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Abstract

Scheduling latency-sensitive applications in large-scale datacenters is challenging. Current approaches

use application-layer schedulers, which impose high overheads and result in long latencies. We

present Saqr, the first in-network, datacenter-wide scheduler that supports short tasks with execu-

tion times in the order of tens of microseconds. Saqr introduces new network-level constructs and

a distributed scheduling policy to enable network switches to efficiently schedule tasks within the

network at line rate and with minimal latency. We implemented Saqr in a testbed with high-speed

programmable switches and compared its performance against the state-of-the-art in-network sched-

uler (Racksched). Our results show that Saqr can reduce the tail response time by up to 85% and

the processing load on switches by up to 2.5X compared to Racksched. In addition, we compared

Saqr versus Racksched using large-scale simulations with diverse and dynamic workloads and our

results show that Saqr substantially outperforms Racksched across all performance metrics.
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Chapter 1

Introduction

Recent interactive, user-facing, applications running in multi-tenant datacenters have tight response

time requirements. Examples of these applications include key-value stores [7, 6, 8], web search

[5, 13], and function-as-a-service platforms [18, 29, 66]. Each one of these datacenter applications

typically runs multiple tasks in parallel to complete a function or job. The average execution time of

tasks in latency-sensitive applications is very short; it ranges from tens to hundreds of microseconds

[45, 12]. Tasks are executed by computing resources in the datacenter, which are referred to as

workers. Workers run on the servers of the datacenter. To execute a task, a worker needs to be

chosen, which is the job of the datacenter scheduler.

Since a datacenter application runs multiple tasks in parallel, its response time is affected by

the slowest task. This is referred to as the tail response time, which needs to be minimized for the

application to meet its strict requirements. In addition, large-scale datacenters with tens of thousands

of servers are expected to support millions of concurrent tasks. That is, datacenter schedulers are

expected to support high throughput.

Traditional datacenter-wide schedulers run as application-layer processes [55, 72, 33, 24, 31].

This introduces significant network and processing delays, especially for latency-sensitive applica-

tions. In addition, these schedulers may not achieve the high throughput needed for modern large-

scale datacenter. For example, in current datacenters, hundreds of millions of scheduling decisions

need to be made each second. This scheduling workload requires a substantial amount of computing

resources [72], and it is difficult to realize using traditional application-layer schedulers.

Unlike traditional, application-layer, datacenter schedulers, in-network schedulers make task

scheduling decisions by the network switches themselves. While in-network schedulers have the

potential to reduce the tail response time for applications and achieve high scheduling throughput,

they are challenging to design. This is because of the stringent limitations imposed by the network

switches. These limitations include a restricted programming model and small amounts of memory

and processing resources on the switches. In this thesis, we address this challenge and design a

scalable and efficient in-network datacenter scheduler.
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1.1 Problem Statement

The problem we address in this thesis is designing an efficient task scheduler that scales to dat-

acenters with large number of workers while supporting short latency-sensitive tasks. Designing

scheduler for large-scale datacenters, is a challenging for multiple reasons. First, running short µs-

scale tasks on a large number of workers requires high throughput of scheduling decisions. Second,

meeting the strict latency requirement of such workloads requires efficient scheduling scheduling

decisions that minimize the task waiting times. Third, to make effective scheduling decisions, the

scheduler needs to keep track of the state of the available resources across the entire datacenter,

which could impose substantial communication and processing overheads.

In summary, the problem considered in this thesis can be stated as follows. Design an in-network

task scheduler that assigns each arriving task to one of the computing resources in the datacenter

such that the average task response time is minimized, while imposing minimal overheads on the

network switches and achieving high scheduling throughput.

1.2 Thesis Contributions

We propose Saqr,1 the first datacenter-wide in-network task scheduler for multi-tenant datacenters.

