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Abstract

Three economic experiments are used to answer questions about human decision making:
when to pay attention, when to complete a task, and when to enroll in second year univer-
sity. Chapter 1 explores inattention as an explanation for economic mistakes like overpaying.
A novel experiment design separates intention to collect information from its actual collec-
tion and use. The results show that many mistakes are the result of optimal inattention,
when someone is inattentive because the costs of information exceed the benefits of paying
attention. But the experiment also demonstrates addressable mistakes which are driven by
dynamic inconsistency and ineffective attention, even in a very simple information setting.
Chapter 2 explores procrastination through a novel real-effort task experiment with no com-
mitment. Unlike many previous economic experiments on intertemporal choice which use
monetary rewards or record choices at a single point in time, this experiment finds partic-
ipants have a preference to complete the real-effort task early, in line with psychological
experiments on working memory. Structural estimation of the classic model of hyperbolic
discounting finds the present-bias parameter β > 1, indicating a future-bias and desire to
finish costly tasks immediately. Chapter 3 uses a novel control group in a field experiment
to study the causal effect of a first-year seminar on undergraduate student outcomes such
as enrollment, academic standing, GPA, and psychological well-being. Students enrolled in
seminars have higher GPA and retention than the overall pool of students, but these effects
disappear when comparing seminar students to the novel control group of students who were
willing but not enrolled in a seminar. Self-selection into a seminar course may be indicative
of student learning style and strengths in ways that are not measured by registrar data;
this experiment demonstrates that studies that fail to control for willingness to enroll are at
risk of identifying selection effects rather than genuine effects of a seminar. The participants
sampled in all chapters are drawn from the same undergraduate population, though they
are distinct.

Keywords: economic experiments; limited attention; ineffective attention; time preferences;
future bias; student retention; selection effects
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Chapter 1

Decomposing Inattention

Kevin Laughren

1.1 Introduction

Gathering information is costly. Yet it can inform a decision-maker about the available
options. When the cost of gathering information exceeds the benefit, it is optimal for a
decision-maker to make their decision under incomplete information. For example, overpay-
ing is optimal when, in expectation, the cost of finding a lower price is greater than the
savings.

Limited attention theories describe decision-makers who first gather information subject
to some constraint, then make an action choice. This literature begins with the model of
rational inattention by [Sims, 2003], and is generalized by the attention cost model of [Caplin
and Dean, 2015].1 A decision-maker in this literature will be inattentive to some information
as an ex ante optimal response to their attention cost relative to the benefits of information.
The amount of information gathered by a decision-maker is ex ante optimal, regardless of
whether this leads to an ex post mistake in the final action choice. Following the literature,
I use the term mistake to refer to any action that does not maximize a decision-maker’s
expected payoff under complete information.

Using an experiment, I am able to identify optimal mistakes separately from nonopti-
mal mistakes by considering ways in which a participant’s information gathering may be
nonoptimal.2 Practically, this involves structuring the experiment to observe a participant’s

1The optimization of information has been a topic of economics since as early as [Hayek, 1945] which
discussed prices as a means of decentralizing knowledge and [Stigler, 1961] which discussed diminishing
returns to search when sellers have random prices. Alternative models of limited attention which inspired this
paper include [Masatlioglu et al., 2012] which shows how action choices reveal a decision-maker’s preceding
information choices, and [Manzini and Mariotti, 2014] which shows conditions under which a decision-maker
considers only subsets of the available actions before making an action choice.

2I use decision-maker to refer to a theoretical agent who makes choices, and participant to refer to a
person observed in an experiment.
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intention-to-collect information separately from their actual information collection. Addi-
tionally, I can categorize the various types of nonoptimal mistakes by observing the stage at
which a participant deviates from the optimal choice process. The majority of participant
mistakes are cases of optimal inattention (OI) – when information costs are large and in-
formation benefits are small – but there are two substantial causes of mistakes which were
not previously described in the context of limited attention.

One cause of nonoptimal mistakes is ineffective attention, which occurs when a partic-
ipant has the information to make the optimal choice but fails to do so. Another cause
is dynamic inconsistency, which occurs when a participant makes internally inconsistent
choices across time – for example, when a participant initially states their intent-to-collect
information but later makes a choice without having gathered that information. These two
causes represent most of the nonoptimal mistakes observed in this experiment, but I docu-
ment other causes of nonoptimal mistakes as well.

In the limited attention literature, decision-makers have an internal attention cost func-
tion that determines the expected cost of gathering information. While this internal at-
tention cost function is unobservable to experimental researchers, we can back out some
of its structure if we know the expected benefits of information to decision-makers and
observe their intent-to-collect information. Toward this end, the experiment makes explicit
for participants the exact benefits of information, and captures their subsequent choices to
gather information. The resulting data reveal enough about the attention cost function to
identify when mistakes are due to OI, nonoptimal information gathering, or nonoptimal use
of information at the action choice stage.

To learn more about the ways in which participants differ from the decision-makers in
limited attention models I split the information gathering stage into intent-to-collect versus
information-collection, and relax the assumption that mistakes must be consistent with
optimal decision-making in limited attention models. This design allows for nonoptimal
mistakes in each of three stages as follows:

1. Intent-to-collect stage: internal inconsistencies can occur, e.g., when a participant
states an intent-to-collect information to obtain a specific benefit, but also states an
intent-to-not-collect the same information for a larger benefit.

2. Information-collection stage: dynamic inconsistency can occur, e.g., when a participant
actually collects less information than they stated in the intent-to-collect stage.

3. Action stage: ineffective attention can occur, e.g., when a participant collects sufficient
information to identify the optimal action but fails to choose it.

While a single participant mistake can always be explained as OI by assuming high
attention cost, a set of choices made by a participant implies some bounds on their attention
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cost, and these bounds can be used to rule out OI in some cases.3 Practically this is done by
testing if a participant’s choices are consistent with the axioms of [Caplin and Dean, 2015],
which are necessary and sufficient conditions for a dataset to be generated by optimal
decision-making under general attention costs and information benefits.

The experiment has 10 paid rounds and in each round there are two equally probable
states. A participant wins a monetary prize in a round if they correctly predict the state.
The experiment presents the problem to participants as the opportunity to predict the
binary element (red or blue) that follows a specific prompt, and the prompt is presented
as a sequence of binary elements.4 In each round there is a finite set of possible sequences
that act as prompts (e.g., all binary sequences of length four), and each sequence has one
randomly-determined state that follows. The number of possible sequences in the round
determines the expected time it will take a participant to learn the true state that follows
their specific prompt.

[Zhong, 2019] shows that the theoretically optimal information gathering process for a
decision-maker in a context like the experiment – with two states and a prior belief they
are equally likely – involves observing a Poisson process and stopping immediately after the
arrival of a signal that fully reveals the state. The experiment imposes this Poisson process
information flow on participants but allows them to stop at a time of their choosing. A
participant who stops before, or significantly after, the fully revealing signal arrives will
incur unnecessary time costs without any marginal information benefits. A decision-maker
in a limited attention model with constant time costs would not exhibit this dynamically
inconsistent pattern of behaviour.

The experiment informs a participant of the prize values and expected time at the
beginning of a round, then the participant decides whether they want to gather information
or make an uninformed guess. Gathering information takes time, but an uninformed guess of
the state provides a 50% chance of winning and allows a participant to proceed immediately
to the next round. Participants who choose to gather information face a Poisson process
information flow. This information flow is framed as the opportunity to randomly sample
one sequence every 10 seconds (with replacement) and observe the state that follows. The
participant can record this observation in a table with a button click. Only one of the
sequences in the finite set is relevant for the participant, and when that sequence is observed
(the arrival of the Poisson signal) the state is fully revealed, improving the (theoretical)
probability of winning a prize from 50% to 100%. A participant’s ex ante choice to gather

3Attention costs presumably vary across participants due to differences in opportunity costs and pref-
erences to exert cognitive effort, but the attention cost function is assumed to be unchanged across a
participant’s decisions.

4Giving participants an opportunity to gather information before entering a prediction using red and
blue shapes to represent bits of information is inspired by [Dean and Neligh, 2019].
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information for a given prize is thus made under known information benefits and is affected
by their personal (and unobserved) attention costs.

In the first stage of a round a participant faces a list of prize values and must decide
ex ante for each prize whether to gather information or guess the state immediately and
proceed to the next round. In each round, the experiment randomly selects one prize and
implements the participant’s choice for that prize. This first stage data allows for clas-
sification of attention choices into “optimal” – those that are optimal given the known
information benefits and implied attention costs – and “suboptimal” – those choices which
imply a participant could have achieved greater expected monetary benefits for the same
expected attention costs. Seventy-five percent of the mistakes I observe in the experiment
are identified as OI at this stage.5

The second stage of a round is the actual gathering of information. Every 10 seconds, one
of the sequences is randomly drawn, and the state that follows is displayed. The participant
may collect this information in a table with a button click but if they fail to click within the
10-second window the information is not added to the table for future reference. Participants
can stop gathering information at any time and use the table to make a third stage action
choice. I identify cases of dynamic inconsistency when a participant stops before drawing
the relevant sequence, because they previously indicated a preference to gather information
to improve their probability of winning a prize, but by stopping before drawing the relevant
sequence they indicate that preference has changed. Dynamic inconsistency accounts for
8% of all mistakes I observe in the experiment. The information gathering process can be
described as optimal dynamic information acquisition with two states, a flat prior, and
information that arrives in a Poisson point process.

In the third stage of a round, participants must choose an action. Participants may
either use the information they have collected in the table to make a specific prediction of
the state (red or blue), or they may randomize. Randomization is programmed to win the
prize with 51% probability to eliminate indifference. I identify cases of ineffective attention
when a participant chooses an action other than that which maximizes expected payoffs
given the information collected in the second stage. Ineffective attention accounts for 12%
of all mistakes I observe in the experiment.

There are two versions of the third stage, and all participants complete five rounds of
each version. In the automatic environment a participant is prevented from making any
prediction of their own, but the computer will choose optimally on their behalf using the
information the participant collected in the second stage. In contrast, in the manual envi-
ronment participants are required to choose an action. By measuring a participant’s choices
in both environments I can estimate their attention cost as a sum of time cost (affecting

5Two other types of mistakes can be made in the first round: suboptimal inattention (5% of mistakes)
and suboptimal attention (which does not always lead to a mistake, but preceded 1% of mistakes).
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both environments) and cognitive cost (affecting only the manual environment). Partici-
pants tend to pay equal amounts of attention in the automatic and manual environments,
suggesting cognitive cost is small relative to time cost.

To summarize the experimental outcomes, participant choice data is highly consistent
with the axioms of [Caplin and Dean, 2015], implying that participants make attention
choices as if they have a known attention cost function. 75% of all observed mistakes are
the result of optimal inattention in the intent-to-collect stage, but two types of nonopti-
mal mistakes that are novel in this context are observed in the information gathering and
processing stages.

Section 1.2 outlines a model of costly attention, the experiment design, and the testable
conditions the model imposes on the experiment data. Section 1.3 details the results of the
experiment. Section 1.4 reviews related literature and the contributions of this experiment,
and Section 1.5 concludes. Appendix A includes a detailed discussion of the axioms of
[Caplin and Dean, 2015], experiment screenshots, and a full copy of the instructions.

1.2 Model and Experiment Design

Consider a decision-maker (DM) who has the opportunity to gather information before
making a choice, and for whom gathering information is costly. This problem has often
been described as a two-part process: first the DM chooses an information structure at
a cost, then chooses the action with the greatest expected benefit given the new beliefs
(posteriors) formed by the information structure. For a very general set of attention costs
and information structures, [Caplin and Dean, 2015] showed that choice data generated by
such a process must satisfy two conditions. First, each final action choice must be optimal
given the posterior.6 Second, the information structure choices must be collectively optimal.7

Choosing the best action given the information at hand is a familiar context, but the first
stage choice of information structure and the process of forming beliefs given that structure
is an abstract context and there have been many novel modeling approaches to reflect this
[Sims, 2003, Manzini and Mariotti, 2007, Manzini and Mariotti, 2014, Gabaix, 2014, Enke,
2017, Caplin et al., 2018]. This paper presents a three-stage choice process experiment in
which the information structure is decomposed and measured in two distinct stages: intent
to collect information and collection of information. The third stage is typical, a DM chooses
an action given the available information.

6NIAS - No Improving Action Switches: a DM must always choose optimally given the observed posterior.

7NIAC - No Improving Attention Cycles: Over multiple decision problems, a DM’s choices to gather
information must not be able to be re-arranged across problems to yield greater information benefits at no
additional attention cost.
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The underlying decision problem is to predict the binary state (red circle or blue triangle)
that follows a specific sequence of binary elements, with correct predictions awarded a
monetary prize. Participants can immediately randomize their prediction and be correct
with 51% probability, or incur time costs to improve their probability of a correct prediction
by gathering information. A participant who gathers information is shown a randomly drawn
sequence and the state that follows every 10 seconds.8 If the randomly drawn sequence
matches the specific sequence from the decision problem, the state is fully revealed, but all
other randomly drawn sequences have no information about the state. In this very simple
environment it is possible to distinguish three sources of mistakes: optimal inattention,
dynamic inconsistency, and ineffective attention. In the first stage participants can choose
not to gather information, and this inattention is often optimal for small prizes and large
expected time costs. In the second stage, participants can be impatient and stop gathering
information before possibly learning anything, which I attribute to dynamic inconsistency. In
the third stage, participants can fail to choose optimally despite being previously presented
with information fully revealing the state, which I call ineffective attention. Figure 1.1
outlines the three stages as seen by an experiment participant and the interpretation of
mistakes at each stage.

Model Primitives

The DM is assumed to have a utility function over prize values (u(P ) ∈ R) and an expected
utility function that is linear in probabilities. There are two possible states of the world
ω ∈ {R, B} (red or blue), and the DM has correct prior belief μ(R) = μ(B) = 1

2 . There are
three possible actions a ∈ {r, b, g} (predict red, predict blue, or guess), and a gross payoff
for each action-state combination. Participants who choose action a = r when the true state
is ω = R win prize P with certainty. Participants who choose a = r when the true state
is ω = B win nothing with certainty.9 Participants who choose a = g win prize P with
probability=51% regardless of the true state. The 51% prize probability implies choosing
a = g is the unique payoff-maximizing action for a participant whose belief has not changed
from the prior. Had I designed the experiment so that choosing a = g resulted in 50% prize
probability, the DM would be indifferent between all actions when they believe both states
are equally likely.

In each decision problem, the DM makes a first stage binary choice of information
structure π ∈ {π0, πL} (where L is the length of preceding sequence for the round) and has
some unobserved expected attention cost K(π) ∈ R. An information structure is a mapping

8These sequences are drawn with replacement from the set of binary sequences of the same length as
the sequence presented in the decision problem. The length of sequence varies from 3 to 7 elements across
rounds, doubling the expected time with each additional element.

9The action-state payoffs for a = b (predict blue) are analogous to a = r.
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Figure 1.1: Timeline of Experiment
A three stage choice process experiment separating the intention to collect information from
the actual collection and use of information.

from the state to a set of possible posteriors about the state. The inattentive information
structure π0 generates the posterior γ(R) = 1

2 because it collects no information to update
the prior. The attentive information structure πL generates a distribution of posteriors
Γ(πL) which depends on the number of IID observations, but it always begins as γ(R) = 1

2
and eventually results in γ(R) =∈ {0, 1} as the IID sampling process eventually reveals the
state. I normalize the attention cost of being uninformed to zero (K(π0) = 0).

