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Abstract

Reflections often degrade the quality of images by obstructing the background scenes. This
is not desirable for everyday users, and it negatively impacts the performance of multimedia
applications that process images with reflections. Most current methods for removing reflec-
tions utilize supervised learning models. These models require a vast number of image pairs
of the same scenes with and without reflections to perform well. However, collecting such
image pairs is challenging and costly. Thus, most current supervised models are trained on
small datasets that cannot cover the numerous possibilities of real-life images with reflec-
tions. In this thesis, we propose an unsupervised method for single-image reflection removal.
Instead of learning from a large dataset, we optimize the parameters of two cross-coupled
deep convolutional networks on a target image to generate two exclusive background and
reflection layers. In particular, we design a network model that embeds semantic features
extracted from the input image and utilizes these features in the separation of the back-
ground layer from the reflection layer. We show through objective and subjective studies on
benchmark datasets that the proposed method substantially outperforms current methods
in the literature. The proposed method does not require large datasets for training, removes
reflections from single individual images, and does not impose constraints or assumptions
on the input images.
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(a) (b)

Figure 1.1: (a) A scenario in which reflections occur. The image shows a case where the
photographer stands behind the glass (reflective surface) while taking the image. (b) A
scenario in which the background scene is captured without any reflection appearing.

Chapter 1

Introduction

We frequently encounter unpleasant reflections when taking photos through transparent
surfaces such as glass windows. Also, we might encounter reflections from non-transparent
surfaces like water or car bodies. These reflections reduce the visual quality and utility of the
captured photos as in Figure 1.1. We have addressed the reflection from transparent surfaces.
Reflections may also significantly degrade the performance of multimedia applications such
as object detection and face identification. Thus, removing reflection from images is an
important problem for users and applications, e.g., removing reflection caused by windshield
images captured by surveillance cameras to see inside cars [5].

Removing reflection is, however, a challenging research problem. Reflection removal in a
natural image can be interpreted as a layer decomposition problem. Specifically, an image I
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containing reflection can be defined as a linear superposition of two image layers, background
layer B and reflection layer R as:

I = B +R. (1.1)

Eq. (1.1) implies that the reflection removal problem is inherently ill-posed, since there
are infinite valid decomposition pairs of B and R.

To address the difficulty of the reflection removal problem, some prior approaches utilize
additional information such as motion cues from a sequence of images captured for the same
scene [22, 17, 3, 7]. In many practical scenarios, however, a sequence of images of the same
scene may not be available, and thus these methods would fail. Other prior approaches
make assumptions on the background and reflection layers, such as sparse gradient prior
[13], blurriness of the reflection layer [14], and ghosting cues [20]. These approaches also
fail when the assumptions do not hold, which regularly occurs because of the vast diversity
of real-world images and thus, these low-level priors are not general enough in real cases.
Moreover, most prior works, especially recent ones that utilize deep learning models, require
a large amount of training data. Most of them are supervised learning methods, which
produce acceptable results on images somewhat similar to the ones seen in the training
datasets. Collecting large training datasets for image reflection removal is challenging in
practice, as it requires capturing each scene with and without reflection at the same time.
Thus, most datasets in the literature tend to be small and do not cover a wide variety of
reflection scenarios. Therefore, supervised learning methods may not produce good results
on images with different characteristics than those in the training datasets.

1.1 Contributions

In this thesis, we propose an unsupervised method for the single-image reflection removal
problem, which, to the best of our knowledge, is the first unsupervised solution for such a
complex problem. Our method builds on recent works which show that not all image priors
must be learned from data. Instead, some of the image characteristics can be captured
by the network structure itself. This is referred to as Deep Image Prior (DIP) [24], and
it is suitable for some image restoration problems by optimizing the parameters of the
untrained neural network to restore the target image from random noise. Gandelsman et al.
[9] extended this idea by utilizing multiple DIPs to decompose images into their essential
components, which can be helpful in applications such as image dehazing, segmentation,
watermark removal, and transparent layer separation. The generic image decomposition
method in [9], however, requires multiple inputs to solve the reflection separation problem.
Specifically, this method either requires a sequence of images or two different mixtures of the
background and reflection layers to address the ambiguity in the reflection removal problem,
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as indicated by Eq. (1.1). As mentioned earlier, a sequence of images of the same scene is
not available in many cases. Moreover, requiring two different mixtures of the background
and reflection layers as input is not practical, as these layers are the outputs we are trying
to obtain in the first place.

We present a new model which addresses the limitations of the multiple DIPs method,
especially for the single-image reflection removal problem. Specifically, we first propose em-
bedding high-level semantic information into the DIP, which can capture only low-level
statistics of natural images like edges through the handcrafted structure of the network,
and we refer to it as Perceptual DIP. Second, we propose a cross-feedback structure of
two Perceptual DIPs, where the output of one Perceptual DIP is weighted and fed back
into the other DIP. Each Perceptual DIP captures the self-similarity nature of areas within
each layer. The distribution of small patches within each separate layer (background and
reflection) is simpler (more uniform) than in the image with reflection, resulting in strong
internal self-similarity. The two Perceptual DIPs each capture the context of one of the two
layers in the input image, and the cross-feedback structure allows our method to effectively
separate layers in single images without any additional inputs. Thus, the proposed Percep-
tual DIP and the cross-feedback structure can address the ambiguity and difficulty of the
single-image reflection removal problem.

The contributions of this work can be summarized as follows.

• We present the first unsupervised method for the challenging single-image reflection
removal problem. Given only a single image observation, our method successfully
generates background and reflection layers without any training data or additional
information or assumptions.

