree pair of the shape in Figure 3.2(c), repeated here as (A.9)

(A.9)

〈 C1A1A2

B1A1A2 1

α1 C1A1A2∗ β1

C2A1A2

α2 B2A1A2 ↓ 1

〉
This tree pair can be added to the n-tree derivation which the inductive hypothesis tells us
must exist: the source tree can adjoin to the open C1A1A2 adjunction site, and the target
tree can substitute into the C2A1A2 substitution site.

The result will be a new n+ 1 tree derivation which satisfies the following:

• it produces the same sentential form as the last n+ 1 steps of the TTLD. This can be
verified by observing that all adjunction sites in GA1A2 are near the root of the tree,
so that when the new source tree adjoins it must necessarily wrap α1 and β1 to either
side of the existing source string to produce the required form; on the target side, the
new tree will overwrite the C2A1A2 node at the right edge of the string so that α2 will
also be in the correct position.

48

• it contains an open B1A1A2 adjunction site on the source side linked to a B2A1A2

substitution site on the target side, as can be seen by inspection of (A.9)

Therefore we see that the first inductive hypothesis will also hold for a derivation of length
n+ 1 given that it holds for a derivation of length n.

Second Case: TTLD of length n+ 1 Consider a completed TTLD of length n+ 1, as
shown in (A.10)

(A.10) 〈A1 1 , A2 1 〉 ⇒ 〈α1B1 1 β1, B2 1 α2〉 ⇒∗TTLD 〈α1γ1β1, aγ2α2〉

where B1, B2 ∈ N \ {S}, a ∈ Σ, and αi, βi, γi ∈ (N ∪Σ)∗. By the first inductive hypothesis,
the last n steps of this TTLD correspond to some derivation over n trees in GA1A2 . Since
the first of these n steps must involve rewriting the B2 which is at the left edge of the target
string, the derivation in GA1A2 must contain a B2A1A2 substitution site linked to a B1A1A2

adjunction site. Furthermore, this derivation must produce the same string as the last n
steps of the TTLD, up to the addition of B2A1A2 at the right edge of the target string.

Now, from (A.10) we also see that the first step of the derivation involves a rule of the form

(A.11) 〈A1 → α1B1 1 β1, A2 → B2 1 α2〉

By construction, the existence of this rule in G implies that GA1A2 contains a tree pair of
the shape in Figure 3.2(d), repeated here as (A.12)

(A.12)

〈 B1A1A2

α1 B1A1A2∗ β1

B2A1A2

α2

〉
This tree pair can be added to the n-tree derivation which the inductive hypothesis tells us
must exist: the source tree can adjoin to the open B1A1A2 adjunction site, and the target
tree can substitute into the B2A1A2 substitution site.

The result will be a new n+ 1 tree derivation which satisfies the following:

• it produces the same sentential form as the entire n + 1 step TTLD. This can be
verified by observing that all adjunction sites in GA1A2 are near the root of the tree,
so that when the new source tree adjoins it will wrap α1 and β1 to either side of the
existing source string to produce the required form; on the target side, the new tree
will overwrite the B2A1A2 node at the right edge of the string so that α2 will also be
in the correct position.

• it is a completed derivation, as there are no open adjunction or substitution sites.

Therefore it follows that the second inductive hypothesis also holds for n+ 1 given that the
first hypothesis holds for n.

49

Conclusion Taken together, the preceding two cases show that there is a derivation in
GA1A2 corresponding to every TTLD starting from 〈A1 1 , A2 1 〉. To obtain a one-to-one
correspondence, we now prove the other direction, that for every derivation in GA1A2 there
exists a corresponding TTLD in G.

A.2 STAG to TTLD

We now show that the first n steps of every derivation in GA1A2 correspond to the last n
steps of a TTLD in G, and every complete derivation in GA1A2 corresponds to a TTLD
starting from 〈A1 1 , A2 1 〉.