Unlike traditional schedulers, Saqr offloads the scheduling functionality to distributed switches in

the network, which enables efficient and fast scheduling of latency-sensitive tasks. Despite its po-

tential benefits, designing in-network scheduling is challenging as it needs to balance between the

scheduling quality (i.e., the tail response time and throughput) and the communication and pro-

cessing overheads imposed on switches. Saqr addresses this trade-off by distributing the scheduling

workload across different switches in the datacenter.

In designing Saqr, we introduce a new scheduling policy that does not require queuing incoming

tasks at switches, which enables task scheduling at line rate. We also present multiple ideas and data

structures to efficiently realize the proposed scheduling policy in modern programmable switches,

which have a restricted programming model and limited memory resources. In addition, we propose

simple mechanisms to distribute the load information among in-network schedulers while balancing

between the freshness of load values and communication and processing overheads on switches.

Furthermore, We present efficient methods to handle switch and worker failures.

We implement the proposed scheduler in a testbed using a high-end programmable switch,

which is logically divided into multiple switches to emulate a representative part of a datacenter

network. We compare Saqr against Racksched [76], the state-of-art in-network scheduler. Our ex-

perimental results show that Saqr can reduce the tail response time by up to 85%, increase the

throughput by up to 2.17X, and reduce the processing load on switches by up to 2.5X, compared

to Racksched. In addition, we analyze the performance of various components of Saqr and show

1Saqr is the Arabic word for falcon, the fastest known animal.
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its robustness to failures using simulations. We also compare Saqr versus Racksched in large-scale

simulation setups, using datacenter topologies with more than 27K hosts and thousands of switches.

The simulation setups consider diverse and dynamic scheduling workloads. Our simulation results

show that Saqr substantially outperforms Racksched across all performance metrics.

1.3 Thesis Organization

This thesis is organized as follows. Chapter 2 presents a brief background on datacenter scheduling

and in-network computing. It also summarizes the related work in the literature and challenges of

designing in-network datacenter task schedulers. Chapter 3 presents the details of the proposed so-

lution. Chapter 4 presents our implementation of the task scheduler in the P4 language, which is the

stat-of-the-art programming language for programmable network switches. It also describes vari-

ous practical considerations for Saqr. Chapter 5 describes the setup of our testbed and presents our

experimental results. And Chapter 6 evaluates the proposed solution using large-scale simulations.

Finally, Chapter 7 concludes the thesis and describes potential directions for future work.
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Chapter 2

Background, Related Work and
Challenges

This chapter presents a brief background on datacenter networks, task scheduling in datacenters and

the modern programmable switches. Next, it summarizes the related works in the literature. Finally,

it discusses the challenges of realizing task scheduling inside the network.

2.1 Background

Datacenter Network Topology. Layered tree model is used in many modern datacenter network

designs. Particularly, a widely deployed architecture in the datacenters is the multi-rooted Clos tree

topology [9], which consists of core, spine, and leaf layers. Figure 2.1 shows an example of such

architecture. Each leaf switch (also known as top-of-rack switch) is connected to a rack of servers.

Spine switches handle inter-rack routing. In this architecture, multiple paths can exist between a

given source and destination server. The topology also addresses the challenges of providing high

bisection bandwidth and supporting large number of servers.

Scheduling in Datacenters. Resources in datacenters are commonly managed by systems called

cluster managers. Cluster managers are responsible for sharing the resources among different ap-

plications and scheduling incoming applications [64, 35]. As illustrated in Figure 2.2, the scheduling

architecture in cluster managers can be divided into two main categories : (i) Monolithic where de-

cisions are serialized and one scheduler makes all of the scheduling decisions [27]. (ii) Two-level

where a resource manager offers the resources to multiple schedulers [35, 71], and each scheduler

allocates these resources to the arriving tasks. The schedulers operate independently and in parallel.

The two-level design addresses the scalability issues of handling scheduling decisions at high rates

and provides lower latency per decision. Fine-grained task schedulers, such as [55] and [76], focus

on the second level of scheduling in the two-level design and address the problem of assigning tasks

to the allocated resources.