• The proposed method comprises three main parts: Perceptual DIP, cross-feedback, and
refinement. The first one is a new architecture of the generator network by embedding
semantic features, allowing the network to utilize both low-level image statistics and
high-level perceptual information during the optimization. The cross-feedback struc-
ture encourages perceptually more meaningful separation by jointly optimizing two
Perceptual DIPs’ parameters without requiring additional inputs. The refinement part
employs a semantically-guided in-painting neural network to improve the quality of
the produced images after removing the reflection.

• We conduct a subjective study to compare our unsupervised method versus four state-
of-the-art supervised methods for removing reflection [33, 30, 28, 2]. Our university’s
Research Ethics Board approved the subjective study. Fifty subjects participated in
this study and evaluated the quality of the reflection separation achieved by all con-
sidered methods on 16 images chosen from datasets commonly used in prior works.
The results show that our unsupervised method substantially outperforms all prior
works on real-world images with complex reflections and successfully removes most
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of the reflections without any training datasets. For example, an improvement in the
Mean Opinion Score (MOS) by up to 37% can be achieved by our method compared
to prior works. We also show that our method outperforms the unsupervised image
decomposition method in [9], without requiring any additional inputs.

• We rigorously analyze the various components of the proposed method and conduct
ablation studies to show the importance and contribution of each component to the
end result.

1.2 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 summarizes the related work in the
literature. Chapter 3 presents the proposed method. Chapter 4 compares the performance
of the proposed method against the closest works in the literature, and Chapter 5 concludes
the thesis. Details about the subjective evaluation form are given as an Appendix.
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Chapter 2

Related Work

The problem of image reflection removal has been explored in two general directions: using
traditional methods, and through deep-learning. In this chapter, we review the related works
in these two directions.

2.1 Traditional Methods

As mentioned in Chapter 1, the image reflection removal problem is ill-posed and complex
to solve. To address this complexity, several prior works assumed the availability of multiple
images from a slightly moving camera for the same scene, which results in motion differences
between the background and reflection layers due to their different depths with respect to
the camera (motion parallax). Examples of such multiple-image approaches for reflection
removal include [22, 17, 3, 7]. However, multiple images for the same scene may not always
be available. Therefore, it is important and more practical to develop solutions for removing
reflections from single images, which is the objective of this work.

Multiple traditional (i.e., not neural network-based) prior works addressed the single-
image reflection removal problem by imposing priors or assumptions on reflection to make
the problem tractable. Examples of these assumptions include the sparse prior of gradients
and local features [13], blurrier reflection prior which penalizes large reflection gradients
[14], ghosting cues [20], and different depth of fields between the two layers that is used for
edge labelling and layer separation [27]. Still, just adding these priors would not be sufficient
due to the variety of natural images.

2.2 Deep-learning based Methods

More recent approaches for single-image reflection removal employ deep learning models
and have been shown to outperform traditional ones. Examples of the most recent works in
this direction include [6, 32, 15, 33, 30, 2, 28]. We provide brief descriptions of these works
in the following.
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Fan et al. [6] introduce a solution using weakly supervised learning for training a single
reflection removal model. They synthesize a training samples database that captures the
background and reflection statistics and replaces prior knowledge injected through explicit
gradient penalization or energy minimization with a particular deep network to capital-
ize on this form of weak supervision. Ma et al. [15] use unpaired supervision to design
a weakly-supervised framework by integrating reflection generation and separation into a
single model. Zhang et al. [32] propose a two-stage pipeline that utilizes edge hints of the
background and reflection layers given by users to recover the missing details in the back-
ground layer.

Zhang et al. [33] utilizes perceptual losses to improve the separation of the background
layer from the reflection layer. Yang et al. [30] propose a cascade deep neural network
(referred to as BDN) to estimate background and reflection layers bidirectionally. Abico et
al. [2] introduce a gradient constraint loss along with the generative adversarial networks
to produce high-quality background layers. This approach is referred to as GCNet. Wei et
al. [28] propose an enhanced framework with a context encoding module (called ERRNet)
to handle the misalignment that usually occurs when collecting real datasets with pairs of
images showing the captured scenes with and without reflections.

All of the above methods employ supervised-learning models, which require training
datasets. Wan et al. [25] collect a dataset of real images with and without reflection, which
is referred to as the single-image reflection dataset (SIR2) [26] and is frequently used as
a benchmark for evaluating image reflection removal algorithms. In addition, some prior
works generate synthetic datasets for the image reflection problem through physically-based
polarization pipeline [18], non-linear blending formulation [29], and generative adversarial
training [12].

In our evaluations, we compare the proposed (unsupervised) method against four super-
vised methods for image reflection removal, which are Zhang el al. [33], BDN [30] GCNet [2]
and EERNet [28]. These four methods represent the state-of-the-art, and they outperform
prior ones. We utilize benchmark real image datasets, including [26]. In addition, we com-
pare against the unsupervised image decomposition method (Double-DIP) in [9], although,
as mentioned in Chapter 1, this method requires extra inputs that are typically not avail-
able in practice. We show that the proposed method outperforms Double-DIP, even when
Double-DIP uses the extra inputs.

Finally, we note that Chandramouli et al. [4] proposed an unsupervised model for re-
moving reflection from single face images. They use a generative model pre-trained on facial
images as a deep image prior to suppress unwanted reflections from a single face image. Un-
like our work, this method can only handle face images and does not generalize to other
types of images with reflection. Thus, we could not compare against it.
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Chapter 3

Proposed Method

This chapter describes the proposed solution for the single-image reflection removal problem.

3.1 Basic Elements and Approach Overview

At a high level, the proposed method works as follows. Given an Image I with reflection,
the method produces a reflection-free background B∗. The method first decomposes the
Image I into an estimated background layer B̃ and an estimated reflection layer R̃ through
an unsupervised manner which involves iterative optimization steps. Then, the method uses
an in-painting model as a refinement step, generating a refined background B∗.