Preliminaries In TAG, derivations are generally assumed to be unordered, and all op-
erations are taken to occur at once. In the case of a grammar like GA1A2 , however, we
may talk about the “first” and “last” operations, because every tree has rank at most 1.
Concretely, we shall say that the first tree pair in a derivation is the one rooted in the start
symbol SA1A2 . Then the second tree pair in that derivation is the one which substitutes or
adjoins to the first; the third tree pair substitutes or adjoins to the second; and so on.

Base Cases As a base case, consider a derivation in GA1A2 comprising a single tree pair
of the shape given in Figure 3.2(a), repeated here:

(A.13)

〈 SA1A2

α1

SA1A2

aα2

〉
where a ∈ Σ, and αi ∈ (N∪Σ)∗. By construction, we know that this tree pair must have been
added to GA1A2 on the basis of some rule in G. In particular, there must be a corresponding
rule in G of the shape in (A.14)

(A.14) 〈A1 → α1, A2 → aα2〉

where a ∈ Σ, and αi ∈ (N ∪ Σ)∗.

Using (A.14), we may construct a TTLD of length 1, shown in (A.15):

(A.15) 〈A1 1 , A2 1 〉 ⇒ 〈α1, aα2〉

This is a completed TTLD which generates the same string pair as the derivation in GA1A2

shown in (A.13). Thus we see that for every completed single-tree derivation in GA1A2 , there
exists a corresponding TTLD in G which produces the same string.

As a second base case, consider a derivation in GA1A2 comprising more than one tree pair.
This derivation must start with some tree pair rooted in SA1A2 ; furthermore, since it includes

50

more than one tree pair in total, it cannot start with a pair of the shape in 3.2(a), because
such a pair has no open substitution or adjunction sites. The only remaining possibility is
for the derivation to start with a tree pair of the shape in 3.2(b), repeated below:

(A.16)

〈 SA1A2

B1A1A2 1

α1

SA1A2

aα2B2A1A2 ↓ 1

〉
where B1, B2 ∈ N \{S}, a ∈ Σ, and αi ∈ (N ∪Σ)∗. By construction, we know that this tree
pair must have been added to GA1A2 on the basis of some rule in G. In particular, there
must be a corresponding rule in G of the shape in (A.17)

(A.17) 〈B1 → α1, B2 → aα2〉

where B1, B2 ∈ N \ {S}, a ∈ Σ, and αi ∈ (N ∪ Σ)∗.

Using (A.17), we may construct the derivation in (A.18):

(A.18) 〈B1 1 , B2 1 〉 ⇒ 〈α1, aα2〉

This is a valid TTLD; furthermore this derivation produces the string pair 〈α1, aα2〉, which
is the same pair produced by the first tree in the derivation in GA1A2 , up to the removal
of B2A1A2 from the right edge of the target string. Note that (A.18) starts by rewriting the
pair 〈B1 1 , B2 1 〉, and that (A.16) correspondingly contains a B1A1A2 adjunction site linked
to a B2A1A2 substitution site.

Taken together, the two base cases show the following:

• Every completed, single-tree-pair derivation in GA1A2 has a corresponding TTLD in
G which produces the same sentential form as that derivation.

• For every derivation in GA1A2 comprising more than one tree pair, the first tree pair
in that derivation corresponds to the end of some TTLD in G. This correspondence
satisfies the following:

– the last step of the TTLD produces the same sentential form as the first tree
pair of the derivation in GA1A2 , up to the removal of some nonterminal from the
target string;

– if the first tree pair in the derivation in GA1A2 contains a B1A1A2 adjunction site
in the source tree linked to a B2A1A2 substitution site in the target tree, then the
last step of the TTLD involves overwriting the pair of nonterminals 〈B1 1 , B2 1 〉.