Ideally, the resource allocator should provide applications with enough resources to satisfy the

performance requirements [28], and the fine-grained task scheduler should assign the tasks to the

4
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Figure 2.1: Example of a multi-rooted Clos network topology.

available resources to minimize the response time to meet the service level objectives (SLO). Sched-

uler inefficiency, however, forces datacenter operators to over-provision the resources in order to

provide a predictable performance [25, 51], which results in underutilized clusters. For example, a

study on a cluster that serves user-facing services in Twitter showed that the aggregate cluster CPU

utilization is below 20% [27].

To support the increasing demand and with the end of Moore’s law, there is a recent trend to

build highly parallel scalable applications [38, 45, 29] with shorter task service times. For exam-

ple, modern online services already involve thousands of nodes to serve a single customer query

[61, 12]. As the tasks become shorter and the number of workers increase, the schedulers need to

provide higher throughput and lower latency for making decisions. For example, considering a clus-

ter with 20K workers. Given a task mean execution time of 100 µs, the system needs to make 200M

scheduling decisions per second and to handle around the same number of packets for processing

the state update messages.

Programmable Data Planes. Networks consist of data plane and control plane components. The

data plane performs the packet forwarding, and the control plane is the part that gives instructions to

the forwarding components to process the packets (e.g., routing tables). In traditional switches, the

data plane is realized as a fixed and specialized hardware to provide high speed while the control

plane runs on top of general purpose CPUs to enable more flexibility. However, recent advancements

[17] have enabled the data-planes to be programmable while achieving forwarding capacity at scale

of few Tbps. That is, modern programmable switches offer a great potential for offloading parts

of the applications to the network. This enables the applications to achieve higher throughput and

lower latencies [59].

Figure 2.3 shows an example of the programmable switch architecture. At a high level, there

are three main programmable blocks in this architecture: (i) Parser, which provides the state ma-

chine for extracting the header field values, (ii) Match-Action pipeline, which contains memory and

ALU units to perform the operations on the header fields, and (iii) Deparser, which re-assembles the

5
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Figure 2.2: Illustrative overview resource manager architectures. Dotted rectangles represent the
worker state managed by each scheduler.

packet and calculated headers. The main part of processing logic is realized using the match-action

pipeline which is composed of multiple processing stages [17]. Each stage has memory and com-

puting resources. Transferring data between stages is done via the metadata bus, where the result of

computations from one stage can be passed to subsequent ones.

Defining the behaviour of the mentioned programmable blocks is done using domain-specific

languages such as P4 [16]. At compile time, each part of the packet processing logic is mapped to

the resources of a certain stage of the pipeline, and each stage accesses a pre-allocated section of

the SRAM abstracted as register arrays.

Scaling out beyond a single rack. Recent works, e.g., [76, 43, 42], showed the potential of pro-

grammable switches for realizing high throughput and low-latency scheduling. However, they are

mostly designed to schedule tasks within individual racks, and they do not scale to the whole data-

center. Although some applications running in datacenters may not need more cores than the avail-

able in one rack, there are many practical scenarios where applications require and/or benefit from

execution on cores across different racks. For example, running applications across racks in differ-

ent fault domains improves their fault-tolerance and availability [15, 3, 1]. This is especially im-

portant for latency-sensitive applications, since most of them are user-facing in production services.

A recent study from Facebook [2] indicates that the traffic of many latency-sensitive applications

is mostly not rack-local. In addition, in public datacenters, it is not uncommon that tenant’s Vir-

tual Machines (VMs) are placed on different racks by the placement algorithm due to unavailable

resources at the time [36] or for improved fault tolerance. Therefore, there is a need to run tasks

across racks in the datacenter.
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2.2 Related Work

We summarize the related works in the following.