Prior works have shown that the empirical entropy of small patches inside a natural
image is much smaller than the entropy across different images [36]. That is, patches of a
natural image tend to have stronger internal self-similarity. For an image with reflection,
this observation indicates that patches in the background layer will likely have stronger
self-similarity within this layer than across patches in the other reflection layer, and vice
versa. To effectively utilize this observation in separating the reflection and background
layers, we introduce two new structures: Perceptual DIP and Cross-Feedback Perceptual
DIPs explained in the following.

Perceptual DIP: Employing perceptual cues has shown remarkable advantages in
capturing semantic meanings for various image-related tasks. Several recent deep-learning
techniques improve the performance by combining two perceptual losses: a feature loss to
measure some distance in the high-level feature space from a pre-trained perceptual network
and an adversarial loss to generate realistic images by training a separate discriminator net-
work in parallel. However, computing L1 or L2 distance between high-dimensional features
is insufficient to capture the real difference between them. In addition, an adversarial loss
requires paired ground-truth datasets of background and reflection layers to discriminate
real and fake data via supervised learning.
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Figure 3.1: The structure of the proposed Perceptual DIP. High-level features of the input
image are extracted from ResNet18, and are used in the Perceptual DIP as f1, f2, and f3.

Reflection separation is a low-level vision task, but it is a complex and ill-posed problem.
To address this complexity and reduce ambiguity, we utilize some high-level semantics. We
propose perceptual embedding, which contains multi-level feature maps directly fed to the
corresponding layers of an encoder, rather than leveraging perceptual losses.

Inspired by the perceptual discriminator [23], we design an encoder-decoder style net-
work with perceptual embedding, which is referred to as Perceptual DIP, as shown in Fig-
ure 3.1. At the initialization step, the perceptual embedding module extracts multi-level
features from a pre-trained image classifier. We chose ResNet18 [10] as our backbone struc-
ture of the perceptual module, which has four layers. We skip the first layer output because
features from this layer are more sensitive to low-level information of the image, similar to
those captured by DIP, while our expectation for this module is to incorporate high-level
features. Then, the extracted feature maps are concatenated with the features of each layer
in the encoder, constructed to fit well with the size of the perceptual embedding and the
input image.

Cross-feedback Perceptual DIPs: We propose coupling of two perceptual DIPs,
where the output of one Perceptual DIP is fed back into the other DIP, as shown in Fig-
ure 3.2. Each perceptual DIP iteratively captures similar small patches inside one of the
two layers while excluding patches from the other layer. Once a perceptual DIP outputs its
estimation, the corresponding cross-feedback estimation can be calculated from Eq. (1.1)
at each iteration t as B̃c

t = I − R̃t and R̃ct = I − B̃t.
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Figure 3.3: The effect of cross-feedback. At the early stage, up to 500 iterations, both layers
are separated based on low-level features like color and edges. However, at iteration 500, the
reflection layer restores objects while the background recovers other parts of the scene by
excluding each other, similar to human perception such that at iteration 5000, our model
manages to remove the reflection from the background, separating it into another layer.

In Figure 3.3, we show how the two Perceptual DIPs are excluding each other throughout
the iterations, which enables our method to effectively separate the reflection layer from the
background layer without additional inputs.

We note that we utilized dilated convolution in the last downsampler in the encoder of
the Perceptual DIP. Dilated convolutions require far fewer parameters than conventional
convolutions, and they better capture local and global semantics within the image. We study
the impact of the perceptual embedding on the reflection separation in Chapter 4.5.

Approach Overview: A high-level overview of the proposed method for single image
reflection removal is depicted in Figure 3.2. The figure shows two Perceptual DIPs with the
cross-feedback idea discussed above. High-level features are first extracted from the input
image using a simple image classifier. These features are fed to the two coupled Perceptual
DIPs, which through iterations generate two different layers. Different types of loss functions
are used to ensure good layer separation and minimize the distortion. After convergence, the
output of the cross-coupled Perceptual DIPs is given to a semantically-guided refinement
step to produce images with high visual quality. The details of the used loss functions and
refinement step are presented in Chapters 3.2 and 3.3.

3.2 Optimization and Losses

Optimization Scheme and Perceptual DIPs: We define the structure of a Perceptual
DIP as a parametric function y = Gθ(x). Specifically, in our method, two Perceptual DIPs
can be represented as B̂t = G1(B̃c

t−1, I) and R̂t = G2(R̃ct−1, I) given an input image I and

10



Algorithm 1 Optimization Algorithm
Input: The image I with reflection
Output: Decomposed layers, B̃ and R̃
1: initialize B̃0 = R̃0 = I, α0 = 0.1
2: for t = 0 to T : //T is set to 5,000 iterations
3: B̃t = (1− αt) · G1(I − R̃t−1)
4: R̃t = αt · G2(I − B̃t−1)
5: Compute the gradients of Ltotal w.r.t. B̃t, R̃t, αt
6: Update B̃t, R̃t, αt using the Adam optimizer [11]
7: B̃c

t = I − R̃t
8: R̃ct = I − B̃t
9: end for
10: return B̃t, R̃t

each cross-feedback, B̃c
t−1 = I − R̃t−1 and R̃ct−1 = I − B̃t−1, at each iteration t. In addition,

we add an external parameter αt to control which Perceptual DIP network generates which
image layer based on the following equation:B̃t = (1− αt) · B̂t

R̃t = αt · R̂t
(3.1)

where B̂t and R̂t are the direct outputs from the two Perceptual DIP networks. The range
of α is between 0 and 0.5, as the range of (0.5, 1) would have the same effect. We set the
initial value of α as 0.1, implying that reflections are relatively weaker than the background
scene in general cases. The impact of α in our model is evaluated in Chapter 4.5.