Inductive Step Assume that the following inductive hypotheses are true for some n:

51

For every derivation in GA1A2 comprising > n tree pairs, the first n tree pairs
in that derivation correspond to some TTLD in G involving n rule applications.
This correspondence satisfies the following:

• the first n tree pairs produce the same sentential form as the TTLD, up to
the removal of some nonterminal from the right edge of the target string;

• if the nth tree pair of the derivation in GA1A2 contains a B1A1A2 adjunction
site in the source tree linked to a B2A1A2 substitution site in the target tree,
then the first step of the TTLD involves overwriting the pair of nontermi-
nals 〈B1 1 , B2 1 〉.

Also, for every derivation in GA1A2 of length exactly n, that derivation corre-
sponds to some TTLD involving n rule applications. This correspondence satis-
fies the following:

• the TTLD produces the same sentential form as the derivation in GA1A2 .
• the TTLD starts from 〈A1 1 , A2 1 〉.

We now prove that if these hypotheses hold for some n, then they must also hold for n+ 1.
There are two cases to consider: either a derivation in GA1A2 involves more than n+ 1 tree
pairs, or it involves exactly n+ 1 pairs.

First Case: > n+1 tree pairs Consider the n+1th tree pair in such a derivation. This
must be of the shape in Figure 3.2(c), repeated below as (A.19). This is because this is the
only kind of tree pair in GA1A2 which both (i) contains open substitution/adjunction sites
to perpetuate the derivation (since by assumption it is longer than n + 1 operations) and
(ii) is not rooted in SA1A2 , and is therefore able to appear in the middle of a derivation.

(A.19)

〈 C1A1A2

B1A1A2 1

α1 C1A1A2∗ β1

C2A1A2

α2 B2A1A2 ↓ 1

〉
Since the n+ 1th pair must compose with the nth pair, the nth pair must contain an open
adjunction site labeled C1A1A2 linked to a substitution site labeled C2A1A2 , where C1A1A2

and C2A1A2 are the nonterminals at the root of the n + 1th pair’s source and target trees
respectively.

Furthermore, by the first inductive hypothesis, the first n tree pairs in this derivation must
correspond to some n-step TTLD in G. Since the nth pair has open C1A1A2 and C2A1A2 sites,
we know by the same hypothesis that the corresponding TTLD starts from 〈C1 1 , C2 1 〉, as
in (A.20):

(A.20) 〈C1 1 , C2 1 〉 ⇒∗TTLD 〈γ1, aγ2〉

52

Now, by construction we know that if GA1A2 contains a tree pair of the shape in (A.19),
then G must contain a production of the shape in (A.21):

(A.21) 〈B1 → α1C1 1 β1, B2 → C2 1 α2〉

By applying the rule in (A.21), followed by the rest of the derivation in (A.20), we obtain
a new n+ 1-step TTLD shown in (A.22):

(A.22) 〈B1 1 , B2 1 〉 ⇒ 〈α1C1 1 β1, C2 1 α2〉 ⇒∗TTLD 〈α1γ1β1, aγ2α2〉

The new TTLD in (A.22) satisfies the following:

• it produces the same sentential form as the first n + 1 tree pairs of the derivation in
GA1A2 , up to the removal of a nonterminal from the right edge of the target string. This
can be verified by observing that prepending the new production to the existing TTLD
wraps α1 and β1 around the existing source string in the same way that adjoining the
n + 1th source tree wraps α1 and β1 around the rest of the tree; on the target side,
α2 is appended to the right edge in the same position that the n + 1th target tree
appends α2B2A1A2 .

• it starts from the pair 〈B1 1 , B2 1 〉, where B1A1A2 and B2A1A2 are the labels on the
adjunction and substitution sites in the n+ 1th tree pair.

Therefore we see that the first inductive hypothesis holds for derivations of length n + 1
given that it holds for derivations of length n. In other words, we have so far proven that
for every derivation in GA1A2 , every step up to the last step of the derivation corresponds
to some TTLD in G. We now prove the final case, which shows that the last steps of the
derivations also correspond.