First Stage: Intent to Collect Information

The choice to collect information is restricted to be binary. A DM who chooses the inat-
tentive information structure π0 must guess immediately with a 51% chance of winning the
prize. Alternatively the DM may choose the attentive information structure πL to randomly
sample sequences of length L and record the states that follow each draw before making a
prediction.The gross benefit of choosing to gather information is therefore an improvement
in the prize probability from 51% to 100%. Participants choose this for 20 different prize
levels (P = {$0.25, $0.50, ..., $4.75, $5.00}) in each of ten paid rounds with no feedback. The
gross benefit is denoted G(π, A) where A denotes a unique decision problem.10 The net

10A decision problem is a choice for a single prize in a single round, formally it is an element of
{$0.25, $0.50, ..., $4.75, $5.00}x{3, 4, 5, 6, 7}x{‘auto′, ‘manual′}.
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benefit is G(π, A) − K(π), where K(π) is not directly observed but assumed to be known
by the DM.

I assume that K(π) is increasing in the expected time to observe useful information
and the DM’s beliefs about their personal probability of ineffective attention. The expected
time in seconds is 10 ∗ 2L with L ∈ L = {3, 4, 5, 6, 7}. A DM faces each sequence length L

twice, once in the manual environment and once in the automatic environment. I assume
K(π) can be split into additive terms for time cost T (π) and cognitive cost C(π); T (π) is
estimated using choices in the automatic environment where there is plausibly no cognitive
cost (just a need to click a button every 10 seconds), and C(π) is estimated by comparing
choices in the automatic and manual environments.

Ten paid rounds vary the expected attention cost. Each of the five sequence length L

conditions are completed twice, once in the automatic environment and once in the manual
environment. In the manual environment only, participants report what they believe is
their personal probability of ineffective attention (q(π) ∈ R) using an incentive compatible
binarized scoring rule [Karni, 2009, Holt and Smith, 2009].

Second Stage: Information Collection

Every 10 seconds, the experiment draws a random sequence and the subsequent state is
revealed. The DM has 10 seconds to add this observation to a table with a button click;
when the next observation is drawn, the previous observation can no longer be recorded.
The observation table is organized to exactly mirror the prediction task: the table presents
every possible sequence, and counts the frequency of observed red and blue states that
follow. There is no limit on the length of time spent gathering information (in the manual
environment), but the state is fully revealed upon observing the sequence of interest one
time.

When a DM fails to add an observation to the table with a click, a difference is created
between the information that has been presented and the information that has been col-
lected. When a missed observation would have revealed the state, the “true” posterior differs
from the “observed” posterior that would be formed using only the recorded observations.
When this occurs I classify participants who could have collected information that revealed
the state but failed to do so as demonstrating ineffective attention, even though they could
be classified as dynamically inconsistent if I were to use the “observed” posterior.

Third Stage: Translating Information to Action

The IID nature of the prediction task restricts the posterior space to three possible beliefs:
γ(R) ∈ {0, 1

2 , 1}, and until the relevant observation has been drawn, γ(R) = 1
2 is the
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only plausible belief.11 Because there are only three plausible posteriors and three actions,
it is easy for me to check if a participant chooses the optimal action given the available
information.

Data

Participants completed ten paid rounds with no feedback, five in each of the automatic and
manual environments. In the automatic environment participants make attention decisions
that incur time costs but no cognitive costs, as the computer interprets the data a participant
clicks and makes the optimal prediction of red or blue as soon as the state is revealed. In the
manual environment, participants face the same set of decision problems but must interpret
the data and choose an action themselves.

Each participant provides their choice of information structure π ∈ {π0, πL} in each
decision problem A. There are 10 paid rounds each with 20 prize levels requiring an attention
choice; one of the 20 choices is randomly realized and paid in each round, with no feedback.
The ten paid rounds followed a paid comprehension quiz and two practice rounds and with
feedback. There is no exogenous error in these environments; participants are informed
that with enough time there is always sufficient information to make a correct prediction
and therefore there is always a positive gross marginal benefit when choosing πL over π0 –
G(πL) = 1

2u(P ).
In the manual environment only, a participant provides their belief they will make an

error in the prediction stage if they are collecting information using πL, defined as qL ∈ [0, 1
2 ].

The elicitation mechanism uses a binarized scoring rule, where reporting truthfully is a
dominant strategy and invariant to risk attitudes (see [Schotter and Trevino, 2014] for a
review of lab implemented belief mechanisms, including the binary scoring rule used here
and previously by [Karni, 2009] and [Holt and Smith, 2009]).

Let Ii
P LE ∈ {0, 1} be the indicator variable equal to 1 if and only if participant i

chose to pay attention with information structure πL when the prize was P in environment
E ∈ {‘automatic′, ‘manual′}. I suppress the variables for E and i whenever the context
is a single decision environment or participant. I refer to a participant’s full set of binary
information gathering choices as their attention allocation.

The data from the first stage choice to gather information is my primary tool for analysis,
but participants also provide a prediction a ∈ {r, b, g} and (implicitly) a decision time t

in each round. The experiment records several other timestamps, including when it was
first possible to form an informed prediction, when the player actually clicked to collect
prediction-relevant information, and the posterior at the player’s decision time γt(R) ∈
{0, 1

2 , 1}.

11Formally an information structure maps from a state (ω, t) - where ω ∈ {R, B}, and t is the number of
i.i.d. draws observed - to a distribution of posteriors, but t is suppressed when it is not relevant.
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Costly Information Representation

A choice dataset has a costly information representation if the DM:
(i) makes ex ante optimal choices of attention structure given expected costs and benefits:
(πA ∈ arg maxπ∈Π{G(A, π) − K(π)}), and
(ii) their chosen action is optimal given their observed information:
(
∑

ω∈{R,B} γ(ω)u(a(ω)) ≥ ∑
ω∈{R,B} γ(ω)u(a′(ω)) for all a′ ∈ {r, b, g}).

If a DM’s choices have a costly information representation, then the decision maker is
behaving as if they have a known attention cost function and optimally choose information
and actions given this function. Those with costly information representations have their
choices modeled precisely with the two-stage limited attention models.

The primary theoretical contribution of [Caplin and Dean, 2015] is their derivation of two
testable conditions that are necessary and sufficient for a state dependent stochastic choice
dataset to have a costly information representation. I am interested in whether experimental
data has a costly information representation to estimate the extent to which we can use
limited attention models to classify mistakes. If a choice dataset is indistinguishable from
randomly generated data, classifying a choice as OI is logically tenuous. But if a dataset
has a costly information representation, classifying a choice as OI is reasonable, and further
we can interpret mistakes that are not OI using the language of the model.

Experimental data differs from the theorists’ state dependent stochastic choice dataset
in meaningful ways. The utility function u() is not known or directly observed, and the
limited number of observations for a given decision problem makes for coarse observation
of the choice probabilities in a given decision problem. However, the experimental data is
richer than a state dependent stochastic choice dataset in some dimensions because I can
directly observe the choice of information structure π in each decision problem, as well as the
exact information received. These differences in observables, require the costly information
representation axioms to be modified for this context. I modify the conditions of [Caplin
and Dean, 2015] into the Optimal Action (Oa) and Optimal Information (Oπ) conditions
below to account for these differences between theoretical and experimental data.

Optimal Action (Oa) is a property of each decision problem, and requires that the
observed actions chosen are optimal given the posterior beliefs of the DM. In this decision
environment, there is a unique optimal action for any given posterior. It is necessary that:

a = g ⇐⇒ γ(R) =
1
2

(Oa)

a = r ⇐⇒ γ(R) = 1

a = b ⇐⇒ γ(R) = 0

10



If condition (Oa) is not met, a participant has demonstrated ineffective attention. The
condition (Oa) is this experiment’s analogue to [Caplin and Dean, 2015]’s NIAS condition,
defined in the appendix.

Optimal information (Oπ) is a property of the entire choice data set generated by a DM
and requires that there could be no gross payoff improvement by reassigning the chosen
information structures across decision problems. An example of a violation of (Oπ) can be
generated with a DM who faces an identical decision problem twice with the only difference
being the prizes, P < P∗. If she used an information structure (say πL) that improved
her probability of receiving P by 1

2 , but chose to be uninformed (using π0) when πL was
available and the gross benefit was 1

2P∗, then her dataset fails (Oπ). The condition (Oπ)
is this experiment’s analogue [Caplin and Dean, 2015]’s NIAC condition, defined in the
appendix.

In these binary choice environments, the optimal information condition (Oπ) can be
checked through a series of pairs of decisions.Each pair of decisions that have the same
prize P or sequence length L offers an opportunity for an information allocation mistake.
Formally:

IP LE ≤ IP ∗LE ∀P, P∗ ∈ P s.t P < P∗; ∀L ∈ L (Oπ1)

IP LE ≥ IP L∗E ∀L, L∗ ∈ L s.t L < L∗; ∀P ∈ P (Oπ2)

To satisfy (Oπ1), if a participant gathered information when the sequence length was
L for prize P in environment E ∈ {auto, manual}, they must also gather information when
the sequence length is L for any higher prizes in that environment. To satisfy (Oπ2), if a
participant gathered information when the sequence length was L for prize P in environment
E, then they must also gather information when the prize is P in rounds with shorter
sequence lengths L < L∗, because they have a lower expected time cost.

A dataset has a costly information representation if it satisfies all the conditions jointly
- (Oa), (Oπ1), and (Oπ2).

Time cost

I interpret a participant’s reaction to attention costs under an assumption that expected
attention cost K(π) can be separated into time cost T (π) and cognitive cost C(π), so that
K(π) = T (π) + C(π). The automatic environment suppresses the cognitive requirement as
much as possible, a participant needs only to click a button every 10 seconds and the com-
puter will eventually make a correct prediction and win a prize with certainty. I normalize
whatever cognitive requirement remains in the automatic environment to C(π) = 0, and
interpret the reaction to expected time across rounds.

11



In the automatic environment, for any prize P and sequence length L, a DM with a
costly information representation will choose to guess (π = π0 and a = g) when:

1
2

u(P ) − K(πL) < 0 (1.1)

Likewise, a DM with a costly information representation will choose to make an informed
prediction (π = πL and a ∈ {r, b}) when:

1
2

u(P ) − K(πL) > 0 (1.2)

The switching point from inattention to gathering information as P increases or L

decreases provide bounds on time cost T (π) in the automatic environment, and overall at-
tention cost K(π) in the manual environment. The difference between the attention costs
and time cost yields an implied cognitive cost; when this cognitive cost is negative I in-
terpret it as a preference for choice agency despite the added possibility of mistake.12 For
presentation purposes these utility valued bounds are presented as dollar values, under the
assumption that the utility function is linear over these small prize values.

One of the primary benefits of choosing action g is that no time cost is incurred. However,
if this experiment were to be conducted over a fixed time in a lab, then the relative benefit of
saving time is very small if the participant must wait until all others are finished to receive
payment. For this reason, the experiment is available online to participants over a three day
period through a unique link. By doing this, it is expected that the participant will choose
to complete the experiment at a time when their opportunity cost is low relative to other
times, but the marginal time cost of the information gathering task in this remote setup is
still greater than what it would be if they were committed to sit in a lab for an hour.

1.3 Results

Implementation

In April-May 2021, participants were recruited through the SFU Experimental Economics
Lab portal to participate in an online experiment to be completed online at home over
three days, beginning with a 30 minute live video conference introduction. The introduction
period included informed consent and a live reading of the instructions with opportunities
for questions. The attendance requirement then ended and participants were told they could
complete the experiment at any time of their choosing.

12Cognitive costs are presented on an adjusted basis, discounting the gross payoffs 1
2 u(P ) using the elicited

mistake probability q, but because the average observed cognitive costs are near zero the difference in results
between the belief-adjusted and naive interpretations is small.
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104 participants completed the online introduction and received the show up fee, 101
participants completed the experiment.13 Of these 101 participants, 37 proceeded through
rounds in which time costs were randomly ordered, and the remaining 64 faced time costs
that increased by round. There were no significant order effects between the two groups
so they are pooled throughout the paper. Participants earned an average variable pay of
$19.91 while spending 34 minutes in the information gathering process. A participant who
spends no time gathering information is expected to earn variable pay of $6.70 through
correct guesses. So participants earn around $23.31 per hour gathering information.14

A show up fee of $7 and comprehension quiz pay averaging $2.30 brought average payoffs
above $29 with an average time online of over one hour in total.15

I coded the experiment in python using oTree [Chen et al., 2016] as an underlying
structure to capture data and distribute unique participant links for online participation,
with a custom javascript interface for the interactive information gathering stage.

RESULT 1: Participants behave as if they have a known attention cost func-
tion. The median participant dataset requires fewer than 2% of choices dropped
to be consistent with the axioms, and 41% of participant datasets satisfy all ax-
iomatic tests.

If participants in this experiment did not create state-dependent stochastic choice datasets
that can be rationalized by a costly information representation, then the data interpreta-
tion offered in section 1.2 is tenuous. So the first question to answer is whether the model is
suitable for this data, and this is effectively a test of the theory and whether the experiment
incentives worked as designed.

To satisfy (Oa) a participant must only choose a = g until the moment the state is
revealed, and after that time, must only make a correct prediction. To satisfy (Oπ1) a
participant facing sequence length L in environment E who chooses to gather information
when the prize is P must also gather information for any greater prize values. To satisfy
(Oπ2) a participant facing prize P in environment E who chooses to gather information
when the sequence length is L must also gather information for any shorter sequence lengths
when the prize is P in environment E.

Optimal Information

If participants make optimal decisions in a costly information representation, the optimal
information conditions (Oπ1) and (Oπ2) are satisfied for all possible comparisons in the

13Three participants opted out during the informed consent and instructions.

14Marginal earnings of ($19.91-$6.70)= $13.21 per 34 minutes = $23.31 per hour.

15Some players take long breaks between rounds so the most consistent measure of active time is the
information gathering time even though it is a lower bound.
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dataset. In this unlikely case, I could not reject the hypothesis of a costly information
representation.

Under a null hypothesis that participants choose the binary IP L randomly and inde-
pendently with probability 1

2 , a failure of (Oπ1) will be generated with probability 1
4 , i.e.,

when IP L = 1 and IP ∗L = 0.
There are |P|2−|P|

2 opportunities to fail equation (Oπ1) for any L, and |L|2−|L|
2 opportuni-

ties to fail equation (Oπ2) for any P . With |P| = 20, |L| = 5, and two decision environments
(automatic or manual), This leaves 1900 opportunities to fail equation (Oπ1) and 400 op-
portunities to fail equation (Oπ2) per participant.16

Participants overall fail 1.3% of tests of (Oπ1), and 71% of participants fail zero of the
1900 conditions (Oπ1) places on the data. Condition (Oπ1) requires a single switch in first
stage choices from not gathering information to gathering information as P increases within
a single decision page, a relatively low bar. Participants overall fail 7.3% of tests of (Oπ2)
which requires a single switch from gathering information to not gathering information as
L increases across decision pages, and 58% of participants fail zero of the 400 conditions
(Oπ2) places on the data.

Only three of 101 participants fail to reject a hypothesis of random binomial data gen-
eration in favour of a one-tailed alternative hypothesis of fewer rejections, implying that
98 of 101 participants generate choice datasets which are significantly closer to a costly
information representation than randomly generated data.17

I construct the predictive success measure inspired by Selten, treating each participant’s
dataset as an observation. This measure takes the proportion of participants whose choice
data perfectly satisfy (Oπ1) and (Oπ2) and subtracts the probability a randomly generated
dataset would satisfy the same conditions [Demuynck and Hjertstrand, 2019]. Overall, 41%
of participants satisfy all 2300 information conditions, versus a near zero probability of a
random dataset satisfying those conditions. The Selten score of 41% being positive suggests
a costly information model has predictive success for the first stage choice data.