Algorithm 1 summarizes the proposed optimization method. The details of the loss
functions are presented in the following.

Loss Functions: For a given input image I with reflection, our goal is to find a percep-
tually meaningful decomposition of I into B̃ and R̃ layers. We realize this goal by designing
various four loss functions and integrating them into the model: reconstruction loss, exclu-
sive loss, similarity loss, and regularization loss. The total optimization loss can be written
as:

Ltotal = λ1 · Lrecon + λ2 · Lexcl + λ3 · Lsim + λ4 · Lreg, (3.2)

where λ1, λ2, λ3, and λ4 are the corresponding weights for each loss functions; we experimen-
tally set the values of these weights. Once determined, we fixed all parameters throughout
the entire evaluation. The details of each loss are explained below, while an ablation study
to analyze the impact of each loss is presented in the Supplementary Materials.

Reconstruction Loss: As we only have one single image without any pairs of ground-
truth, we find that combining different types of reconstruction losses helps the network to
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converge faster. It should be noted that our model is based on the reconstruction of the
input image by combining the extracted background and reflection layer from our model.
It is intuitive that the reconstructed image Ĩ should be similar to the original input of the
optimization iterations. Thus, we define our reconstruction loss as:

Lrecon = Lcolor + ω1 · Lgray + ω2 · Lgrad, (3.3)

Lcolor = ‖I − Ĩ‖2,

Lgray = ‖c(I)− c(Ĩ)‖2,

Lgrad = ‖ 5x I −5xĨ‖1 + ‖ 5y I −5y Ĩ‖1,

where c(·) is the conversion function from RGB image to gray-scale image, and 5x,y(·)
denotes the gradient of the input with the Sobel filter. The main reconstruction loss is a
pixel-wise L2 distance between the given image and the recombined image Ĩ in the RGB
color space. We also design the same L2 losses both in the gray color space (Lgray) and in
the gradient domain (Lgrad). We find that Lgray enhances the generated output, and Lgrad
makes the network more robust and helps to prevent the model from generating blurry
images. As seen in figure 4.8, having only the reconstruction loss will result in a simple
layer separation, in which the images are neither smooth nor meaningful. Still, the only
purpose they serve is to have their linear combination as close as possible to the input
image.

Exclusion Loss: The exclusion loss aims to minimize the correlation between two edges
of the background layer and the reflection layer at multiple spatial resolutions. This will
allow us to capture more contextual information from various scales, which can consider
different scales of both low-level and high-level information. Thus, similar to [33], we define
the exclusion loss as:

Lexcl =
N∑
n=1
‖norm(5B̃n)� norm(5R̃n)‖F , (3.4)

where n is the image downsampling factor, as exclusion loss minimizes the correlation be-
tween background edges and reflection at multiple spatial resolutions, each time in Eq. (3.4)
the image is downsampled by a factor 2, and we chose N as 3 in the experiment. norm(·) is
the normalization in gradient fields of the two layers, � is the element-wise multiplication,
and ‖ · ‖F denotes the Frobenius norm.

The key observation is that the edges of the transmission and the reflection layers are
unlikely to overlap through the samples, as An edge in I should be caused by either B or
R, but not both. This loss is effective in separating the background and reflection layers at
the pixel level. As shown in figure 4.8, disabling this loss would make the separation of two
layers weaker, especially in sections like edges. In addition, more residual reflections may
remain visible in the extracted background.
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Similarity Loss: The proposed model exploits cross-feedback to empower the network
to exclude one another under the assumption that each generated layer should be similar
to its corresponding cross-feedback from the other network as well as its previous output.
We call the first constraint as the cross-consistent loss Lcc and is defined as follows:

Lcc = ‖B̃t − (I − R̃t−1)‖2 + ‖R̃t − (I − B̃t−1)‖2, (3.5)

Our observation suggests that although reflection is evident in an image with reflection,
the most dominating part of the image is the background. The work in [34] shows that for a
deep network to produce visually pleasing images, the error function should be perceptually
motivated. l1 preserves colors and luminance. Since we do not want complete similarity
between the input image and the output to avoid a case where the model keeps on generating
the reflection in the background, we found through experiments that l2 loss with small effect
is more suitable in both preserving details and separating reflection. We define the Input-
Background-Similarity (IBS) loss as follows:

LIBS = ω1 · ‖B̃t − I‖2 + ω2 · Lpercep, (3.6)

Lpercep = λm ·
∑
m

‖f(B̃t)− f(I)‖1,

Semantic reasoning about the scene would benefit the task of reflection removal [33]. A
feature loss combining low-level and high-level features from a perception network serves
our purpose. Perceptual loss is defined based on the activation of the 19-layer VGG [21]
trained on ImageNet. f()̇ operator is the activation of an image at a certain level, and the
perceptual loss calculates l1 distance between activation of two images at each level. λm is
a balancing weight for each layer, and we put the most significant weight to emphasize low-
level features and edges. We used convolution layers similar to [28]. As figure 4.8 illustrates,
this loss would help to increase the details and color consistency of the extracted background
by having a weak comparison against the original input, and through working with the other
loss terms, it won’t be similar in the reflection characteristics.

Combining the two losses mentioned above, we get:

Lsim = Lcc + LIBS . (3.7)

Regularization Loss: We regulate the network under three priors: a total-variance
loss LTV [16], a total-variance balance loss LTV B that we applied on our own, and a ceiling
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rejection loss Lceil[7], which are defined as follows:

Lreg = γ1 · LTV + γ2 · LTV B + Lceil, (3.8)

LTV = ‖ 5 B̃t‖1 + ‖ 5 R̃t‖1,

LTV B = ‖ 5 B̃t‖1 − ‖5 R̃t‖1,

Lceil =
∑
m

f(B̃t, I,m) + f(R̃t, I,m),

f(x, y,m) =

‖xm − ym‖1 if xm > ym

0 otherwise
,

wherem denotes each image pixel. While a total-variance loss boosts the spatial smoothness
in both generated scenes, our total-variance balance loss penalizes the system when one of
the networks gives up on generating the output (degeneration problem) by balancing the
total gradients of each output. Also, the ceiling rejection loss constrains each pixel whose
intensity is larger than the input one, helping to resolve the color ambiguity.