Second Case: exactly n + 1 tree pairs Consider a completed derivation in GA1A2

containing n + 1 tree pairs. The last tree pair must be of the shape in Figure 3.2(d),
repeated below as (A.23), because this is the only tree pair which can compose with a
derivation without introducing any new adjunction or substitution sites.

(A.23)

〈 B1A1A2

α1 B1A1A2∗ β1

B2A1A2

α2

〉
Since the n + 1th tree pair must compose with the nth pair, the nth pair must contain
an open adjunction site labeled B1A1A2 linked to a substitution site labeled B2A1A2 , where
B1A1A2 and B2A1A2 are the nonterminals at the root of the n+ 1th pair’s source and target
trees respectively.

Furthermore, by the first inductive hypothesis, the first n tree pairs in this derivation must
correspond to some n-step TTLD in G. Since the nth pair has open B1A1A2 and B2A1A2 sites,

53

we know by the same hypothesis that the corresponding TTLD starts from 〈B1 1 , B2 1 〉, as
in (A.24):

(A.24) 〈B1 1 , B2 1 〉 ⇒∗TTLD 〈γ1, aγ2〉

Now, by construction we know that if the n+ 1th tree pair is of the shape in (A.23), then
G must contain a production of the shape in (A.25):

(A.25) 〈A1 → α1B1 1 β1, A2 → B2 1 α2〉

By applying the rule in (A.25), followed by the rest of the derivation in (A.24), we obtain
a new n+ 1-step TTLD shown in (A.26):

(A.26) 〈A1 1 , A2 1 〉 ⇒ 〈α1B1 1 β1, B2 1 α2〉 ⇒∗TTLD 〈α1γ1β1, aγ2α2〉

The new TTLD in (A.26) satisfies the following:

• it produces the same sentential form as the first n + 1 tree pairs of the derivation in
GA1A2 . This can be verified by observing that prepending the new production to the
existing TTLD wraps α1 and β1 around the existing source string in the same way
that adjoining the n+ 1th source tree wraps α1 and β1 around the rest of the tree; on
the target side, α2 is appended to the right edge in the same position that the n+ 1th
target tree appends α2.

• it starts from the pair 〈A1 1 , A2 1 〉.

Therefore we see that the second inductive hypothesis holds for derivations of length n+ 1
given that the first hypothesis holds for derivations of length n.

Conclusion Taken together, the preceding two cases show that there is a TTLD in G
corresponding to every derivation in GA1A2 . Furthermore every completed derivation in
GA1A2 corresponds to a TTLD which starts from the pair 〈A1 1 , A2 1 〉.

Combining the results from both of the preceding sections, we see that there is a one-to-one
correspondence between completed derivations in GA1A2 and TTLDs in G which start from
〈A1 1 , A2 1 〉. By extension, we have shown that GA1A2 generates precisely the language
LA1A2 = {〈u, v〉|〈A1 1 , A2 1 〉 ⇒∗TTLD 〈u, v〉}.

54

Appendix B

LR Decoding with STAG

Algorithm 1 gives the pseudocode for LR decoding, adapted from Siahbani et al. (2014)
which is a refinement of Watanabe et al. (2006). The section in red highlights the changes
necessary for this algorithm to accommodate PL-RSTAG instead of PL-SCFG. Note how
nearly the entire algorithm is unaffected by the change in grammar formalism: the only
major change is to use an Earley-style TAG parser (cf. Joshi and Schabes 1997) on the
source grammar rather than a CFG parser.

This algorithm has been implemented by Siahbani et al., and an Earley-style TAG parser
has been implemented by Sarkar (2000). Thus, to empirically evaluate the transformation
described in this work, it should suffice to adapt the parser to ensure cubic-time performance
(according to a method already outlined in Rogers 1994) and then to combine these existing
implementations.