Software-based Schedulers. There is a long line of research regarding scheduling in distributed

systems. Traditionally, schedulers are designed as software processes that run on one or multiple

servers. Centralized schedulers focus on service times in the range of seconds to hours and are

able to make more complex decisions and support a wide range of resource allocation policies

[72, 33, 56]. Multiple prior works, e.g., YARN [71] and Mesos[35], decouple resource allocation

from the task scheduling logic. Our work can be complementary to such works as it focuses on

realizing the fine-grained task scheduling on the allocated resources in shared clusters.

To scale up and support higher throughput, distributed schedulers have been proposed where

they trade off the accuracy for better throughput [55, 28, 23, 24, 40]. The shortest task service

time supported by the distributed schedulers is still in the order of hundred milliseconds and such

schedulers require large amount of processing resources on the hosts. For example, Sparrow [55]

is a distributed scheduler designed for high scheduling throughput. It needs one scheduler node for

handling decisions of every 10 worker nodes and still takes between 1 ms to 10 ms for scheduling

each task. This is because the schedulers rely on probing after receiving a task to get information

about the worker states. In such design, it takes two network round trip times (RTTs) when a worker

becomes idle before it starts executing the next waiting task. For latency-sensitive applications, the

service time can be smaller than a single RTT [12]. That is, for short tasks, the workers will spend

most of their time being idle and requesting a task from scheduler rather than executing the tasks.

Saqr is designed for a different operational point and supports tasks in the order of tens of µs

and scales to billions of scheduling decisions per second. In contrast to software-based distributed

7



schedulers, Saqr does not queue the incoming tasks and instead distributes the worker state infor-

mation to schedule tasks in real-time.

In-network Computing. Emerging programmable data planes enable offloading of various appli-

cations to the network to achieve higher throughputs and lower latencies [37, 75, 63, 46]. Most prior

works, however, focus on rack-scale designs where a single switch handles all of the traffic for a

certain application. Similarly, recent works [76, 43, 42] focused on centralized rack-scale schedulers

inside the network. For example, R2P2 [43] and Falcon [42] aim to realize a centralized task queue

inside switches to store tasks until a worker becomes idle. R2P2 recirculates a task packet until

a worker becomes available, while Falcon stores the task data in a queue data structure in switch

memory. A fundamental problem of these approaches is the limited scalability for large clusters: in

case of request bursts, R2P2 results in significant bandwidth overheads, and Falcon fails to store the

tasks inside the limited switch memory.

The closest work to Saqr is Racksched [76], which uses randomized load balancing for schedul-

ing tasks for a rack of servers. Unlike Racksched, Saqr scales to the datacenter network. We compare

Saqr against Racksched.

Load Balancing Theory. There is a substantial body of work in the theory literature regarding the

performance of different policies such as power-of-two choices [52, 19] and Join Idle Queue [49,

69]. The power-of-two choices policy has been used extensively in prior software-based schedulers

[55, 24]. Our work, however, addresses the specific challenges of realizing a scheduling policy

inside the network and in distributed scheduler setup. We design a new policy that can be efficiently

realized inside the datacenter network using a hierarchical architecture. The proposed policy and

the state distribution mechanisms in Saqr minimize the communication overheads which were not

studied in such setup in the prior works.

2.3 Challenges of In-network Scheduling

In-network scheduling can offer short latency and high throughput for datacenter applications. How-

ever, it faces multiple challenges that stem from the design of the programmable switches them-

selves. We briefly describe the main challenges in the following.

Current programmable switches offer a restricted programming model that operates within a

stringent hardware environment. We summarize the main properties of programmable switches that

make realizing load-aware scheduling in data plane challenging:

• P1: Single access to each register array. Each packet in the pipeline can only access one

index of the register array and perform a primitive operation on it.

• P2: Stage-local register arrays. Each register array is bounded to a specific stage at compile

time and the memory block is only present to that specific stage.

• P3: Limited number of stages. The number of stages in the pipeline is limited (e.g., 10–20

stages) which limits the number of allowed sequential operations.

8



• P4: Limited memory resources. The total memory available in the switch is limited, and it

needs to be shared among applications offloaded to the switch for in-network processing as

well as the primary networking functions, with a higher priority for the latter [59].