All coefficients of our loss are fine-tuned through experiments.

3.3 Refinement

The cross-coupled Perceptual DIPs generate images for the background and reflection layers.
In the generation process, there are multiple downsampling and upsampling operations.
During these operations, some details of the input image can be lost, resulting in output
with poor visual quality even if the layers are perfectly separated. To address this issue, we
add a final stage to the proposed model to refine the output.

The refinement model is inspired by recent works on image in-painting and restoration,
e.g., the contextual in-painting method in [31]. This contextual in-painting method requires
user-specified masks for areas that have damages in the image. We adapt the contextual
in-painting method to the reflection removal problem as follows. Reflections in images can
be thought of as obstructions that cause damages in images. Thus, we consider the reflection
layer extracted by our cross-coupled Perceptual DIPs as obstructions (damages) to the main
background layer in the image. We then create a mask from this reflection layer based on
[8] and use it to fix the damages (reflections in this case) in the full-resolution input image
using the contextual in-painting method.
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Chapter 4

Evaluation

We evaluate the performance of the proposed unsupervised method and compare it against
the state-of-the-art supervised methods for image reflection removal in the literature using
a subjective study and multiple objective metrics. In addition, we analyze the impact of
various components of the proposed method. We also compare our method against the
unsupervised image decomposition method in [9] and its limited application to the image
reflection removal problem.

We note that the images presented in this paper contain subtle reflections,
and thus they are best viewed digitally and zoomed in to see these details and
differences.

4.1 Experimental Setup

Datasets:We assess the performance of the proposed method using three datasets, referred
to as DS1, DS2, and DS3. These datasets contain images with diverse reflection character-
istics for indoor and outdoor scenes, and they have commonly been used to evaluate prior
methods for image reflection removal in the literature, including the ones compared against
in this paper.

DS1 [26] consists of are hundreds of images. However, there are only 55 real-world images
with reflections having corresponding ground truth background and reflection layers, which
we use as our DS1. An image in this dataset is first captured through the glass, which
produces a mixed image with reflection and background layers. Then, the ground truth
reflection layer is captured by putting a sheet of black paper behind the glass. And the
ground truth background later is captured by removing the glass.

The second dataset, DS2, contains 20 images [33]. This dataset has a ground truth for the
background layer only. Images are captured through a camera on a tripod with a portable
glass in front of the camera. The ground truth background is captured after removing the
glass. The third dataset, DS3, is collected from the Kaggle website [1] and it includes 1,000
image pairs with and without reflections from 108 different scenes.
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Methods Compared Against: We compare the proposed method against four state-
of-the-art methods, which are BDN [30], GCNet [2], ERRNet [28], and Zhang et al. [33]. All
of these methods use supervised deep learning models and have been shown to outperform
prior works. We use the implementations released by the authors of these works in our
comparisons.

Implementation Details: We experimentally set the values of weights of different
losses. We set λ1, λ2, λ3 and λ4 as 1.5, 0.13, 1.0, and 1.0, respectively. For the reconstruction
loss, we set the value of ω1 and ω2 as 0.09. The values of γ1 and γ2, the regularization loss
coefficients, are set to 0.003 and 0.003 in our experiments. As for ω1 and ω2 in the similarity
loss, we set them 0.1. Note that decreasing the value of similarity loss will result in a better
separation of reflection. Since our method is based on optimizing the model parameters on
the single image input with the size of 224*224, the batch size is set as 1 and the parameters
are updated with a learning rate of 0.0001 until the number of iteration (epochs) reaches
5500.

4.2 Comparison using Subjective Study

We conducted a subjective study to compare the quality of the produced images by our
method against those produced by four supervised reflection removal methods through.
The study was approved by the Research Ethics Board of our university. A
total of 50 subjects participated in this study, where 34% of the participant were female.
The participants have various education and work backgrounds and are from different age
groups: 72% are between 18–25 years old, 24% between 26–35, and 4% are older than 35.

The experiments were conducted through web forms, where a subject is shown an input
image that contains reflection along with the outputs produced by five reflection removal
methods: BDN [30], GCNet [2], ERRNet [28], Zhang et al. [33], and ours. The web form
contains two rows of images, where the image in the leftmost column in the first row is
the input image with reflection, with purple boxes indicating where reflections are located.
The other columns are the reflection-removed versions of the image produced using the
considered methods. We ask subjects to give a score between 1 (Poor) and 5 (Excellent)
for each generated image indicating the "quality of reflection removal". We ask the subjects
to consider whether the method has removed the reflection while preserved image visual
quality. The names of the used reflection removal methods are not shown to subjects and
the order of showing the results changes randomly for each input image. More details about
the subjective study are presented in the Appendix.

Each of the 50 participants evaluated the quality of removing reflections from 16 repre-
sentative and diverse images chosen from DS1, DS2, and DS3. Thus, in total, we collected
50× 16 = 800 data points.
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A summary of the results is given in Table 4.1. The table compares the average and
median of the Mean Opinion Score (MOS) computed across all users and images for the
five considered methods. The results in Table 4.1 show that our method substantially out-
performs all prior works, despite being unsupervised and not requiring any training data.
For example, the median MOS resulted from our method is 3.94, which is 37% higher than
the best median MOS resulted from prior works (2.87 produced by ERRNet [28]).