Optimal Action

The experiment records the exact time when there is sufficient information to make a
correct prediction t̄i, as well as the participant’s decision time ti and action ai. The random
information gathering process is independent across participants, so t̄i varies by participant.

A costly information representation requires that any action observed is optimal given
the posterior at the time of action. A participant who chooses an action at a time t < t̄i

must choose ai = g because it yields a prize with probability 51%, versus 50% probability

16(190 conditions per sequence length L * 5 values of L * 2 environments; 10 conditions per price P *20
prices * 2 environments).

17The one-tailed test is conducted at a 0.025 significance level.
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when choosing ai = r or ai = b. For any time t > t̄i, the posterior is either γ(R) = 1
or γ(R) = 0, and for these cases (Oa) requires ai = r and ai = b, respectively. An (Oa)
violation occurs before the state is revealed if a participant chooses any to make any specific
prediction, and an (Oa) violation occurs after the state is revealed if a participant guesses
or makes an incorrect prediction.

There are two information states that could be used to form a posterior, one that uses
all data drawn (the true information state), and one that only uses the observations the
player clicked to store in a data table. There is only one marginal violation in the entire
sample using the stricter true information state, suggesting participants are unlikely to be
using their memory as a replacement for the observation table.

Regardless of whether an action is chosen before or after the state has been revealed,
only one of the three available actions {r, b, g} is optimal, so a uniform random dataset
would fail 2

3 or an average of 6.67 of the 10 observed paid actions. The median participant
failed zero of 10 (Oa) conditions and the mean number of conditions failed was 0.77.

61% of participants satisfy all (Oa) conditions. The probability of one participant’s
dataset satisfying all (Oa) conditions if action choice is uniform random is (1

3)10 ≈ 0. 24%
of participants pass all (Oπ) conditions and (Oa) conditions. Thus the overall Selten score
is 24%.

Proportion of Data that is Consistent with Axioms

There is substantial literature on measuring the variation in observed choice datasets from
an axiomatic standard (see [Demuynck and Hjertstrand, 2019] for a review of measures and
recent advances in their computation). One of the common measures of a dataset is the
Houtman-Maks Index (HMI) which measures the maximal proportion of choices that can
collectively satisfy every condition of (Oπ1) and (Oπ2) (or analogously drops the fewest
observations to have a consistent dataset).18 I calculate an HMI specific to the information
gathering choices, and another using all choices which includes the 10 conditions on paid
actions imposed by (Oa) (Oa). The median HMI(information) among participants is 0.99
and median HMI(all) is 0.98; this high degree of consistency suggests that I may interpret
those few observations that fail one of the costly information axioms as mistakes. In a
sample of uniform randomly generated datasets, the median HMI(information) is 0.63 and
median HMI(all) is 0.61.

18Tests of GARP often prefer the money-metric critical cost efficiency index (CCEI) for goodness of fit
because it measures the dollar cost of errors, but that is less appropriate in this context because the budget
constraint is known in the GARP context and the attention cost function is not in this context.
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After computing the HMI for each participant’s information gathering choices, there is
a set of observations that, if omitted, leaves a dataset that is fully consistent with (Oπ).19

If a dropped observation was a choice to gather information – IP L = 1 – it is recorded as
suboptimal attention (SA), and if a dropped observation was a choice to be inattentive –
IP L = 0 – it is recorded as suboptimal inattention (SI). Some participants have multiple
subsets of the same size that satisfy the costly information representation axioms, one subset
that involves dropping a 0 and one that involves dropping a 1. These ambiguous cases are
not included in the counts of IA and SI. The top row of Figure 1.3 shows that of the actions
categorized as mistakes in the 10 paid rounds, 22 of 331 can be described as errors at the
first stage. These cases saw a participant make a decision deemed “suboptimal" relative to
the preponderance of their other information gathering decisions; of these 15 were cases of
SI and 7 were cases of SA. Figure 1.4 shows there were 8 cases of SI – 5% of mistakes – and
2 cases of SA – preceding 1% of mistakes – in the five manual rounds.

I prefer to use data from the five manual rounds when discussing the proportion of mis-
takes because the five automatic rounds restrict the participant from incorrectly choosing
a = b or a = r, and thus eliminates some types of mistakes. Only one type of ineffective
attention is possible in the automatic environment – a participant can fail to click a relevant
observation in the 10-second window, then stop gathering information and guess before the
observation is drawn again.20 This is distinct from dynamic inconsistency, where a partic-
ipant starts the information gathering process but stops and guesses before the relevant
observation is ever drawn.

RESULT 2: The majority of mistakes are caused by optimal inattention, but
ineffective attention and dynamic inconsistency are significant sources of mis-
takes which occur after the choice to gather information.

This experiment is designed to monitor the information state and the implied posterior
at all times, and these data allow me to differentiate between causes of mistakes. A costly
information representation can rationalize many mistakes as optimal ex ante, but it can not
rationalize dynamic inconsistency and ineffective attention, which occur after the choice to
gather information.

If information were costless every participant would be predicted to gather information
and make a perfect prediction in every round. So a mistake is any guess or any incorrect
prediction, as either fails to maximize the gross payoff. When attention is costly however,
a large number of ex ante choices to guess are in fact OI, as they optimally trade off the
costs and benefits of attention.

19This omitted set is one interpretation of the set of attention allocation violations the participant made
ex ante, taking the maximal consistent dataset as the true preference.

20This type of fail-to-click ineffective attention occurred 5 times in the 5 automatic rounds.
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Figure 1.2: All Observed Choices by Stage
101 participants over 10 paid rounds

If a mistake is not an (Oa) violation, then the participant’s action was the best choice
given the information state, and this implies the participant chose to guess at a time when
the posterior was uninformative. If the relevant first stage choice for that round was IP L = 0
and this observation is not among the subset dropped in the process of estimating the HMI,
it is classified as being caused by OI. However observations of IP L = 0 that needed to be
dropped to form a costly information representation are interpreted as suboptimal inatten-
tion (SI), as the majority of similar choices imply the participant’s benefits of gathering
information exceeded their costs. Likewise, If the relevant first stage choice for that round
was IP L = 1, the participant’s choice can be classified as suboptimal attention or optimal
attention based on whether it was included in the largest dataset fully consistent with (Oπ).

If a mistake is also an (Oa) violation, it implies the action was not optimal given the
information state. A mistake where the participant failed to interpret the posterior into the
optimal action is classified as ineffective attention (NA). Ineffective attention implies the
information state was fully revealed and the participant made an incorrect prediction or
guessed, or made a specific prediction without information that would change their prior.

The remaining type of mistake has a participant choose to gather information, but then
choose to guess in the second stage before any information is revealed. This is a form of
dynamic inconsistency but is not an (Oa) error. These participants’ previous selves wanted
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Figure 1.3: Classifying Mistakes: All Choices
101 participants make 331 choices a full information observer would deem a mistake. Note
that ineffective attention is impossible in the Automatic Environment.

to gather information, but when they reached the information gathering they quit early.
This experiment is not sufficient to test whether the participant faced an unanticipated
shock to time costs during the second stage, or if they were previously naive about their
future self, or if there was some other cause of their dynamic inconsistency. But it is a
distinct cause of mistakes worth separating from ineffective attention.

Figure 1.4 shows that 132 of 175 mistakes (75%) in the manual environment can be
explained as OI. 12% of these errors are observed after a participant chooses to gather
information but then fails to interpret the given information (NA). Another 8% are driven
by participants who choose to gather information in the first stage, but then choose to guess
after incurring some time cost and no marginal information in the second stage (dynamic
inconsistency). The remaining 5% of mistakes are driven by suboptimal inattention in the
first stage, where a participant made several choices to gather information for lower prizes
and one difficult-to-explain choice to guess for a larger prize.

RESULT 3: Participants make low-cost mistakes; observed mistakes are only
30% as costly as mistakes in randomly generated data. While any non-optimal
action is an (Oa) violation, their expected costs take three different values, measured as
a change in prize probability. If a participant chooses a = b or a = r when the posterior
γ(R) = 1

2 , her probability of winning a prize decreases from 51% to 50%, for a loss of
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Figure 1.4: Classifying Mistakes: Manual Choice Environment.
101 participants over 5 paid Manual rounds.

1pp. If a participant chooses a = g when γ(R) = 1, her probability of winning a prize
decreases from 100% to 51%, for a loss of 49pp. Finally, if a participant chooses a = r when
γ(R) = 0 or a = b when γ(R) = 1, her probability decreases from 100% to 0%, for a loss
of 100pp. Experiment participants make less costly errors than a set of errors generated
by a random dataset. 75% of participant (Oa) violations are the 1pp variety, 22% are the
49pp variety, and 3% are 100pp mistakes. The mean participant (Oa) violation costs 15pp,
versus an average cost of 50pp from a randomly generated dataset. Assuming linear prize
utility, this implies that the average participant violation of (Oa) cost a minimum of $0.39
in expectation while a randomly generated violation costs more than three times as much,
with a minimum of $1.31.21

It is difficult to assign a monetary value to the cost of a mistake caused by dynamic in-
consistency, because rather than failing to maximize the probability of a prize, a participant
failed to minimize their attention costs for a given prize probability. These participants enter

21This minimum is based on the unconditional expectation of prize value, but a player in the attention
stage knows that none of the prize values for which they chose to guess were chosen for payment, so the
expected prize conditional on reaching the attention stage is higher for participants who pay less attention
at lower prize values.
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the information gathering stage and incur at least 10 seconds of time cost, but ultimately
choose to guess, which they could have done in the first stage with no time cost incurred.

RESULT 4: The majority of attention cost is time cost, and estimated time
costs in the first stage are negatively correlated with time spent in the second
stage. Average cognitive costs are near zero. Belief-adjusted cognitive costs are
negative, implying a preference to manually make a choice.

I perform within-subject analysis to estimate cognitive costs by comparing analogous
choices in the manual and automatic environments. The manual environment requires data
interpretation before action selection and so plausibly affects cognitive costs, while the
automatic environment only incurs a time cost as there is no potential for making a mistake
in action selection.

There are four possible values that the pair (Ii
pl(auto), Ii

pl(manual)) can take, each
providing different information on the cognitive and time costs of the participant:

1. (Ipl(auto), Ipl(manual)) = (0, 0) is the “no attention" case with implied high attention
costs, implying T (πl) ≥ 1

2u(p) and C(πl) ≥ 1
2u(p) − T (πl).

2. (Ipl(auto), Ipl(manual)) = (1, 1) is the “always attention" case with implied low at-
tention costs, implying T (πl) ≤ 1

2u(p) and C(πl) ≤ 1
2u(p) − T (πl).

3. (Ipl(auto), Ipl(manual)) = (1, 0) is the “doesn’t like puzzles" case where the partici-
pant will let the computer interpret data but will not do it manually, implying low
time costs relative to cognitive costs: T (πl) ≤ 1

2u(p) and C(πl) ≥ 0.

4. (Ipl(auto), Ipl(manual)) = (0, 1) is the “prefers puzzles" case where the participant
will not let the computer interpret data but will do it manually, implying a negative
cognitive cost: T (πl) ≥ 1

2u(p) and C(πl) ≤ 0.

A costly information representation implies a cutoff strategy over prizes for any given se-
quence length and environment; the cutoff prize value where a participant begins to gather
information can be estimated by the sum of all first stage (ex ante) information choices
for a given round’s attention cost L. This proxy maintains every participant’s intended
probability of reaching the information gathering stage without selectively dropping any
observation, and identifies the cutoff perfectly for those participant rounds when no obser-
vations fail (Oπ). If

∑
p Ipl = n, this proxy is interpreted as the participant being willing to

gather information for the n largest prizes and not willing for the (20 − n) smallest prizes.
This allows for upper and lower bound identification of attention costs. In utility terms, it
implies 1

2u(p20−n) ≤ T (π4) ≤ 1
2u(p21−n). Assuming u(P ) = P over the prize values, I can

estimate a dollar value of time cost from a participant’s first stage choices in the automatic
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environment, and by using the expected time in minutes, calculate the implied reservation
wage.22

Estimated time costs from ex ante first stage decisions are negatively correlated with the
ex post time spent gathering information conditional on reaching the information gathering
stage (ρ = −0.45, p = 0.000003). This is further evidence that participants do in fact
respond to unobserved personal time costs in a way that aligns with my interpretation of
the data.

Figure 1.5 displays the aggregated estimates of attention and time cost. Average time
cost is positive and increasing in expected time. Average cognitive cost is near zero, imply-
ing indifference between making ones own prediction in the manual environment relative
to letting the computer predict in the automatic environment. Participants pay attention
equally often in manual and automatic rounds, implying time is the primary driver of choice.
However, there is substantial heterogeneity in cognitive cost, with many participants dis-
playing preference for manual predictions over automatic, a negative-valued cognitive cost.
A negative-valued cognitive cost may be interpreted as a preference for choice agency despite
the weakly greater probability of mistake.

In the manual environment, participants report a belief of their own error rate in an
incentive compatible mechanism. This means that the gross benefit of paying attention in
the manual environment is weakly less than in the automatic environment because there
is a possibility of making a mistake, and this reduces the prize probability conditional on
choosing to pay attention. The naive and adjusted cognitive costs are both displayed in
Figure 1.5. Cognitive costs are small in all cases, zero in the naive case and slightly negative
in the belief-adjusted cased. This implies that participants prefer the manual rounds after
adjusting the gross benefit to account for the probability that they could make a mistake;
this could be interpreted a preference for choice agency or a preference to complete the
puzzle over mindlessly clicking while waiting for a computer to do so. An equally plausible
explanation for this pattern of choices is that participants are naive to inclusion of their
mistake probability in their first stage attention choice and indifferent between the two
environments. In either case, it is the time cost rather than the cognitive portion of attention
costs acting as the key driver of behaviour in this environment.

1.4 Related Literature

A number of models beginning with [Sims, 2003] focus on the optimal choice of information
for a consumer with a bounded ability to obtain information. Sims’ decision maker makes an
information choice modeled as a reduction in Shannon entropy, and [Matejka and McKay,

22Linearity over small prizes is not a substantially stronger assumption than a general expected utility
representation [Rabin, 2000].
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Figure 1.5: Implied Average Time Costs and Cognitive Costs
The implied time cost from choices is increasing in the expected attention time by round.
Cognitive costs are not a key driver of choices. 10% confidence intervals.

2014] use this setup to derive new foundations for the multinomial logit as a model of
discrete choice probabilities.23 Modeling information as Shannon entropy however faces the
drawback of using a single choice parameter, and more recent theoretical contributions
consider broader types of attention choices including random attention [Aguiar et al., 2021,
Cattaneo et al., 2020], consideration sets [Manzini and Mariotti, 2007, Manzini and Mariotti,
2014], and sparse attention [Gabaix, 2014, Enke, 2017, Caplin et al., 2018]. I am agnostic
to the specific formulation of attention costs and so I build my testable conditions using
the approach of [Caplin and Dean, 2015], whose general attention cost function K() can
incorporate all of the above formulations of attention cost.

23This contrasts [McFadden, 1973] who had originally founded the multinomial logit model as resulting
from IID unobserved errors on consumer utility.
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There is a growing literature that uses non-choice data to learn about consumer deci-
sion processes, including [Fenig et al., 2018] which is focused on identifying consumer beliefs.
[Bartoš et al., 2016] conduct a resume study that directly measured attention through com-
puter clicks and other non-choice data in job and housing markets. Like these authors, I rely
on button clicks in the second stage to directly measure attention, which is an inexpensive
alternative to eye-tracking and other costly physiological measures of attention.