55

Algorithm 1 LR-Hiero Decoding for PL-RSTAG
1: Input sentence: f = f0f1...fn
2: F = FutureCost(f) . (Precompute future cost for spans)
3: S0 = {} . (Create empty initial stack)
4: h0 = (〈s〉, [[0, n]], ∅,F[0,n]) . (Create initial hypothesis: 〈s〉 is the initial translation

prefix containing a beginning-of-string marker s; [[0, n]] is a list of uncovered spans in
the source sentence; ∅ is the set of covered source words; F[0,n] is the hypothesis cost,
initialized to a precomputed future cost estimate.)

5: Add h0 to S0 . (Push initial hypothesis onto first stack)
6: for i = 1, ...,m do
7: cubeList = {}
8: for p = max(i−MRL, 0), ..., i− 1 do . (MRL is the max rule

length; we ignore stacks with index less than i −MRL because there is no rule in the
grammar long enough to expand them to fit into stack i)

9: {G} = Grouped(Sp) . (Group hypotheses in Sp based on their first uncovered
span)

10: for g ∈ {G} do. (Each group g ∈ G is a tuple (gspan, ghyps) where ghyps is a list
of hypotheses with the same first uncovered span gspan)

11: [u, v] = gspan
12: R = GetSpanRules([u, v]) . (Find all rules which can cover the span [u, v])
13: for Rs ∈ R do
14: cube = [ghyps, Rs] . Create a “cube” which combines an existing

hypothesis with a rule that can be used to expand that hypothesis.
15: Add cube to cubeList
16: Si = Merge(cubeList, F) . (Create stack Si and add new hypotheses to it)
17: return arg minh∈Sn hc

18: function Merge(cubeList,F)
19: heapQ = {}
20: for each (H,R) in cubeList do
21: h′ = getBestHypotheses((H,R),F) . (Given a hypothesis-rule pair and an

estimate for future costs, create a new hypothesis. The source side of R might combine
with the hypothesis’s existing parse tree via adjunction: thus this step requires a TAG
parser to determine which spans remain uncovered in the source string, rather than a
CFG parser as used in the original algorithm.)

22: push(heapQ, (h′c, h′, [H,R])) . (Push new hypothesis to the queue. h′c is the
cost of the new hypothesis.)

23: hypList = {}
24: while |heapQ| > 0 and |hypList| < K do . (This

loop pops the K best hypotheses (and their neighbors) from heapQ and adds them to
hypList. The neighbors of [H,R] are hypotheses which expand H using a rule/tree pair
with the same source side as R but a different target side.)

25: (h′c, h′, [H,R]) = pop(heapQ) . (Pop the best hypothesis)
26: push(heapQ, GetNeighbors([H,R])) . (Push neighbors to queue)
27: Add h′ to hypList
28: return hypList . (Returns the best hypotheses.)

56

Appendix C

Code

Code, data, and instructions for reproducing the numbers graphed in Section 3.4 is publicly
available at https://github.com/MrLogarithm/scfg-plex.

57

https://github.com/MrLogarithm/scfg-plex

	Approval
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Contributions
	Overview

	Background
	Synchronous Grammar Formalisms
	Synchronous Context-Free Grammar
	Synchronous Tree-Adjoining Grammar

	Other Terminology
	Synchronous Prefix Lexicalization
	Weighted Grammar Formalisms
	Weighted SCFG
	Weighted STAG
	Weights from Arbitrary Algebras

	Conclusion

	Prefix Lexicalizing SCFG
	Closure under Prefix Lexicalization
	Prefix Lexicalization using STAG
	Complexity & Formal Properties
	Experiments
	Applications to Translation
	Related Work
	Conclusion

	Weighted Grammar Lexicalization
	Weighted SCFG
	Probabilistic SCFG

	Conclusion & Future Work
	Bibliography
	Appendix Proof of Lemma 1
	TTLD to STAG
	STAG to TTLD

	Appendix LR Decoding with STAG
	Appendix Code