We also show more statistics of our studies in the Appendix.
Figure 4.1 separates the average scores over all the scenes into five bins, and indicates

how many users’ average score for our method is in each of these score ranges. Through
this histogram, we see around 94% of users had average scores of three or higher over all
the images generated by our method.

Table 4.1: Summary statistics of the subjective study.

Average MOS Median MOS
BDN [30] 2.68 2.75
GCNet [2] 2.49 2.5
ERRNet [28] 2.87 2.84
Zhang et al. [33] 2.74 2.75
Ours 3.82 3.94

4.3 Visual and Objective Comparisons

Visual Comparisons: We present samples of our results to visually compare the proposed
method versus the state-of-the-art methods in Figure 4.2, Figure 4.3, and Figure 4.4, on
datasets DS1, DS2, and DS3, respectively. Samples are chosen randomly from images that
would have a visible reflection. In these figures, we draw rectangles showing some areas
that have reflections. The input to all methods is shown on the left, which is an image with
reflection. These figures show only the background layer of each image after removing the
reflection layer. We analyze the reflection layer later.

The results in the Figures 4.2, 4.3, and 4.4 show that our method produces better (or at
least the same) reflection removal than the supervised methods that require a substantial
amount of training data. For example, in the sample images of the second row and third row
in Figure 4.2, all methods except ours failed to detect and remove the reflection. Similarly,
for the sample in the fourth row, our method generated an output close to the ground truth
background, whereas the other models failed to remove the reflection in the image. As for
the first row, our model has managed to locate and remove the reflection better than the
other methods. Similar observations can be made on the results in Figures 4.3 and 4.4.
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Figure 4.1: Number of users with average scores in each range.
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Figure 4.2: Comparing our unsupervised method versus four supervised methods on dataset
DS1.
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Mixed Image Ground Truth BDN ERRNet GCNet Zhang et al.Our Method

Figure 4.3: Comparing of our unsupervised method versus four supervised methods on
dataset DS2.

We further analyze the quality of the layer separation of different methods in Figure 4.5.
This figure shows both the background and reflection layers produced by various methods
and compares them against each other and the ground truth. We show the results for only
our method as well as the BDN [30] and Zhang et al. [33] methods, as they were the ones
that produced the best results from prior works, as indicated in Figures 4.2, 4.3, and 4.4.
As Figure 4.5 shows, our method produces a cleaner separation of the background and
reflection layers.

Objective Comparisons: Next, we compare our method versus others using the PSNR
and SSIM objective metrics. The results for dataset DS1 are presented in Table 4.2, which
shows that our method results in somewhat smaller SSIM and PSNR values than some of
the other methods. We note the SSIM and PSNR do not measure the quality of separation.
Instead, they measure the quality of the produced images, even if the separation of the layer
was not done properly. We illustrate this in Figure 4.6, where we compare the produced
background layer of our method versus the one produced by GCNet. As the figure shows,
GCNet produced a background that is similar to the input image without removing too
much reflection. Thus, the computed PSNR and SSIM values are high, despite the poor
performance in the main task at hand (removing reflection). On the other hand, our method
removes most of the reflection from the image and produces images with acceptable PSNR
and SSIM values.

Remark: We note that the performance of prior supervised methods heavily depends
on the used datasets in the training and their performance typically degrades on images
that do not have similar ones in the training datasets, which is usual as real-life images has
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Mixed Image BDN ERRNet GCNet Zhang et al.Our Method

Figure 4.4: Comparing of our unsupervised method versus four supervised methods on
dataset DS3. Eight of the shown nine images were used in the subjective study.
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Figure 4.5: Comparison of the separation quality produced by our method versus BDN [30]
and Zhang et al. [33] methods.
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numerous varieties. In contrast, our model exploits both high-level and low-level statistics
of an image to find two layers that are as close as possible to a natural image. It optimizes
the parameters of the model on each input sample separately, which means that it learns
the image statistics of the input sample and uses them to separate the input into two layers.

Table 4.2: Comparing our method against supervised methods using the SSIM and PSNR
metrics. B: Background, R: Reflection.

Dataset DS1

Metric PSNR SSIM

B R B R

BDN [30] 22.01 9.01 0.86 0.31

GCNet [2] 24.53 — 0.92 —

Zhang et al. [33] 21.13 20.88 0.87 0.64

ERRNet [28] 23.86 — 0.88 —

Ours 20.52 20.28 0.82 0.41

4.4 Comparison against the Double-DIP Unsupervised Layer
Separation Method

As mentioned in chapter 1, the unsupervised image decomposition method in [9] requires
a sequence of images or two different mixtures of the background and reflection layers to
address the ambiguity in the reflection removal problem. Although requiring two different
mixtures of the background and reflection layers is not practical, since we do not know these
layers beforehand, we compare the proposed method against the unsupervised method in
[9], which is referred to as Double-DIP.

To be able to compare against Double-DIP, we use images in dataset DS1, because
they have ground truth background and reflection layers. This enables us to create the
mixtures of background and reflection layers needed by Double-DIP to function. As there
was no specific method in [9] for mixing the two layers, we experimented with two different
configurations, referred to as Double-DIP1 and Double-DIP2. For Double-DIP1, we mix
the original (ground truth) background layer with the reflection layer that was modified
by a Gaussian kernel. For Double-DIP2, we linearly add the background and reflection
layers with a higher weight for the reflection layer. We expect Double-DIP2 to produce
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SSIM = 0.92

PSNR = 21.32

SSIM = 0.84

PSNR = 19.2 
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Figure 4.6: Comparison between the output of our model and GCNet to show the importance
of the visual quality over the objective PSNR and SSIM metrics. Although GCNet’s output
achieved better PSNR and SSIM, it did not remove much of the reflection, whereas our
method removed most of the reflection.

better results as it solves a simpler problem with linear combinations of the ground truth
layers. We used the Double-DIP implementation released by the authors of [9]. We realize
that Double-DIP1 and Double-DIP2 only represent two possible combinations. However,
the main point here is that the Double-DIP method requires unrealistic inputs to solve
the single-image reflection removal problem. Nonetheless, we compare our method against
Double-DIP as it represents the closest work in the literature that considered unsupervised
models for the complex single-image reflection removal problem.