This experiment was inspired by the approach of [Dean and Neligh, 2019] who also
asked participants to discern a binary state using red and blue shapes. This experiment
expands on their design; Dean and Neligh infer the intensity of a participant’s attention
based on the accuracy of the final action choice, while I instead directly measure the intent
to pay attention in the first stage and the information collected through the button clicks
in the second stage. The separation of the first two stages allows me to identify dynamic
inconsistency as a source of mistakes, and unlike Dean and Neligh I can distinguish between
inattention and ineffective attention.

The experiment by [Martínez-Marquina et al., 2018] uses novel treatment variation
to separate out two drivers of consumer choice to be inattentive in uncertain situations.
They show that complexity (cognitive costs) and certainty are two distinct drivers of a
consumer’s choice to be inattentive, my experiment environment is simpler and finds weak
effects of cognitive costs. [Dean and Martin, 2016] measure rationality with the minimum
cost of violations, I similarly bound attention costs assuming rationality of decision makers
and find time cost accounts for the majority of variation in participant choices to gather
information.

1.5 Discussion

I introduce an experimental methodology that enables isolation of several confounding ex-
planations for mistakes by a consumer who has the choice to trade off attention costs for
information that enables a better choice. When all uncertainty about the costs and benefits
of attention are removed – the automatic rounds – a participant’s ex ante choices to gather
information provide bounds on their personal time costs. The manual rounds introduce a
potential for ineffective attention by forcing the participant to interpret information and
make an action choice; these choices provide information to bound the participant’s subjec-
tive cognitive effort. These bounds allow for the 75% mistakes caused by optimal inattention
to be distinguished from those that are caused by ineffective attention (12% of mistakes in
this experiment) or suboptimal inattention (5% of mistakes). Dynamic inconsistency causes
the remaining 8% of mistakes, when a participant said gathering information was worth the
cost ex ante, but then quit after incurring some time cost and before receiving any informa-
tion. The data supports the notion that many or even most mistakes can be explained as a
result of optimal inattention, but even in this simple environment a substantial number of
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mistakes are driven by errors at the information gathering and processing stages. Given the
simplicity of the experiment, the observed rates of dynamic inconsistency and ineffective at-
tention might be interpreted as lower bounds on these effects in more complicated contexts.
Researchers looking to explain or improve choices in domains with substantial information
requirements should consider dynamic inconsistency and ineffective attention as potential
causes of sub-optimal choice.
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Chapter 2

Early Completion of a Real Effort
Task

David Freeman and Kevin Laughren

2.1 Introduction

Many economic decisions involve a trade-off between current and future benefits and costs:
how much to consume versus save, to exercise or not, and whether to complete an onerous
task today or delay. In such situations a person makes choices at different points of time and
cannot commit their future choices. However, most experiments that study intertemporal
decision-making study choices over delayed monetary rewards made at a single point in
time [Coller and Williams, 1999, Harrison et al., 2002, Andreoni and Sprenger, 2012]. Such
experiments are by design uninformative of three crucial facets of intertemporal decisions.

The first standard axiom of intertemporal choice is time consistency: if a person pre-
viously chose between two options, then at any point before the options entail different
consequences, the person would not wish to revise their initial choice. The second standard
axiom is time invariance: if a person would choose an option over another today, they would
make the same choice between these options tomorrow if the consequences of each action
were shifted a day in the future. A person whose choices are time-inconsistent should not
expect their own future choices to be consistent with their current desires, and thus faces
a difficult problem of forecasting their own future choices. This introduces a third facet of
intertemporal decision-making. Sophistication is the normative axiom for time-inconsistent
decision-making that posits that a person correctly forecasts their future choices. With
limited exceptions, little existing experimental work addresses the latter two aspects of
intertemporal decision-making.

We introduce a new experimental design that studies participants’ task-completion de-
cisions for real-effort tasks. A participant faces multiple different choice sets, which we call
effort schedules, that list two or three days and a number of chores associated with each
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day. For each effort schedule that includes the current day, the participant must indicate
their choice to either do the task today or not. If they chose to do the task “today” in the
effort schedule that is randomly selected to be played out for real, then they must complete
the number of real-effort chores that schedule specifies by the end of today. Otherwise, the
next day they face all schedules for which they previously selected “not today” and those for
which “today” was not available. Crucially, their initial choices cannot commit their future
choices except by completing the task or forgoing an option by selecting “not today”. Thus,
we can elicit each participant’s preference to complete or not complete the task each day
for each effort schedule that the participant faces before they complete the task. We vary
the effort required on each available day across schedules as well as the days available to
complete the task, which allows us to identify violations of time consistency, sophistication
about time inconsistency, and time invariance.

We identify time inconsistency in an effort schedule {(e1, 1), (e2, 2), (e3, 3)} in which et

tasks are required at time t by looking at the associated two-option schedules of all pairwise
combinations of these options. We call the combination of all four two- and three date
effort schedules derived from the set {(e1, 1), (e2, 2), (e3, 3)} a “quad”. If in period 1, the
participant selects “today” in one such two-option schedule but not the other, we infer
their t = 1 preference between (e2, 2) and (e3, 3) – and the participant is revealed time
inconsistent if their t = 2 choice for the schedule {(e2, 2), (e3, 3)} is inconsistent with that
t = 1 preference. In such a case of time inconsistency, the participant’s initial choice for
{(e1, 1), (e2, 2), (e3, 3)} reveals their beliefs about how they will choose at t = 2; a participant
reveals themselves as sophisticated if their t = 1 today-or-not choice is that same as their
choice between (e1, 1) and what they would actually choose at t = 2, and otherwise revealing
themself naive [Freeman, 2021]. We also test time invariance by comparing choice in two
effort schedules, where effort values are shifted one day forward in one schedule.

Our participants exhibit a high degree of time consistency in spite of the considerable
power to detect violations with the experimental design. We find that 50 of 82 participants
are time consistent in every quad, and overall, choices in 84% of all participant-quads are
time consistent. We find that this time consistency arises from a strong tendency to choose
to complete a task immediately, even when delaying would have reduced the number of
required chores. We find that 29 of the time consistent participants always choose “today”
on day 1, when available, and 70% of all two-date choices are “today” – including half of
pairwise choices in which delaying reduces the number of chores that must be completed.
In pairwise choices, a participant’s beliefs about their own future behavior are trivial – and
thus the immediate completion tendency we document for real effort tasks does not arise
from sophistication about inconsistent preferences.

These findings are broadly inconsistent with the dominant intuition that people tend to
prefer to delay unpleasant tasks [O’Donoghue and Rabin, 1999] and thus contradicts the
common modelling assumption that bads like aversive and effortful chores entail negative
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flow payoffs, but are discounted if they occur in the future.1 Our findings thus pose a
challenge to the literature on intertemporal choice. Our experiment was designed to be
essentially similar to existing real-effort experiments that study the preferences governing
intertemporal trade-offs [Augenblick et al., 2015, Augenblick and Rabin, 2019] in all respects
that behavioral economic theory deems relevant. Our novel design features are primarily
intended to distinguish sophistication from naivete about present bias – and should have no
bearing on the presence of present bias. Yet not only do we not find the choice patterns that
similar past work attributes to present bias – we find an opposing pattern of behavior. This
stark finding stands apart from most of the experimental economics literature (although
we note some exceptions, including [Aycinena et al., 2020]. However, a recent literature
in psychology finds evidence of “precrastination”: in experimental bucket-carrying tasks,
participants exhibit a tendency to start the task too soon even when it increases the total
amount of effort required [Rosenbaum et al., 2014]. Rosenbaum et al. attribute this to a
desire to “reduce working memory loads”. [Haushofer, 2015] formalizes this idea through a
“cost of keeping track” and shows it can explain diverse evidence on intertemporal choice
through a completely different mechanism than present-biased discounting. Our findings
suggest this may be a more important determinant of intertemporal choice in standard
economic decisions than previously recognized.

Related Literature

There is a long experimental literature on intertemporal choice that studies preferences over
delayed monetary rewards revealed at one point in time [Coller and Williams, 1999, Harrison
et al., 2002, Halevy, 2015]. Since money can be saved and borrowed, in principle, such
experiments should not reveal intertemporal preferences if participants broadly bracket
their experimental choices with opportunities outside of the lab [Cubitt and Read, 2007].
Thus, some intertemporal choice experiments use less-fungible rewards like snacks that will
be consumed immediately [Read and Van Leeuwen, 1998] and real-effort tasks [Augenblick
and Rabin, 2019]. Our design uses a real-effort task from [Augenblick et al., 2015].

Much of the literature on intertemporal choice only studies choices made at one point
in time and thus cannot directly test time consistency or time invariance – with some
exceptions. Read and van Leeuwen (1998) have their participants choose a post-lunch snack
both a week in advance, and then ask them to choose again the day they consume the
snacks – and find that participants choose unhealthy snacks more frequently in same-day
choices than in-advance choices. [Augenblick et al., 2015] study participants’ allocations of
real-effort chores between earlier and later dates made both when the earlier date is in the
future and when it is in the present – and find that participants tend to delay effortful
chores, exhibiting present bias. Relatedly, [Augenblick and Rabin, 2019] elicit participants’

1We both tested out our real effort tasks and found them extremely aversive.
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preferences over quantities of delayed real-effort chores at different points in time and their
beliefs about their future such preferences. These two real-effort experiments both find
that participants tend to prefer to delay effortful chores, and exhibit “present bias” by
exhibiting a disproportionate preference to delay immediate effort. [Halevy, 2015] uses a
design in which participants report their preferences between smaller-sooner versus larger-
later monetary payments in successive weeks and tests time invariance and time consistency
of preferences for delayed monetary rewards. He finds that over half of participants are time
consistent, and roughly half of all participants satisfy time invariance. Compared to Halevy,
we study choices involving real-effort tasks – for which previous work has demonstrated
higher rates of present bias than for delayed monetary payments [Augenblick et al., 2015].

Existing papers test for a person’s sophistication or naivete about their own time incon-
sistency by measuring demand for commitment devices – [Ashraf et al., 2006, Augenblick
et al., 2015], for a review see [Bryan et al., 2010] – or comparing elicited beliefs to actual fu-
ture choices [Augenblick and Rabin, 2019]. In contrast, our design elicits choices at different
points of time in an environment in which a participant cannot commit their future choices,
which allows us to employ the approach of [Freeman, 2021] to test both sophistication and
naivete about time inconsistency for each participant. Much of our design is motivated by
a literature that commonly finds evidence of time-inconsistent present bias and that has
found widely different degrees of sophistication about it [Ashraf et al., 2006, Augenblick
et al., 2015, Augenblick and Rabin, 2019]. Yet unlike this literature, we find little evidence
of time-inconsistency – and thus have little to say about sophistication and naivete.

After finding that participants frequently prefer to complete the task today even when
delaying would reduce the number of chores required, we discovered a conceptual precedent
for our findings in the psychology literature [Rosenbaum et al., 2014, Rosenbaum et al.,
2019, Wasserman, 2019]. Rosenbaum et al. find that when faced with the choice of two
buckets to carry to a fixed endpoint, participants tend to pick up whichever is closer to
them – even if it entails a longer carrying distance. [Fournier et al., 2019b] find evidence
that suggests this effect arises from a desire to start a task sooner, rather than a desire
to complete a subgoal sooner. [Fournier et al., 2019a] show these effects are mediated by
working memory – suggesting that precrastination may at least in part arise from a desire
to reduce working memory loads. Within economics, existing work has shown that formal
models that incorporate memory can explain facets of intertemporal choice that are difficult
to explain as aspects of intertemporal preferences alone [Ericson, 2017, Haushofer, 2015].

2.2 Theoretical Framework

We design our experiment to study how participants’ decisions of whether to complete a
real-effort task depend on future options to complete it. To that end, consider a participant
who must complete a real-effort task exactly once. When first confronted with the task,
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they are informed of the two or three different days on which they can do the task and
how much effort they must exert to complete it on each day. On each day until the last
day with an option available, they can either complete the task or not, but they cannot
commit their future behaviour except by completing the task. Each such effort schedule can
be represented as a double or triple of effort-date pairs of the form {(et, t), (et+k, t + k)} or
{(et, t), (et+1, t + 1), (et+2, t + 2)}.

When making a today or not-today decision at time t when facing the effort schedule
{(et, t), (et+1, t + 1), (et+2, t + 2)}, the participant must consider their intertemporal prefer-
ences that they apply to make trade-offs between earlier versus later effort. They must also
consider how they would behave in the future should they wait today, since they cannot
commit their future behavior.

[Freeman, 2021] shows that if a participant is time inconsistent, their choices in {(et, t), (et+1, t+
1), (et+2, t + 2)} can reveal their sophistication or naivete about their time inconsistency if
their actions change when removing one option.

Specifically, if they delay at t when facing {(et, t), (et+1, t + 1), (et+2, t + 2)} and in-
stead completes the task at t + k (for k = 1 or = 2), but completes it at t when facing
{(et, t), (et+k, t + k)}, then the participant exhibits what Freeman calls a doing-it-later re-
versal, and reveals themself naive. This is because their choice to do it at t when facing
{(et, t), (et+k, t + k)} reveals that at t, they prefer completing it at t, (et, t), to waiting un-
til t + k, (et+k, t + k). Thus, they would only initially delay when facing {(et, t), (et+1, t +
1), (et+2, t + 2)} and then complete it at t + k if they were to incorrectly believe that they
would instead complete it on the other date after t (not t + k).

If instead they complete it at t when facing {(et, t), (et+1, t + 1), (et+2, t + 2)} but also
would delay at t when facing {(et, t), (et+k, t + k)}, they exhibit a doing-it-earlier reversal
and reveal themself sophisticated. This is because their choice to delay at t when facing
{(et, t), (et+k, t + k)} reveals that at t, they would rather wait to do it at t + k. Thus they
would only do it at t when facing {(et, t), (et+1, t + 1), (et+2, t + 2)} if they expect that they
would not do it at t + k were they to wait. That is, doing it at t reveals that they expect
future time inconsistency.

Fixing the triple {(et, t), (et+1, t + 1), (et+2, t + 2)}, we wish to observe how the partic-
ipant would choose from each possible pair as well as when all three days are available.
We refer to each such quadruple of choice observations as a quad. To observe whether a
participant would exhibit a possible doing-it-earlier or a doing-it-later reversal involving
{(et, t), (et+1, t + 1), (et+2, t + 2)}, we need to also observe how they would behave in two of
the doubleton subsets in which (et, t) is available. By also observing a participant’s choice
from {(et+1, t+1), (et+2, t+2)}, our experiment can reveal their time inconsistency directly
– they reveals themself time inconsistent if either (i) (et+1, t + 1) = c({(et, t), (et+1, t + 1)},
(et, t) = c({(et, t), (et+2, t + 2)}, but (et+2, t + 2) = c({(et+1, t + 1), (et+2, t + 2)}, or (ii)
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(et, t) = c({(et, t), (et+1, t + 1)}, (et+2, t + 2) = c({(et, t), (et+2, t + 2)}, but (et+1, t + 1) =
c({(et+1, t + 1), (et+2, t + 2)}.

Standard models of intertemporal choice also restrict how choices vary across quads.
Economic models of intertemporal choice assume that choices are monotonic in effort: if
e′

t ≤ et, e′
t+k ≥ et+k, and (et, t) = c({(et, t), (et+k, t + k)}, then (et, t) = c({(e′

t, t), (e′
t+k, t +

k)}). Economic models also typically make a less intuitively fundamental assumption about
preferences for modeling convenience, known as time invariance [Halevy, 2015]: if et = et+l

and et+k = et+k+l, then (et, t) = c({(et, t), (et+k, t + k)}) if and only if (et+l, t + l) =
{(et+l, t + l), (et+k+l, t + k + l)}. Our design allows us to test both of these assumptions.