Figure 4.7 shows sample results comparing our method versus Double-DIP. The results
in the figure show that our method produces better separation quality, despite not needing
any extra inputs. For example, as shown in the first two rows, our method performed better
and separated the reflection from the background, whereas Double-DIP1 and Double-DIP2
failed to remove the reflection.

Next, we compare our method versus Double-DIP using PSNR and SSIM in Table 4.3.
The table shows that our method achieves higher PSNR and SSIM values, especially for
the background layer. As commented before, PSNR and SSIM indicate the quality of the
produced images, but they may not consider the layer separation quality.
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Table 4.3: Comparing our method against Double-DIP method using the SSIM and PSNR
metrics. B: Background, R: Reflection.

Dataset DS1

Metric PSNR SSIM

B R B R

Double-DIP1 [9] 16.61 10.02 0.73 0.39

Double-DIP2 [9] 16.53 20.35 0.65 0.66

Ours 20.52 20.28 0.82 0.41

4.5 Analysis of our Method and Ablation Study

In this chapter, we conduct a detailed analysis of various components of the proposed
method.

Ablation Study–Impact of Different Losses: Our method utilizes four types of
losses: reconstruction loss, exclusion loss, similarity loss, and regularization loss. Since the
reconstruction loss performs the most important role in the problem definition, we adjusted
the weights of other losses based on this loss to obtain better separation results. Thus,
we evaluate the impact of the different losses by adding each loss sequentially to the re-
construction loss as shown in Figure 4.8. Since we utilize high-level features of Perceptual
Embeddings, the separation result in the second column from the left in Figure 4.8, when
using only reconstruction loss, looks reasonable but not sufficient due to the ambiguity be-
tween the two layers. We add the exclusion loss to make the model decompose the input
sample into two layers having different contents based on edge information. The results in
the third column in Figure 4.8 show better separation but still has some small artifacts.
While the results the fourth column are might be similar to the ones in the third, the
regularization term brings improvement in the speed of convergence and robustness of the
model. We enhance the model with a cross-feedback structure and its corresponding loss
to perform well even when the gradient information of the reflection layer is not enough.
By joining the similarity loss, we can obtain our best output shown in the last column in
Figure 4.8, which shows more solid separation in color and shapes, in addition to its help
on convergence and robustness.

Impact of α: The parameter α gives different weights to the background and reflection
layers that are generated during the iterations and fed back to the two perceptual DIPs.
We conducted experiments by varying the value of α within its rage, which is between 0.0
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Figure 4.7: Comparing our method against the unsupervised Double-DIP [9].

and 0.5. Two sample results for α = 0.1 and 0.4 are shown in Figure 4.9. Our experiments
show that the impact of α diminishes as we get closer to 0.5, as its influence on the two
Perceptual DIPs becomes equal. In addition, smaller values of α tend to yield better layer
separation results, as these values assign lower weights to the reflection layer. This is inline
with the observation that the reflection layer tends to have lower pixel intensity than the
background layer in natural images. Through experimentation, we found that small α values
around 0.1 resulted in the best results.

Perceptual Embedding: We analyze the impact of the perceptual embedding on the
reflection separation using multiple images with different degrees of reflections. Recall that
we modify a ResNet18 model to extract these features. We trained this model using two
common datasets of objects: ImageNet [19] and Places365 [35]. This training does not need
any datasets for image reflection removal and is done once.
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Figure 4.8: Ablation study to analyze the impact of different losses in four different sce-
narios in two real images: "I": Using only the Reconstruction Loss, "II": Reconstruction
+ Exclusion, "III": Reconstruction + Exclusion + Regularization Loss, and "IV": All the
losses.
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Figure 4.9: Impact of α on the layer separation.

27



Ground Truth Places365

B
ac

kg
ro

u
n

d
R

ef
le

ct
io

n

ImageNet No Percep

B
ac

kg
ro

u
n

d
R

ef
le

ct
io

n

Figure 4.10: The impact of Perceptual Embedding on layer separation.

Figure 4.10 shows the importance of the perceptual embedding in separating the back-
ground layer from the reflection layer for two sample images. The results int the figure also
indicate that using the Places365 dataset yields better layer separations than using the
ImageNet dataset. This is because the Places365 dataset has more images for indoor and
outdoor scenes, which usually exist in many reflection removal problems.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, we considered the problem of single-image reflection removal. Prior compu-
tational methods approached this problem by making assumptions, which are impractical
in real-world scenarios. Recent deep learning based methods, on the other hand, utilize
supervised learning models, which are heavily reliant on datasets to be general and well-
performed, which is scarce when it comes to non-synthetic datasets.

We have presented an unsupervised method for single-image reflection removal. To the
best of our knowledge, this is the first unsupervised work for removing reflection for natural
scenes using only a single image. We have proposed a novel architecture of cross-coupled
Perceptual DIPs that is capable of capturing not only the low-level statistics of a natural
image using Deep Image Priors but also the high-level semantic cues through the percep-
tual module. We have also designed an optimization scheme using multiple loss functions
without training on any dataset, which significantly resolves the ambiguity of single-image
separation and leads to good separation results for natural images. Both qualitative and
quantitative evaluations on real datasets show that our method outperforms the state-of-
the-art supervised models. It also significantly outperforms the closest unsupervised method
in the literature, which, unlike our method, requires additional inputs to function.