2.3 Experiment Design

We design a real-effort experiment to obtain data on participants’ task-completion decisions.
After an initial orientation session, our experiment is four days long and took place Monday-
Thursday (t = 1, 2, 3, 4 respectively). On each day of the experiment, a participant was
required to login to our online interface, make relevant decisions, and complete a single unit
of our real-effort task, which we refer to as a chore. Each chore requires the participant to
transcribe 20 blurry Greek characters by clicking them from their screen; this real effort
task was adapted from [Augenblick et al., 2015]. On exactly one of the days, the participant
was required to complete et extra chores, with the number-date pair (et, t) determined by
the participant’s decisions. All participants who completed the entire experiment were paid
$25 by electronic transfer on Sunday.

In order to observe a participant’s decisions in multiple different effort schedules, we
employ a variation on the random incentive system to provide incentives to report their
true preferences of whether to work on not on each day. On the first day of the experiment,
the participant is presented with all effort schedules for the experiment and is informed that
one of these has been randomly chosen and will be implemented – the schedule that counts.
The participant then makes a “today” or “not today” choice for every effort schedule they
face in which a t = 1 option is available. If they chose “today” in the schedule that counts,
then they complete the required number of extra chores today. Otherwise, when they log
in at t = 2, they face a “today” or “not today” decision for those effort schedules with two
or more options remaining and for which they did not choose “today” at t = 1; similarly at
t = 3.

The first two versions of the experiment used quads designed to have power to detect
present bias, and thus sophistication and naivete about said bias. For our third version,
we also included control quads designed to allow us test whether some participants exhibit
a negative discount rate by choosing to exert more effort and complete the task at an
earlier date. In all cases, we study quads with t ∈ {1, 2, 3} and with t ∈ {2, 3, 4}, where
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Figure 2.1: Experiment data generating process
The four integers in a quad represent chosen completion dates from the three binary choices
in an effort schedule, followed by the triplet.
c({(e1, 1), (e2, 2)}, c({(e1, 1), (e3, 3)}), c({(e2, 2), (e3, 3)}),c({(e1, 1), {(e2, 2), (e3, 3)}}))

the latter effort schedules are obtained by shifting the former by one day.2 Shifting quads
also enables us to test time invariance. We show the effort schedules underlying the choices
faced by our experiment participants in Table 2.1. Each participant makes up to 8 choices
per effort schedule: one quad with opportunities to work on t ∈ {1, 2, 3} and one quad
with t ∈ {2, 3, 4}. Some quads are partially censored when participants complete their extra
chores before t = 3.

Figure 2.1 demonstrates the experiment data generating process for a quad with t ∈
{1, 2, 3}. Note that there are 24 terminal nodes representing a possible quad observation.
The probability that a quad is censored is endogenous to the number of times a participant
chooses to work “today” on Monday across the entire experiment, and this in turn affects
the probability of observing any other quads. Appendix B.1 includes the fully extended
decision tree, where the left sub-tree is repeated for the endogenous sample on the right

2The presence of the latter quads, combined with the random incentive system and {(e2, 2), (e3, 3)} choice
sets, implies that we have at least a 5

8 chance of observing t = 2 choices.
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Implementation

We recruited participants from the SFU Experimental Economics Laboratory Research
Participation System. Experiments were conducted entirely online, with a live introductory
Zoom session followed by four days of asynchronous participation at any time of the par-
ticipants’ choosing. Participants were paid a $7 (CAD) show up fee for the introductory
session and an all-or-nothing completion payment of $25, both paid by email transfer on
the Sunday following the final experiment deadline (Thursday at 11:59pm). The comple-
tion payment requires the participant to sign in and complete at least one chore on four
consecutive days, complete extra chores on one of those days, and make task-completion
decisions when available. Participants were recruited to attend a 30 minute introductory
session, held on Fridays via Zoom. Informed consent was collected, instructions were read
aloud by an experimenter, and questions were taken via confidential chat. After questions
were answered, participants were asked to demonstrate that they were able to sign-in to the
online experiment interface and complete one chore, with technical support provided by the
experimenter until all participants were successful. Participants were sent a reminder email
on Monday morning with a link to the experiment. Participants were required to sign in to
the experiment through the University’s centralized authentication service. Upon signing in
Monday, participants chose their own email reminder time for the daily reminders for the
remainder of the experiment.

101 participants completed the online introduction and received the show up fee. 82
participants completed all of the experiment requirements and received full payment by
email transfer. The remaining 19 participants missed a day of participation or chose not
to complete their chores on one or more occasion, so they received only the show-up fee
and are excluded from analysis. The baseline number of chores (20) and length of chore
(40 characters) were chosen so that the session would require participants less than one
hour of their time in total over the four days to complete all the chores and make all
decisions required for the $25 variable pay. A 40-character chore requires 40 button clicks
with 100% accuracy; the authors required 30-45 seconds to complete each chore on their
earliest attempts. It is difficult to estimate an average hourly wage because participants
had until 11:59pm each day to complete all decisions and chores and could take breaks
before this deadline at no cost. This results in a wide range of observed time spent on extra
chores(00:12:37 - 13:38:12), however the median participant completes 20 extra chores in
under 25 minutes.

We varied the effort schedules faced across three versions of the experiment. Table 2.1
displays the effort schedules participants faced by version. We conducted Version 1 starting
on July 20, 2020 with 23 participants. After observing many “today” choices in Version 1,
we added an additional schedule in Version 2 to allow us to detect even small degrees of
present bias and conducted that session starting July 27, 2020, with 22 participants. Still
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Effort Schedule Participants Observed Quads Observed Versions
14, 20, 28 45 76 V1, V2
16, 20, 25 82 144 All
18, 20, 22 82 144 All
19, 20, 21 22 37 V2
20, 20, 20 82 144 All
22, 20, 18 37 68 V3
25, 20, 16 37 68 V3

82 681

Table 2.1: Experiment Effort Schedules
Each triple describes the number of chores required if working on day 1, day 2, or day 3.

observing many “today” choices, we changed the set of effort schedules for Version 3 to
enable us to detect whether participants would make such choices if doing so increased the
number of chores required, which would indicate an opposing preference to those generated
by discounting and present bias. We conducted Version 3 with 15 participants starting
March 8, 2021 and with 22 participants starting March 29, 2021. In each version, each
participant had the opportunity to face each effort schedule twice, once when day 1 was
Monday (denoted MTW) and once when day 1 was Tuesday (denoted TWR).

Data Censoring We do not always observe two full choice quads from each effort schedule
because the day on which a participant completes their extra chores (and thus stops making
choices) depends both on their choices and the randomly-selected schedule that counts.
When a participant completes their payoff-relevant extra chores on Monday, they no longer
make task-completion decisions. In these cases, we obtain no data for TWR effort schedules
nor do we obtain Tuesday decisions from MTW effort schedules. This partial censorship
also occurs on TWR effort schedules when extra chores are completed Tuesday.

This endogenous censoring is inherent when studying any incentivized ’when-to-do-it’
choices. However, our design has a 1/2 probability that a TWR schedule is the schedule
that counts, and a 1/8 probability that a MTW schedule with no option to do it on Mon-
day is the schedule that counts. This design results in a 5/8 exogenous probability that
a participant makes payoff relevant choices on at least two days. Our software randomly
assigned 52 of 82 participants such an effort schedule, and this sub-sample is highlighted
when discussing results which could be subject to endogeneity The remaining 30 partici-
pants generate data that is subject to endogenous censoring, including 5 participants who
(endogenously) generate only censored quads.
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2.4 Results

We begin by classifying each of the 24 possible observed quad choice profiles in Figure 2.1
into categories. Recall that a quad represents four choices problems from one effort schedule:
c({(e1, 1), (e2, 2)}), c({(e1, 1), (e3, 3)}), c({(e2, 2), (e3, 3)}), and c({(e1, 1), {(e2, 2), (e3, 3)}}).
There are four categories into which a subject’s choice profile in a quad may fall. First, they
may demonstrate a consistent preference to complete the task on a certain day, in which
case we categorize the quad as time consistent (7 possible choice profiles). Second, a choice
profile may meet the definition of a reversal in the theoretical framework, either as a doing-
it-earlier reversal (6 choice profiles) or a doing-it-later reversal (2 choice profiles). A third
type of choice profile cannot be rationalized by a single t = 1 utility function over when to
complete the task, which can be potentially consistent with a preference for commitment or
a preference for flexibility; we refer to these as Non-Strotzian (5 choice profiles). The final
4 of 24 choice profiles are censored as there is insufficient observed choice data to reveal a
participant’s preferences over that effort schedule. The complete mapping of choice profiles
to these five categories is listed in Appendix B.6.

RESULT 1: Choices in 84% of uncensored quads are time consistent. At an in-
dividual level, 50 of 82 participants are time consistent in all of their uncensored
quads.

When all quads are considered regardless of censoring or endogeneity, 500 of 681 obser-
vations are Time Consistent. When removing the 84 censored observations, 500 of 597 (84%)
uncensored quads are time consistent, 399 (67%) of which exhibit a consistent preference to
complete the extra chores on day 1. Table 2.2 provides the classifications by effort schedule,
and remarkably over two-thirds (67%) of all quads are time consistent in each row. Among
the time inconsistent quads, there are similar quantities of Reversals and Non-Strotzian
observations (both in the high single digits). Comparatively if choice data were generated
randomly by independently mixing at each choice in Figure 2.1, 36% of uncensored choice
profiles would be time consistent, and 39% would exhibit a reversal.

The full set of data in Table 2.2 are subject to endogenous sampling and censoring. Table
2.3 restricts the sample to those participants randomly pre-determined to make at least two
choices, and further drops the TWR quads which are subject to endogenous observation of
choices at t = 3 (Wednesday). We refer to these data in Table 2.3 as the non-endogenous
subsample; note these data have zero censored observations by construction, yet still exhibit
a very consistent mix of decisions to the “TOTAL excluding Censored” data from Table
2.2.

At an individual level, 30 of 82 participants were randomly assigned a ’choice that
counts’ which allowed them to complete their extra chores on Monday, and this subsample
is subject to endogenous selection. On Monday, the participants in this set who chose
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ALL Time Consistent Reversal Non- Censored Quads
Effort Schedules day1 day2 day3 earlier later Strotz Observed

14, 20, 28 72% 3% 7% 4% 3% 7% 5% 76
16, 20, 25 69% 2% 6% 8% 1% 3% 10% 144
18, 20, 22 65% 4% 5% 8% 1% 7% 11% 144
19, 20, 21 65% 5% 5% 5% 3% 5% 11% 37
20, 20, 20 53% 6% 8% 8% 1% 7% 17% 144
22, 20, 18 37% 7% 24% 7% 0% 9% 16% 68
25, 20, 16 38% 7% 26% 10% 0% 3% 15% 68
TOTAL* 67% 5% 12% 9% 1% 7% 597
TOTAL 59% 5% 10% 8% 1% 6% 12% 681

RANDOM* 14% 11% 11% 28% 11% 25%
RANDOM 13% 10% 10% 25% 10% 23% 9%

*excluding censored

Table 2.2: Classifying Observed Choice Quads by Effort Schedule (All data)

RANDOM provides the data proportions expected if randomizing independently at each
choice in Figure 2.1

MTW only Time Consistent Reversal Non- Cens. Quads
Effort Schedules day1 day2 day3 earlier later Strotz Observed

14, 20, 28 79% 4% 0% 4% 4% 8% 0% 24
16, 20, 25 75% 2% 6% 12% 0% 6% 0% 52
18, 20, 22 73% 4% 4% 10% 2% 8% 0% 52
19, 20, 21 75% 0% 0% 8% 8% 8% 0% 12
20, 20, 20 60% 10% 2% 12% 4% 13% 0% 52
22, 20, 18 36% 14% 29% 4% 0% 18% 0% 28
25, 20, 16 32% 14% 36% 14% 0% 4% 0% 28
TOTAL 63% 7% 10% 10% 2% 9% 0% 248

RANDOM 12.5% 12.5% 12.5% 25% 12.5% 25% 0%

Table 2.3: Classifying Non-endogenous subsample
This table only uses the 52 participants whose ’choice that counts’ does not have a Monday
option, and includes only their MTW quads.
RANDOM (and data) in this table condition on reaching the left sub-tree in Figure 2.1
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to work “today” for their ’choice that counts’ do not make any more decisions at future
dates. Over half (17/30) of these participants exclusively generate quads that are time
consistent, and another 5 of the 30 only generate censored observations, and thus satisfy
time consistency trivially.3 The remaining 8 of these 30 endogenous participants generated
at least one reversal or Non-Strotzian quad of choices.

Within the non-endogenous subsample of 52 participants randomly assigned a ’choice
that counts’ which did not allow them to complete extra chores Monday, 28 are time con-
sistent in 100% of observed choices. 18 of these 28 time consistent participants exclusively
generated quads with a time consistent preference to complete the chores on day 1, even
on those schedules for which waiting on day 1 would entail completing fewer total chores.
Since we observe this subsample make choices on at least two days, all of these tests of time
consistency are non-trivial. All remaining tables in the main text of results include only
this non-endogenous subsample – though a comparison of Tables 2 and 3 suggests that data
censoring does not appear drive our results on time consistency.

Time consistency is a property of quads of choices within a single effort schedule, but an
additional consideration is whether a participant’s full set of choices are collectively sensible
across effort schedules.

RESULT 1b: 90% of participants who are time consistent within every sched-
ule also demonstrate monotonicity across all effort schedules. Overall, fewer
than 5% of observations need to be dropped to make every participant consis-
tent with monotonicity.

Monotonicity links preferences across effort values and requires participants to consis-
tently prefer exerting less effort while controlling for time. A set of choices which violate
monotonicity is difficult to rationalize with an economic model, even if those choices are
time consistent. We evaluate whether a subject violates monotonicity, considering every
binary choice in all different quads in the experiment.

We count the total number of monotonicity violations for each participant, and 58 of
82 participants (71%) demonstrate no violations of monotonicity in their dataset. Of the
50 participants who were time consistent in 100% of their classified quads, only 5 made a
choice violating monotonicity, thus 45 of 82 participants were perfectly time consistent and
monotonic.

For those participants who do violate monotonicity, we use the Houtman-Maks Index
(HMI) to represent the maximal proportion of data which can be collectively consistent

3For example, suppose we observe Monday choices of “today” for {(e1, 1), (e2, 2)}, “not today” for
{(e1, 1), (e3, 3)}, and “not today” for {(e1, 1), (e2, 2), (e3, 3)}. If {(e1, 1), (e2, 2)} is the ’choice that counts’,
the the participant completes extra chores Monday so c({(e1, 1), (e2, 2), (e3, 3)}) and c({(e2, 2), (e3, 3)}) are
never revealed, thus the quad is censored. See Appendix B.6 for a complete categorization of possible quads,
including those that may be censored.
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Figure 2.2: Participant Houtman Maks Index - Monotonicity

with monotonicity [Houtman and Maks, 1985, Heufer and Hjertstrand, 2015, Demuynck and
Hjertstrand, 2019]. This involves a linear optimization for each participant, minimizing the
number of observations removed subject to the constraint that there are zero monotonicity
violations in the remaining dataset. In total, 76 of 1726 observations are removed for a
weighted mean HMI of 0.955, and the mean HMI among those with at least one violation
is 0.86. The distribution of HMI by participant in Figure 2.2 further demonstrates that
monotonicity violations are rare and concentrated in a minority of participants.

RESULT 2: Preferences show a strong immediate completion tendency, with
a preference to complete the extra chores on day 1.

This pattern is evident whether day 1 is t = 1 (in Table 2.3) or day 1 is t = 2 (in
Appendix B.2), as both show over 60% of quads are time consistent with a preference for
day 1. This suggests the pattern is not simply a day of the week preference. Even for the
decreasing effort schedules (22, 20, 18) and (25, 20, 16) the consistent preference to work
today is the modal quad choice profile, even though waiting would require less total work for
the same payment. Table 2.4 shows that over 75% of the individual binary choices are choices
to work “today”, including approximately half of binary choices from the decreasing effort
schedules (22, 20, 18) and (25, 20, 16). Given the median participant required 1.2 minutes
per chore, this implies a willingness to exert an extra 6 minutes of effort to complete the
extra chores early. The median participant completes 24 total chores (20 extra chores, plus
a minimum of one each day) implying this preference results in a 20% increase in effort for
fixed pay. Remarkably, 18 of 28 participants in the non-endogenous subsample who were
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Proportion choosing to work Today
Effort schedule c({(e1, 1), (e2, 2)}) c({(e1, 1), (e3, 3)}) c({(e2, 2), (e3, 3)})

14, 20, 28 96% 88% 88%
16, 20, 25 90% 85% 90%
18, 20, 22 81% 88% 88%
19, 20, 21 92% 92% 83%
20, 20, 20 77% 77% 85%
22, 20, 18 57% 50% 61%
25, 20, 16 46% 43% 57%
TOTAL 77% 76% 81%

Table 2.4: Proportion choosing to work Today when a choice is available
Non-endogenous subsample

time consistent in every effort schedule (and 34 of 50 overall participants who were time
consistent in every schedule) chose to work on day 1 in every choice day 1 was available.

When the same effort tradeoff is observed on different days, a participant who makes a
different today/not today choice has violated time invariance. A violation of time invariance
could suggest an unobserved preference to complete the task on a specific day.

RESULT 3: Violations of time invariance occur in 21% of comparable decision
pairs, the majority of violations are consistent with a plan to do chores on a
favoured day of the week.

For two binary choices with fixed values of (et, et+k, k), time invariance requires that
the choice of “today” or “not today” is identical for t = 1 and t = 2. Thus time invariance
requires us to compare participant choices in MTW quads to their analogous choice in TWR
quads. Restricting attention to the non-endogenous subsample of participants who were pre-
determined to make choices twice, there are 744 total possible tests of time invariance.4 The
choices between day 2 and 3 – c({(e2, 2), (e3, 3)}) – are excluded because observing them
for TWR quads requires observing choices on Wednesday, which is subject to endogenous
selection. Time invariance is satisfied in 79% of tests. Individual participant rates of time
invariance are positively correlated with rates of time consistency (ρ = 0.52, p <0.01), even
though these two axioms are logically independent [Halevy, 2015].

Table 2.5 displays the proportion of pairwise choices that satisfy time invariance when
we observe a participant make choices over the same effort schedule on two different days.
Violations of time invariance of the (“not today”, “today”) form are plausibly consistent
with a favoured day of the week to complete extra chores that overrides differences in chore

4Three tests per effort schedule
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First Day Choice, Second Day Choice
Choice set Time Invariant Today, Not Today Not Today, Today

c({(e1, 1), (e2, 2)}) 79% 8% 14%
c({(e1, 1), (e3, 3)}) 78% 8% 13%

c({(e1, 1), {(e2, 2), (e3, 3)}}) 81% 7% 11%
TOTAL 79% 8% 13%

Table 2.5: Time Invariance Violations by Choice Set
Non-endogenous subsample

quantities, and these make up the majority of violations (95 of 153 violations, 13% of tests).5

Violations of the form (“today”, “not today”) are plausibly consistent with a least favoured
day of the week.6 Together, the relative scarcity of violations of time invariance suggest
specific day of the week preferences are driving choice in at most 21% of tests, and thus are
unlikely to be a substantial driver of the observed immediate completion tendency discussed
above. The number of chores and interest rate on effort do not appear to systematically
affect the rate of failure of time invariance across schedules (Appendix B.1), nor do they
appear to systematically affect the rate of time consistency within schedules (Table 2.3).

The small response to a negative interest rate on effort apparent in Table 3 indicates
that choices are not well represented by a standard model of intertemporal preferences in
which participants discount costly future relative to immediate effort. We next conduct a
structural estimation to facilitate a comparison of behaviour in our experiment to existing
work.

RESULT 4: Structural estimation of a model of quasi-hyperbolic discounting
yields β̂ > 1, capturing a strong tendency to complete tasks immediately.

We model the probability of choosing “today” as resulting from a latent utility model.
Consider only the binary decisions (et, et+k), with two observable actions at time t, "today"
(Yt = 1), or "not today" (Yt = 0), and suppose that Yt = 1 ⇐⇒ Y ∗

t ≥ 0, where Y ∗
t

represents the time-t (unobserved) utility difference between choosing “today” and “not
today”. We specify a structural quasi-hyperbolic discounting model with a linear disutility-
of-effort:

Y ∗
t = Ut(Yt = 1, et, et+k) − U(Yt = 0, et, et+k)

U(Yt = 1, et, et+k) = −λet

U(Yt = 0, et, et+k) = −βδkλet+k

5For example, a participant who wants to complete their extra chores on Tuesday would choose “not
today” for the MTW choices and “today” for the TWR choices.

6For example, a participant who wants to complete their extra chores on any day except Tuesday.
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The net utility of working today can be written as :

Y ∗
t = −λet + βδλet+kI{k=1} + βδ2λet+kI{k=2}

With a corresponding regression equation:

Yt = b0et − b1et+kI{k=1} + b2et+kI{k=2} + εt

We assume there is some variation in individual values of Y ∗
t due to individual preference

shocks, and estimate the regression equation above using a binary logit with no intercept.
We recover estimates of (b0, b1, b2) and use them to estimate β̂ = (b1)2

b0b2
; δ̂ = b2

b1
; and λ̂ = −b0.7

We cluster standard errors by participant, and recover asymptotic standard errors for the
parameter estimates using the delta method. Parameter estimates and their asymptotic
standard errors are in Table 2.6, the underlying logit regression estimates of (b0, b1, b2) and
delta method derivation are in Appendix B.2.

Confidence Intervals (α = 0.05)
Parameter Estimate (Std. Error) Lower Bound Upper Bound

Present Bias β 1.53 1.11 1.96
(0.22)

Discount Factor δ 0.93 0.83 1.03
(0.050)

Utility of Effort λ 0.14 0.06 0.22
(0.042)

Observations 743
Clusters 52

Table 2.6: Structural Estimates of Time Preference Parameters β, δ

Non-endogenous subsample Binary choices only. Standard errors of logit regression are clus-
tered by individual participant. Asymptotic standard errors estimated using the delta method
(derivation in Appendix B.2)

Previous studies of intertemporal preference consistently estimate values of β < 1, with
the interpretation being that there is additional (non-geometric) discounting of all future

7We caution against overly interpreting our point estimates. The parameter λ can be viewed as controlling
sensitivity to effort or alternatively the degree of stochasticity, and our estimation cannot separate these
interpretations. Similarly, notice that −et > −βδt+ket+k if and only if −eγ

t > −βγδγt+γkeγ
t+k for every

γ > 0. Our design does not identify the curvature-of-disutility-of-effort parameter γ, so our point estimates
of δ and β cannot be directly compared to those in existing work that does attempt to identify γ (e.g.
[Augenblick et al., 2015]). However, this does not affect our tests of the null hypotheses (i) β = 1 and (ii)
δ = 1.
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periods relative to the present [Augenblick et al., 2015]. Participant choices in this experi-
ment had a clear disposition to complete the extra chores today, and this is reflected in the
estimate of β > 1, as caring more about future utility than today’s utility would result in
the observed participant preference to complete the task today (with 580/743 binary choices
resulting in the choice to work “today”). The utility of effort has the expected (negative)
sign, and δ, which is identified from the difference in choices when delay is k = 2 days versus
k = 1, does not appear to be a significant driver of choice.

2.5 Discussion

Our novel experimental design was ideally-suited to measure a person’s sophistication or
naivete about their own time inconsistency. Yet we discovered far more time consistency
than we expected based on prior work from economics experiments [Thaler, 1981, Read
and Van Leeuwen, 1998, Ashraf et al., 2006]„ including other experiments that use designs
with similar real-effort tasks [Augenblick et al., 2015, Augenblick and Rabin, 2019]. This
appears to be driven by a strong tendency to complete tasks immediately – even when this
requires additional effort. In our structural model, this leads us to estimate that our subjects
tend to have future-biased preferences. While some previous studies have found evidence
of future bias [Takeuchi, 2011], it is the opposite of the present bias found in much prior
experimental work and commonly assumed in applications of quasi-hyperbolic discounting
[Laibson, 1997, O’Donoghue and Rabin, 1999]. Taken together with prior work, our findings
suggest that quasi-hyperbolic discounting with present bias may not be a good descriptive
model of task completion. Recent work in psychology that uses a different research design
has also found that people tend to exhibit a preference to start tasks sooner [Rosenbaum
et al., 2014]. Our findings may result from a behavioural bias distinct from present bias
that merits new theory. The cost of keeping track model from [Haushofer, 2015] is one such
approach.

We also explored two other standard properties assumed in most models of intertempo-
ral choice – time invariance and monotonicity – and we do not detect systematic failures
of either property. This suggests that these are both reasonable properties to retain in
modelling intertemporal decision-making.
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Chapter 3

Selection Effects in a First Year
Seminar

Kevin Laughren*, Lara Aknin, Dai Heide, Panayiotis Pappas, and Milan Singh
*Corresponding author

3.1 Introduction

Existing studies that set out to measure the causal effect of educational programs on stu-
dent outcomes are often limited to designs other than the randomized control trial (RCT)
because research ethics require that a student opt-in to such programs, even when eligibil-
ity is randomly assigned. The result is that analysis of student outcomes cannot rely on
random assignment to believe that the students participating in the intervention are com-
parable to those who do not participate. This means that any differences between treatment
and control groups that we observe in such analyses could be caused not by the treatment
itself, but by unobserved and meaningful differences in the sample of students who select
into such programs relative to the rest of their cohort. We refer to significant effects driven
by this type of sample selection as selection effects. Several experimental design paradigms
attempt to alleviate these concerns, including studies that generate a control group by
selecting a group of students who match the treated students on observable characteris-
tics such as grades, gender, race, and socioeconomic status. We study the causal effects of a
first-year seminar program at a public university using a difference-in-differences framework
[Wooldridge, 2010] and find that seminar enrollment has a positive causal effect on GPA
when using the entire cohort or a matched sample as the control group. Our linear proba-
bility and logistic binary regressions using these same control groups suggest that seminar
enrollment positively affects the probability of first year student retention into their second
year. Our contribution to the literature is to elicit students’ willingness to enroll prior to
the educational intervention, which we believe is a meaningful and unobserved covariate
in most non-RCT studies of educational programs. When we include this control variable
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our causal effects are no longer statistically significant, suggesting that the causal effects
we observe with our typical control groups are actually selection effects. Many studies of
educational interventions risk confounding genuine causal effects with underlying differences
between students who opt-in to treatment versus those who do not.

Student satisfaction and retention have been a focus of undergraduate administrators
for decades, and along with GPA, have been the outcomes of interest for a large program
evaluation literature in higher education research. Evaluation of these programs dates at
least as far back as [Pascarella and Terenzini, 1979]. [Pascarella and Terenzini, 1991] provides
a survey of early studies, and [Bailey and Alfonso, 2005] provides a survey of interventions
specific to community colleges where low retention is even more pernicious than at degree-
granting institutions.

Aside from a few older studies such as [Strumpf and Hunt, 1993], research in this lit-
erature has not been able to conduct experiments following the RCT methodology due to
ethical concerns with forcing students into any educational intervention, whether it be a
specific course or an academic support program. Instead, students select themselves into
such programs, and so we cannot rely on random assignment to believe that the students
participating in the program are comparable to students who do not participate. As a result,
any differences in outcomes between treatment and control groups that we observe in such
analyses could be caused not by the treatment itself but by selection effects, through unob-
served but meaningful differences in the sample of students who select into such programs
relative to the rest of their cohort.

Our contribution to the educational program evaluation literature is to collect a novel
proxy for a student’s willingness to enroll in a first year seminar (FYS) and demonstrate
that results drawn from comparisons to an entire cohort or matched sample may be driven
by selection effects, as the results are not robust when comparing to our novel control
group. Notably for practitioners this is a low-cost measure but it required contact with the
students of interest prior to the FYS intervention, and so while it is a desirable control it is
not available to studies of past interventions using only registrar data.

We believe collecting such a proxy provides a superior control to a matched pairs proto-
col, because generating unbiased estimates with a matched control group requires a selection
on observables assumption [Wooldridge, 2010]. This assumption states that after we con-
trol for the observable characteristics on which a match is generated - demographics and
high school grades - two students of the same observable type are equally likely to select
into a seminar. However if this assumption is not satisfied, the estimates generated by the
matching control protocol are biased.

Considering that FYS courses require substantially different types of work from students
- frequent writing and speaking in class, with little or no weight on final exams - we think
it is plausible that the selection on observables assumption is not satisfied in this instance.
Demographics and high school grades may not be enough information to accurately predict
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the probability that a student enrolls themself in a seminar. A student’s desire to be eval-
uated on their writing and speaking in a seminar relative to their desire to be evaluated
on exam performance in a lecture class is an unobserved variable that, when omitted from
regression, can introduce bias to estimates of the effects of seminar participation.

To proxy for this unobserved variable, we sent an incentivized email survey to all in-
coming domestic Faculty of Arts and Social Sciences (Faculty) students at a large public
Canadian university prior to the Fall 2017 enrollment period. This survey included detailed
information on the seminar program overall (small classes, award winning faculty, emphasis
on research, writing, and speaking) as well as titles and synopses of the ten seminars being
offered. Students were asked to provide a Yes/No answer to whether they were willing to
enroll in each of the ten, and told their responses could affect whether a seminar would run
in Fall 2017. 219 eligible students responded to this survey.1 We use those students who
did not actually enroll in a seminar but indicated ‘Yes’ to being willing to enroll in some
seminar as our preferred control group relative to the students who did enroll in a seminar.

In comparisons of seminar students to the entire cohort or a matched sample, we find
that the first year cumulative GPA of seminar students is significantly greater. However in
our preferred model specifications that control for willingness to enroll, we find enrollment
in a first year seminar provides no significant benefit on student well-being, grades, or
continuation to second year. We believe this is evidence that selection effects are a plausible
alternative explanation for significant results in program evaluation papers that implicitly
rely on a selection on observables assumption.

Related Literature

Broadly, this is a program evaluation study making use of a difference-in-differences de-
sign [Wooldridge, 2010]. Some recent studies in higher education have used similar pro-
gram evaluation techniques including regression discontinuity [Moss and Yeaton, 2013], and
propensity score matching [Sneyers and Witte, 2017].

There is a substantial literature with a specific focus on college student retention as a
response to an educational intervention using linear probability models (OLS): [Crissman,
2001, Andrade, 2009, Webster and Showers, 2011, Sommet et al., 2015, Swanson et al., 2017],
or logistic binary variables regression [Venuleo et al., 2016]; including several which focus on
minorities or international students [Barlow and Villarejo, 2004, Andrade, 2009]. The What
Works Clearinghouse is an online repository of results from educational program evaluation
studies with strict criteria for inclusion, and includes a section specific to post-secondary
interventions.2

1And an additional 24 ineligible students who found the survey link through other means

2https://ies.ed.gov/ncee/wwc/FWW
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[Shanley and Witten, 1990] and [Fidler, 1991] conducted a 15-year study at University
of South Carolina comparing seminar students to all other first years, and found significant
improvement in retention that could not be explained by observed demographic and high
school variables.