5.2 Future Work

The work in this paper can be extended in multiple directions. For example, the refinement
stage of the proposed method can further be improved to remove any visual artifacts that
may occur around areas with strong reflections.

Another extension is to dynamically adjust the value of α. In the current setting, we fix
α in a way to indicate that the intensity of the reflection layer is less than the background
layer, which captures the most realistic scenarios. However, this may fail when the reflection
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is too strong or more dominant. In order to solve this problem, future work can consider
using a neural network to estimate α from labeled data.
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Appendix A

Subjective Study

Our user study is approved by the Research Ethics Board of SFU. The objective of this user
study is to rank the quality of some single-image reflection removal methods. The reflection
images used in this survey are from public datasets. Reflection are seen in diverse, different
scenes, with different intensity and shape.

The image in the most left column is an image with reflection, with purple boxes indicating
where reflection is located. The other columns are the reflection-removed version of the
image in the most left column using different methods, randomly placed in each section.

In the subjective study and as shown in Fig A.1, the subject is first presented with an
overview of the study and its objectives. Then, the subject completes brief basic information
about themselves, including their age and gender. Furthermore, the subject is shown an
example explaining the reflection removal task as in Figure A.2. Then, as shown in Figure
A.3, successive scenes are shown to the subject to rank.

Users are asked to score the generated images using the single-image reflection removal
methods according to "quality of reflection removal", considering if the method has tried to
remove the reflection while preserving image quality.

Tables A.1, A.2 and A.3 show the average, median and standard deviation of all the users’
scores over each scene respectively.

These tables compare the average and median of the Mean Opinion Score (MOS) computed
across all users for each image for the five considered methods. The results in Table A.1
and A.2 show that our method substantially outperforms all prior works over all images,
and also over all users which are demonstrated at the bottom row. As seen in Table A.2 the
median MOS resulting from our method is 3.94, which is 37% higher than the best median
MOS resulting from prior works (2.87 produced by ERRNet [28]).
This is also observed in Table A.1, in which the average MOS resulting from our method is
higher than other methods, which are all supervised methods unlike ours.
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Figure A.1: Subjective evaluation form. Details about each user is gathered at the beginning
of the survey.
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Figure A.2: A test case to introduce a user to the demanded tasks and how to score the
images subjectively.
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Figure A.3: Scene 1.
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Table A.1: Average scores of the subjective study for each scene over each method.

Average over all users
Evaluated Scenes BDN GCNet ERRNet Zhang OurMethod

Scene I 3.38 2.88 1.3 2.56 4.68

Scene II 3.24 2.3 2.64 2.82 3.68

Scene III 2.14 2.58 2.9 3.44 4.14

Scene IV 1.98 2.88 4.44 3.38 2.78

Scene V 2.64 2.16 2.58 2.24 4.78

Scene VI 3.68 2.18 1.72 2.44 4.56

Scene VII 1.98 3.04 3.72 4.10 2.24

Scene VIII 1.46 2.30 3.72 2.64 4.66

Scene IX 1.58 2.06 4.70 4.04 2.84

Scene X 3.42 2.46 2.36 2.68 2.88

Scene XI 1.86 3.70 4.28 2.22 2.58

Scene XII 2.12 2.34 2.12 2.84 4.82

Scene XIII 2.32 2.30 2.14 2.58 4.14

Scene XIV 4.62 2.20 2.00 2.12 3.66

Scene XV 2.92 2.14 3.30 1.78 4.32

Scene XVI 3.58 2.46 2.02 2.02 4.42

Average MOS 2.68 2.49 2.87 2.74 3.82
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Table A.2: Median scores of the subjective study for each scene over each method

Median over all users
Evaluated Scenes BDN GCNet ERRNet Zhang OurMethod

Scene I 4 3 1 2 5

Scene II 4 2 3 3 4

Scene III 2 3 3 4 5

Scene IV 2 3 5 4 3

Scene V 3 2 3 2 5

Scene VI 4 2 1 2 5

Scene VII 2 3 4 4 2

Scene VIII 1 2 4 3 5

Scene IX 1 2 5 4 3

Scene X 4 3 2 3 3

Scene XI 2 4 5 2 3

Scene XII 2 2 2 3 5

Scene XIII 2 2 2 3 5

Scene XIV 5 2 2 2 4

Scene XV 3 2 3 1 5

Scene XVI 4 3 2 2 5

Median MOS 2.75 2.50 2.84 2.75 3.94
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Table A.3: Standard deviation of the subjective study’s score for each scene over each
method

Standard deviation over all users
Evaluated Scenes BDN GCNet Zhang OurMethod ERRNet

Scene I 1.04 0.86 0.90 0.64 0.59

Scene II 1.50 1.18 0.96 1.20 1.51

Scene III 1.04 1.13 1.01 1.43 1.21

Scene IV 1.05 1.12 1.06 1.03 1.13

Scene V 1.34 1.20 1.11 1.05 0.65

Scene VI 0.99 0.84 1.13 0.89 0.79

Scene VII 1.10 1.21 0.99 1.10 1.25

Scene VIII 0.79 0.90 0.72 0.80 0.87

Scene IX 0.73 0.64 0.71 0.61 0.85

Scene X 1.68 1.08 1.07 1.18 1.43

Scene XI 0.96 0.98 1.13 0.83 1.27

Scene XII 1.02 1.01 1.18 1.17 0.66

Scene XIII 1.23 1.02 1.17 1.18 1.35

Scene XIV 1.01 1.02 1.00 1.07 0.66

Scene XV 0.95 1.00 1.02 0.95 1.09

Scene XVI 1.04 0.87 0.99 1.13 1.12
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