Many of the above papers cite [Tinto, 1975], [Astin, 1993], or [Seidman, 2005] as sources
of theoretical hypotheses that the types of activities in a first year seminar could improve
retention. We do not explicitly use these models to generate hypotheses but rely on reduced-
form models to test intuitive hypotheses that are in line with these models.

The vast majority of studies - including our own - are cases where students opt into
treatment, whether it be a seminar, mentor program, math prep course, etc. One exception
is [Strumpf and Hunt, 1993] in which the researchers collected motivation to enroll and
randomly assigned a subset of the motivated students to a seminar, leaving the rest as a
control group. They found significant effects on retention and academic standing. (Random
assignment of courses would not be feasible or pass ethics approval in most public universities
today). [Angrist et al., 2009] randomly assign eligibility, but students had to actively consent
to receive academic support services (with 55% consent) or financial GPA incentives (with
87% consent).

Meta analyses of retention studies [Fong et al., 2017, Fike and Fike, 2008, Colton et al.,
1999] focus on demographic predictors of retention, reach little consensus, and point out
methodological challenges. [Clark and Cundiff, 2011, Reid et al., 2014] are surveys that
point out methodological issues in previous studies, particularly the inability of previous
causal analyses to rule out potential confounding explanations, in particular unobserved
characteristics affecting selection.

Many studies relied on creating a group of control students through matching, i.e.,
ensuring that the control group had a student who was similar to a student in the seminar
based on recorded characteristics such as gender, ethnicity, and high school grades [Campbell
and Campbell, 1997, Schnell and Doetkott, 2003, Hendel, 2007, Miller and Lesik, 2014].
Analyses using demographic control groups to measure causal effects implicitly rely on a
‘selection on observables’ assumption [Wooldridge, 2010]. For such regression estimates to be
unbiased this theoretically requires that there is no difference in error distributions between
the two populations after controlling for observable variables. This matters in the case of a
seminar because any regression is still omitting a known difference between the two groups:
willingness to enroll in a seminar-style course over a traditional large lecture course.
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3.2 Methods

The Faculty launched nine first year seminars led by highly regarded permanent faculty
members in the Fall 2017 semester.3 These seminars were open only to domestic first-year
non-transfer students in the Faculty. Each seminar enrollment was limited to 25 students.

The rationale for offering the seminars was twofold. First, to determine whether offering
students this kind of first-year experience would positively impact their GPA and their
overall well-being in addition to reducing the likelihood that they will leave the university
without graduating. Second, such seminars were thought to allow students to develop closer
bonds with faculty and to feel more closely connected with the university and with their
peers at an early stage in their academic careers.

The pilot was meant to examine the long-term effects of participation in a seminar on
GPA and student retention. While meaningful data on graduation will not be available for
several years, we report on one-year retention and first year GPA. To measure this, we
identified a control group by surveying all incoming domestic Faculty students concerning
their level of interest in the courses (regardless of whether they in fact enroll). Focusing only
on those students willing to enroll in such a seminar helps us to I selection effects, which
are inevitable in this setting where we cannot choose which students enroll in a seminar.
In our causal effects framework, we compare first year domestic students who enroll in
FYS with willing students who did not enroll, and determine whether participation in FYS
positively affects GPA, academic status, and retention. If nothing else, our willingness proxy
identifies students who are reading and actively responding to emails prior to and early in
the enrollment period, which is an often unobserved but plausibly meaningful covariate.

This project also examines the immediate impact of participation in FYS on student
engagement and well-being. We collected validated measures of well-being in surveys of
students at two times: prior to the start of the semester, and at the end of the semester.
We use a difference-in-differences framework to examine whether participation in FYS pos-
itively impacts student well-being and engagement, while controlling for student selection,
beginning versus end of term effects, and covariates such as entering (high school) GPA,
gender, and course load.

In total, 124 domestic first year students enrolled in one of the seminars. These students
achieved a 2.57 GPA in their non-FYS courses in Fall 2017, compared to a 2.31 GPA in
non-FYS courses for the entire cohort. Of course there are selection issues that inhibit us
from making a causal interpretation between these two numbers.

3One of the ten seminars listed in the survey was canceled due to lack of enrollment
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Data

University Registrar

The university’s registrar provided the majority of our data, including all data on demo-
graphics, enrollment, academic status, and grades. Most of our analyses require only these
data, except where we controlled for willingness to enroll or wanted to look for effects of
FYS on psychological measures of well-being.

Willingness to enroll

We sent an email survey with a small financial incentive to all incoming domestic Faculty
students prior to the Fall 2017 enrollment period. This survey included detailed information
on the seminar program overall (small classes, award winning instructors, emphasis on
research, writing, and speaking) as well as titles and synopses of the ten seminars being
offered. Students were asked to provide a Yes/No answer to whether they were willing to
enroll in each of the ten, and told their responses could affect whether a seminar would
run in Fall 2017 (an incentive to respond truthfully). 219 eligible students responded to
this survey. We use those students who did not actually enroll in a seminar but indicated
Yes to being willing to enroll in some seminar as our preferred control group relative to
the students who did enroll in a seminar. We also compare a matched control group for
illustration.

Well-being and engagement

Our surveys of well-being and engagement were conducted online, with domestic first-year
Faculty students recruited directly via email. Completion was incentivized with a draw
for Visa gift cards in $50CAD and $100CAD denominations. Individual responses to a
series of Likert-scale style questions are aggregated into individual measures of Depression
(CESD) [Radloff, 1977], Loneliness [Russell et al., 1978], Satisfaction with Life [Diener et al.,
1985], Social Connection [Lee et al., 2001], Anxiety [Spitzer et al., 2006], Flourishing, and
frequency of Positive and Negative Emotions (SPANE) [Diener et al., 2010]. The measures
were chosen for the survey based on their common usage in psychology research and strong
performance on validity measures such as test-retest reliability, internal consistency, and
convergent validity [Russell, 1996, Silva and Caetano, 2013, Aishvarya et al., 2014]. We also
asked about a students’ feelings of Belonging at the University, and about their number of
close friends and acquaintances.

311 students completed at least one well-being survey, 71 of whom completed it both
before and after the semester.

To examine how the measures change over the course of a semester, we restrict attention
to the 71 students who completed a survey twice (to control for sample selection). Within
these students, we calculate the correlation coefficient between well-being measures, as well
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as covariates (high school GPA, gender), treatment status (TREATMENT), and a dummy
variable for measurements done post-seminar (POST). In Appendix 3a, we provide results
of a t-test on each Pearson correlation coefficient to determine if the measured correlations
are significantly different from zero. None of the measures of well-being are significantly
correlated with POST, which tells us that the overall average response of these students did
not change significantly over the Fall 2017 semester. The correlation matrix also suggests
that female students have significantly higher measures of Negative Emotions, Anxiety,
Social Connection, and Symptoms of Depression. Notably, high school grades (eGPA) are
significantly correlated with Satisfaction with Life.4

Empirical Frameworks

Difference-in-differences

We implement a difference-in-differences causal effects framework [Wooldridge, 2010] using
ordinary least squares (OLS) and fixed effects (FE) frameworks in an attempt to identify
causal effects of the seminar on well-being and GPA. The difference-in-differences framework
involves running a regression of the form:

yi,t = αi + β1 ∗ TREATMENT + β2 ∗ POST + δ ∗ TREATMENT : POST + θ ∗ Xi + ui,t

Where yi,t is the outcome variable y (e.g., GPA, academic status, anxiety) for individual
i measured at time t. TREATMENT = 1 for individuals who enrolled in FYS and zero
otherwise. POST = 1 for observations made post-seminar (i.e., December 2017 or later)
and zero otherwise. Xi is a vector of individual i’s covariate characteristics such as their
high school grades, home province, gender, etc. In the OLS specification we can estimate θ,
the effect of covariates on outcomes like GPA because of the assumption that all individuals
have the same intercept: αi = α ∀i. In the FE specification, the coefficient on any covariates
Xi that do not change across t (such as gender) are all collapsed into an individual estimate
of αi. The causal effect of seminar enrollment on outcome y is measured by δ, which can be
thought of as the interaction effect on TREATMENT*POST. Letting t ∈ {PRE, POST},
algebraic manipulation of the regression equation reveals why δ is known as the difference-
in-differences estimator:

δ = (yT,P OST − yT,P RE) − (yC,P OST − yC,P RE)

Where T represents treatment group, C represents the control group, and the over-bar
represents the average over the group in the specified time period (PRE or POST). We

4There are a number of significant correlations between well-being variables; for example, our measure
of Belonging is significantly negatively correlated with Loneliness, Social Connection, and Symptoms of
Depression.
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could calculate δ by hand, but by using regression we obtain standard errors that help us
understand whether the estimated value is significantly different from zero.

In all specifications, individuals who enrolled in a seminar in Fall 2017 are identified as
the Treatment group, and we vary the control group to demonstrate the lack of robustness of
effects to our measure of willingness to enroll. Specifically, each regression table is subdivided
into three sections: where the control group are students who responded they were willing
to enroll in a seminar but did not, where the control group are students matched to a
treatment student on the basis of demographics and high school grades, and finally where
the control group is the entire cohort of first year domestic students.

Non-panel frameworks

While we have measures of well-being and grades prior to seminar enrollment, a number
of measures are only observed once (after the seminar) and so a difference-in-differences
framework is not applicable. In particular, for grades, academic status, and enrollment we
specify a linear model of the form:

yi,t = α + β1 ∗ TREATMENT + θ ∗ Xi + ui,t

For binary variables (enrollment and academic status) we estimate the logit regression:

Prob(yi,t = 1) =
eα+β1∗T REAT MENTi+θ∗Xi

1 + eα+β1∗T REAT MENTi+θ∗Xi

log

(
Prob(yi,t = 1)

1 − Prob(yi,t = 1)

)
= α + β1 ∗ TREATMENTi + θ ∗ Xi

3.3 Results

Baseline Equivalence

In this quasi-experimental methodology, it is important to establish that the treatment and
control groups are comparable on observable baseline dimensions. We compare the students
enrolled in a seminar in the left column to three potential control groups in Table 3.1. By
construction, the Match control group is almost exactly the same as the Seminar group
on observable dimensions. The Willing control group (those who took the pre-enrollment
survey and indicated they were willing to enroll in a seminar, but did not end up doing
so) have similar gender proportions and course load to the seminar group, but have higher
high school grades (86.6 versus 84.8) and fewer students identifying as First Nations (0.7%
versus 2.4% for the treatment group). These differences are not significant at a 5% level using
a Mann-Whitney-U test of means. Using the entire cohort as a control group introduces
substantial difference in gender ratio (64.4% female versus 74.2% in the treatment group), as
female students had a higher propensity to select into FYS and respond to the willingness
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email survey. A number of studies have demonstrated that women achieve higher post-
secondary grades, so we should expect a comparison between Seminar students and the
Cohort control group to show greater grades for the Seminar group.5

Table 3.1: Baseline Measures

Seminar Group Control Groups
TREATMENT = 1 Willing Match Cohort

Number of Students 124 151 124 1014
High School GPA (out of 100) 84.82 86.61 84.87 85.43
% Female 74.2% 74.8% 74.2% 64.4%
% First Nations 2.4% 0.7% 2.4% 1.3%
Fall 2017 Course Units 11.19 11.20 11.25 11.05

Seminar Effect on GPA

Recall that the causal effect of FYS on GPA in the difference-in-differences framework, δ is
the coefficient on TREATMENT:POST. Table 3.2 demonstrates that the estimate of this
effect is positive and significant when comparing FYS students to the Match or Cohort
control groups, but there is zero effect of FYS when we compare treated students to the
Willing control group. This is the first evidence we provide of selection effects in frameworks
that do not control for willingness to enroll.

Seminar Effect on Well-being

We conducted two optional surveys prior to and following the seminar in Fall 2017 to collect
psychological measures of well-being. If the seminar had significant effects on academic
outcomes, these results might help us to identify a mechanism by which this happens (e.g.,
by increasing feelings of belonging to the school community). We used the same difference-in-
differences framework as we did for GPA in an attempt to measure any causal effects of the
seminar on these outcomes. The sample is smaller than the GPA analysis however, because
we are limited to those students who chose to complete both surveys of well-being, and
who identified themselves as willing seminar enrollees either through our pre-enrollment
survey or by enrolling themselves. The table below provides our difference-in-differences
fixed effects estimates with each column representing a different measure of well-being.

5There were fewer than ten students who did not provide gender information to the registrar or who
identified as a gender other than male or female. This group does not significantly affect overall results and
we do not provide separate figures for a small and plausibly identifiable group, instead they are included
among the larger group of students who are not female.
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Table 3.2: Seminar Effect on GPA

Dependent variable: GPA_Proxy

Control Group: Willing Match Cohort
OLS FE OLS FE OLS FE
(1) (2) (3) (4) (5) (6)

TREATMENT −0.099 −0.022 −0.071
(0.077) (0.089) (0.062)

POST −1.262∗∗∗ −1.264∗∗∗ −1.549∗∗∗ −1.549∗∗∗ −1.481∗∗∗ −1.482∗∗∗

(0.073) (0.060) (0.089) (0.080) (0.029) (0.025)

GENDERF 0.280∗∗∗ 0.395∗∗∗ 0.210∗∗∗

(0.062) (0.072) (0.029)

TREATMENT:POST −0.0001 0.002 0.286∗∗ 0.286∗∗ 0.219∗∗ 0.219∗∗∗

(0.109) (0.089) (0.126) (0.113) (0.088) (0.077)

Constant 3.989∗∗∗ 3.941∗∗∗ 3.943∗∗∗

(0.054) (0.066) (0.023)

Observations 550 550 496 496 2,276 2,276
R2 0.510 0.749 0.521 0.717 0.559 0.767

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.3 shows that of the nine psychological measures, we see a significant causal effect
of the seminar on only one: CESD (a measure of how frequently an individual experiences
symptoms of depression). This effect is significant only to a 10% significance level. The
probability of observing at least one significant result at a 10% level when conducting
nine independent tests is substantial, so we interpret these results as inconclusive across
the board. There seems to be no causal effect of enrolling in a first year seminar on any
of the following: symptoms of depression, loneliness, flourishing, anxiety, satisfaction with
life, social connection, frequency of positive emotions, frequency of negative emotions, or
belonging to the school community.

Table 3.3: Seminar Effect on Survey Measures of Well-being

Dependent variable:
Symptoms of Loneliness Flourishing Anxiety Satisfaction Social Frequency of Frequency of Belonging

Depression with Life Connection Pos. Emotions Neg. Emotions at University

(1) (2) (3) (4) (5) (6) (7) (8) (9)

POST 0.201 0.625 0.005 0.783 −0.192 0.059 0.080 0.680 −0.522∗∗

(0.127) (0.633) (0.150) (0.973) (0.216) (0.049) (0.693) (0.836) (0.225)

TREATMENT:POST −0.373∗ −0.625 −0.218 −1.253 0.251 −0.099 0.861 0.555 0.584
(0.198) (1.001) (0.233) (1.493) (0.340) (0.077) (1.090) (1.314) (0.351)

Observations 82 83 84 83 85 80 85 85 82
R2 0.093 0.025 0.036 0.021 0.021 0.052 0.031 0.051 0.128

Note: Observation numbers vary slightly as all questions were optional ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Seminar Effect on Academic Status and Retention

Tables 3.4 and 3.5 provide a linear probability model (OLS) and a logistic binary vari-
able regression on Spring 2018 academic standing and Fall 2018 (second year) enrollment,
respectively.

Table 3.4 shows that FYS enrollment has a positive effect on academic standing when
comparing enrolled students to the Match or Cohort control groups, but again there is no
significant effect when FYS students are compared to the Willing control group.

Table 3.5 shows that FYS students are significantly more likely to be retained to second
year (as measured by Fall 2018 enrollment) than the control group generated by matching
covariates, but that there is no significant effect of FYS on enrollment relative to the Cohort
or Willing control groups.

3.4 Discussion

We are able to replicate significant positive effects of a first year seminar (FYS) on GPA,
academic status, and retention when we compare participants to convenient control groups
used in previous studies, whether they be a group matched on demographics, or a com-
parison to the overall cohort. However, when we use our pre-enrollment survey measure
and compare FYS students only to others who are interested in such a course but do not
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Table 3.4: Seminar Effect on Academic Standing after two semesters

Dependent variable: Spring 2018 Good Academic Standing

Control Group: Willing Match Cohort
OLS logit OLS logit OLS logit
(1) (2) (3) (4) (5) (6)

TREATMENT 0.040 0.386 0.121∗∗ 0.726∗∗ 0.090∗∗ 0.561∗∗

(0.047) (0.332) (0.053) (0.313) (0.041) (0.248)

HIGHSCHOOLGPA 0.017∗∗∗ 0.192∗∗∗ 0.008∗∗ 0.062∗∗ 0.016∗∗∗ 0.127∗∗∗

(0.003) (0.038) (0.003) (0.030) (0.002) (0.016)

GENDERF 0.101∗ 0.606∗ 0.223∗∗∗ 1.099∗∗∗ 0.066∗∗ 0.314∗∗

(0.054) (0.340) (0.062) (0.325) (0.027) (0.142)

Constant −0.626∗∗ −14.899∗∗∗ 0.091 −4.200 −0.634∗∗∗ −9.785∗∗∗

(0.280) (3.243) (0.257) (2.595) (0.172) (1.345)

Observations 275 275 248 248 1,138 1,138
R2 0.118 0.109 0.069
Log Likelihood −119.284 −128.981 −624.536

Note: Logistic coefficients (not marginal effects) displayed for comparison to standard errors
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3.5: Seminar Effect on Second-year Enrollment

Dependent variable: Fall 2018 Enrollment

Control Group: Willing Match Cohort
OLS logit OLS logit OLS logit
(1) (2) (3) (4) (5) (6)

TREATMENT −0.018 −0.154 0.113∗∗ 0.704∗∗ 0.052 0.366
(0.042) (0.357) (0.051) (0.324) (0.038) (0.264)

HIGHSCHOOLGPA 0.005∗ 0.032 0.001 0.003 0.005∗∗ 0.025∗∗

(0.003) (0.022) (0.003) (0.016) (0.002) (0.011)

GENDERF 0.043 0.351 0.094 0.543 −0.005 −0.030
(0.048) (0.386) (0.060) (0.349) (0.025) (0.159)

Constant 0.435∗ −0.702 0.709∗∗∗ 0.888 0.408∗∗∗ −0.750
(0.252) (1.941) (0.248) (1.386) (0.157) (0.920)

Observations 275 275 248 248 1,138 1,138
R2 0.019 0.030 0.007
Log Likelihood −108.269 −123.625 −560.751

Note: Logistic coefficients (not marginal effects) displayed for comparison to standard errors errors
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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enroll, all significant effects disappear. Controlling only for observable characteristics such
as demographics, high school grades, and location does not appear to be sufficient to use
such groups for causal effects analysis because the selection on observables assumption is
violated. Specifically, after controlling for observable characteristics, it is not true that all
students are equally likely to enroll in FYS; most studies omit an unobserved characteristic
willingness to enroll that captures student preferences for small interactive classrooms with
less weight on exams. This unobserved and uncontrolled preference could create spurious
results when evaluating first year seminars or other interventions where a student selecting
themselves in reveals something about them that is not captured by a registrar database.

Funding Research assistance and survey incentives were funded by Teaching and Learning
Development Grants (TLDG Projects G0233, G0234) from the Institute for the Study of
Teaching and Learning in the Disciplines at Simon Fraser University.
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Appendix A

Supplements to Chapter 1

A.1 Applying Model Axioms

Each action a is a mapping from the state space Ω to a prize space X. Formally, F = XΩ is
the grand set of actions and F ≡ {A ⊂ F ||A| < ∞} is the grand set of decision problems.
I model the DM as choosing an information structure π : Ω → Δ(Γ) which is a stochastic
mapping from objective states of the world to subjective signals. Like [Caplin and Dean,
2015], I identify each subjective signal with its associated posterior beliefs γ ∈ Γ = Δ(Ω).
Let Γ(π) denote the set of possible posteriors when using information structure π.

A state dependent stochastic choice dataset (D, P ) is a collection of decision problems
D ⊂ F and a related set of state dependent stochastic choice functions P = {PA}A∈D where
PA : Ω → Δ(A). Denote PA(a|ω) as the probability the DM chooses action a conditional
on state ω in decision problem A, and P̂A(a|ω) its experimental analogue.

Denote the gross payoff of using information structure π in decision problem A as G(A|π),
which can be very generally defined as:

G(A, π) =
∑

γ∈Γ(π)

[ ∑
ω∈{R,B}

μ(ω)π(γ|ω)
][

max
a∈{r.b.g}

∑
ω∈{R,B}

γ(ω)u(a(ω))
]

(A.1)

The first term in brackets captures the probability of a posterior given the information
structure chosen, and the second term in brackets captures the gross benefit of choosing the
optimal action given the posterior.

[Caplin and Dean, 2015] suppose that a DM has an information cost function K(), an
attention function πA which captures the DM’s choice of information structure in a given
decision problem A, and a choice function CA : Γ(πA) → Δ(A) which maps posterior beliefs
to action probabilities. [Caplin and Dean, 2015] state that a state dependent stochastic
choice dataset (D, P ) has a costly information representation if there exists K(), πA(), CA()
such that for all A ∈ D:

1. Information is optimal: πA ∈ arg maxπ∈Π{G(A, π) − K(π)}
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2. Choices are optimal: Given CA(a|γ) > 0:∑
ω∈Ω γ(ω)u(a(ω)) ≥ ∑

ω∈Ω γ(ω)u(b(ω)) for all b ∈ A

3. The data is matched: PA(a|ω) =
∑

γ∈Γ(πA) πA(γ|ω)CA(a|γ)

[Caplin and Dean, 2015] show a state dependent stochastic choice dataset (D,P) has a
costly information representation if and only if it satisfies the testable criteria No Improving
Attention Cycles (NIAC) and No Improving Action Switches (NIAS). NIAC is a property of
the entire dataset (D, P ) and requires that there could be no gross payoff improvement by
reassigning the chosen information structures across decision problems. NIAS is a property
of each decision problem, and requires that the observed actions chosen are optimal given
the revealed posterior beliefs of the DM.

NIAS violations

NIAS is a property of each decision problem, and requires that the observed actions chosen
are optimal given the revealed posterior beliefs of the DM. Given μ ∈ Γ, A ∈ D, PA ∈ P ,
and a ∈Supp(PA), the revealed posterior γ̄a

A ∈ Γ is defined by:

γ̄a
A(ω) ≡ Pr(ω|a chosen from A)

μ(ω)PA(a|ω)∑
ν∈Ω μ(ν)PA(a|ν)

One formulation of the NIAS condition is given in [Caplin and Dean, 2015] equation (3):
For any A ∈ D, a ∈ Supp(PA), and b ∈ A:

∑
ω∈Ω

γ̄a
A(ω)u(a(ω)) ≥

∑
ω∈Ω

γ̄a
A(ω)u(b(ω)) (A.2)

A violation of the NIAS condition in an experimental dataset implies that the DM failed to
choose the optimal action given their posterior beliefs γ in some decision problem A. One
example of a NIAS violation is when a posterior belief is strong enough that the optimal
action is a prediction (e.g., if γ(R) = 1, the optimal a = r) and the DM is observed
to choose one of the suboptimal actions b or g. I interpret such a violation of NIAS as
ineffective attention; the choice of π may have been ex ante optimal, but the DMs use of
the information was not effective.

NIAC is a property of the entire dataset and requires that there could be no gross payoff
improvement by reassigning the chosen information structures across decision problems.
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NIAC violations

[Caplin and Dean, 2015] define the NIAC as follows: Given μ and u : X → R, dataset
(D, P ) satisfies NIAC if, for any set of decision problems A1, A2, ..., AJ ∈ D with AJ = A1:

J−1∑
j=1

G(Aj , π̄Aj ) ≥
J−1∑
j=1

G(Aj , π̄Aj+1) (A.3)

A violation of the NIAC condition (A.3) in an experimental dataset would suggest that the
DM failed to allocate attention efficiently across decision problems.

Costly Information Representation: Translating to this Experiment Con-
text

In the simple context of this experiment the second term in A.1 in brackets is equal to u(P )
when the state is known (γ(R) =∈ {0, 1}) and is equal to 1

2u(P ) when the state is not known
(γ(R) = 1

2). The space of posteriors is restricted, with |Γ(π0)| = 1 and |Γ(πL)| = 3 with
piL(γ = 1

2 |ω) → 0 as the information sample gets large. Thus, if a participant only enters
the attention stage with an intention of waiting for a signal that changes the posterior, the
gross attention benefit of any decision problem A is drastically simplified to:

G(A, πl) = u(P ) if πl �= π0

G(A, π0) =
1
2

u(P )

If we consider π0 (guessing) as the default action, then the gross marginal benefit of paying
attention in this context is:

G∗(A, πl) =
1
2

u(P ) (A.4)

A DM has a costly information representation [Caplin and Dean, 2015] if they both (i)
make ex ante optimal choices of attention structure given expected costs and benefits (
πA ∈ arg maxπ∈Π{G(A, π) − K(π)}), and (ii) their chosen action a is optimal given their
observed information (

∑
ω∈{R,B} γ(ω)u(a(ω)) ≥ ∑

ω∈{R,B} γ(ω)u(b(ω)) for all b ∈ A). If a
participant behaves in this way, any ‘mistake’ must be case of optimal inattention, because
(i) rules out suboptimal inattention and (ii) rules out ineffective attention. These conditions
are difficult to test directly because the attention cost K() is unobserved. However in this
experiment context these conditions can be simplified to those used in the main text:
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a = g ⇐⇒ γ(R) =
1
2

(Oa)

a = r ⇐⇒ γ(R) = 1
a = b ⇐⇒ γ(R) = 0

Iple ≤ Ip∗le ∀p, p∗ ∈ P s.t p < p∗; ∀l ∈ L ∀e ∈ {auto, manual} (Oπ1)

Iple ≥ Ipl∗e ∀l, l∗ ∈ L s.t l < l∗; ∀e ∈ {auto, manual} (Oπ2)
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A.2 Appendix: Additional Screenshots
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A.3 Appendix: Experiment Instructions

Participants sign on to a live zoom meeting to complete ID check, consent form, and read
the instructions aloud and take questions. The meeting ends after the instructions and they
have until 23:59 two days ahead to complete the experiment. They can exit and return with
saved progress using a secure link through generated by oTree [Chen et al., 2016].
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Appendix B

Supplements to Chapter 2

B.1 Additional Tables of Results

First Day Choice, Second Day Choice
Effort Schedule Time Invariant Today, Not Today Not Today, Today

14, 20, 28 88% 3% 10%
16, 20, 25 86% 7% 7%
18, 20, 22 82% 9% 9%
19, 20, 21 86% 8% 6%
20, 20, 20 71% 13% 17%
22, 20, 18 71% 8% 20%
25, 20, 16 77% 1% 21%

Grand Total 79% 8% 13%

Table B.1: Time Invariance by Effort Schedule
Non-endogenous subsample
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TWR only Time Consistent Reversal Non- Censored Quads
Effort Schedules day1 day2 day3 earlier later Strotz Observed

14, 20, 28 83% 0% 0% 8% 4% 4% 0% 24
16, 20, 25 77% 2% 0% 8% 2% 2% 10% 52
18, 20, 22 73% 4% 2% 6% 0% 2% 13% 52
19, 20, 21 75% 8% 0% 0% 0% 0% 17% 12
20, 20, 20 67% 2% 6% 10% 0% 0% 15% 52
22, 20, 18 50% 0% 18% 11% 0% 4% 18% 28
25, 20, 16 57% 0% 18% 7% 0% 4% 14% 28
TOTAL 69% 2% 6% 8% 1% 2% 13% 248
TOTAL* 79% 2% 6% 9% 1% 2% 217

*excluding censored

Table B.2: Classifying choices in TWR quads
Non-endogenous subsample
Only TWR quads included in table for comparison to Table 2.3

B.2 Structural Model Parameter Estimates and Standard
Errors:

We estimate the logistic regression:
yt = b0et + b1Ik=1et+k + b2Ik=2et+k + εt

For our structural model, we are interested in the values of b2
1

b0b2
(= β) , b2

b1
(= δ), and b0

(= λ)
If b ∼ N(b	, Σ) then the distribution of f(b) is N(f(b	), CΣC ′) where C = ∇f(b).

Let f(b) =

⎡
⎢⎣

b2
1

b0b2
b2
b1
b0

⎤
⎥⎦. Then, C = ∇f(b) =

⎡
⎢⎢⎣

− b2
1

b2
0b2

2b1
b0b2

− b2
1

b0b2
2

0 − b2
b2

1

1
b1

1 0 0

⎤
⎥⎥⎦.

The estimated variance matrix of interest is CΣ̂C ′
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Table B.3: Structural Logit Estimates

Dependent variable:
Today1

EffortToday −0.140∗∗∗

(0.042)

EffortNotTodayK1 0.199∗∗∗

(0.041)

EffortNotTodayK2 0.185∗∗∗

(0.043)

Observations 743
Log Likelihood −358.575
Akaike Inf. Crit. 723.150

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Non-endogenous subsample

Table B.4: Variance-Covariance Matrix of Structural Logit Estimates

EffortToday EffortNotTodayK1 EffortNotTodayK2

EffortToday 0.001803 -0.001716 -0.001747
EffortNotTodayK1 -0.001716 0.001716 0.001725
EffortNotTodayK2 -0.001747 0.001725 0.001826

Table B.5: Variance-Covariance Matrix of Parameter Estimates using Delta Method

β δ λ

β 0.046933 0.070261 0.007851
δ 0.070261 0.163917 0.016764
λ 0.007851 0.016764 0.001803
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B.3 Data Generation and Classification

Quad Type c(
{(

e 1
,1

),
(e

2,
2)

})

c(
{(

e 1
,1

),
(e

3,
3)

})

c(
{(

e 2
,2

),
(e

3,
3)

})

c(
{(

e 1
,1

),
(e

2,
2)

,(
e 3

,3
)}

)

Detail

1 1 0 1 day 1
1 1 2 1 day 1

Time 1 1 3 1 day 1
Consistent 1 3 3 3 day 3

2 1 2 2 day 2
2 3 2 2 day 2
2 3 3 3 day 3

Reversal

1 3 0 1 earlier
1 3 2 1 earlier
1 3 3 1 earlier
2 1 0 1 earler
2 1 2 1 earlier
2 1 3 1 earlier
1 3 2 2 later
2 1 3 3 later

Non-Strotzian

1 1 2 2 pref flex
1 1 3 3 pref flex
2 3 0 1 pref commit
2 3 2 1 pref commit
2 3 3 1 pref commit

Censored

1 1 0 0 censored
1 3 0 0 censored
2 1 0 0 censored
2 3 0 0 censored

Table B.6: Classifying Observable Choice Quads
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Appendix C

Supplement to Chapter 3

C.1 Correlation of Well-being Measures and Covariates
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