We note that most of these limitations are based on design choices to enable line-rate processing

of packets and ensure atomic changes to registers in the switch pipeline.

P1 makes it challenging to realize even simple sampling-based scheduling policies, such as

power-of-two choices, since the switch needs to read two samples from the memory for an arriving

task. Previous works, e.g., [76], used one register per server and allocated the registers on different

stages to overcome the single-access limitation. This, however, cannot scale to thousands of nodes

in the datacenter because of the limited number of stages and registers (P3).

Another challenge that arises from the P1 and P2 is that when schedulers read load values and

select a worker node, it is not possible to update the switch view about the worker in a single

pipeline pass. Using packet resubmission for every single task introduces a significant amount of

throughput overhead. A workaround for this is to offload the load monitoring to the worker nodes

and rely solely on the response packets for updating the switch state. This approach, however, results

in increased delay of at least 1 RTT, which is sometimes even larger than the task execution time

itself for latency-sensitive applications. This also means that a scheduler may make decisions using

stale information until one of the tasks finishes executing in the worker and a reply packet updates

the switch view. Drift of scheduler view from the actual worker loads can degrade the quality of

the scheduling even when using randomized load-balancing mechanisms [22]. To overcome this

challenge, Saqr implements a new data structure especially designed for programmable network

switches which enables the switches to update their state in real-time after selecting a worker with

minimal throughput overheads.

P4 adds another complexity for distributed in-network scheduling. Specifically, in software-

based distributed schedulers [55, 24, 23], a common practice is that schedulers probe and acquires

the worker state after receiving a scheduling request. In contrast, for in-network scheduling, the

schedulers are switches with limited packet buffer and on-chip memory. Therefore, it is not feasible

to store the tasks in switches, while sending probes and waiting for load information as this would

not scale for systems with high task arrival rates. As an example, for a workload with task mean

execution time of 100 µs, a cluster of 20K workers can process 200M requests per second. Given a

median packet size of 500B and a median RTT in the datacenter of 300 µs [34], a scheduler running

on a switch would need at least 30MB of memory for storing the packets while it waits for the probe

response, which can be larger than the total buffer available in modern programmable switches.
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Chapter 3

Proposed in-Network Scheduling System

This chapter starts with an overview of Saqr and its design principles. Then, it presents the design

details for various system components.

3.1 Overview and Design Principles

Overview. Saqr is an in-network, hierarchical, scheduler designed for datacenters that use multi-

rooted Clos topologies. We consider the widely-deployed leaf-spine topology as a representative

one. Our principles and ideas, however, still apply to other tree-based topologies. In the leaf-spine

topology, the top layer consists of core switches that connect different leaf-spine planes. Spine

switches provide connectivity between leaf and core layers. Every leaf switch connects a rack of

servers to the datacenter network. A server typically hosts multiple virtual machines (VMs) or con-

tainers to run tenant applications. An application is composed of tasks, which are executed by work-

ers. A worker is unit of processing resources, which can have one or more CPU cores. A task is

the smallest unit of work to be done by a worker. A long-running process already runs on workers

to execute incoming tasks [55, 31]. Therefore, a task does not require launching a new process.

Instead, each task describes the operations to be executed and contains the input data if needed. An

idle worker starts processing the incoming task immediately. If the worker is busy with another task,

the incoming task will be queued at the worker until it becomes idle. Datacenters run multiple sub-

systems to control and manage the execution of tasks. One subsystem is the resource manager that

allocates workers to applications. Each application requires a different number of workers to achieve

its objectives such as performance and/or availability. We refer to the set of allocated workers for an

application as a virtual cluster.

As shown in Figure 3.1, Saqr is composed of leaf and spine schedulers, software monitoring

agents, and a centralized controller. The schedulers in Saqr run as data plane programs inside net-

work switches. The schedulers jointly solve two sub-problems: (i) scheduling new tasks (§3.2), and

(ii) distributing the current load of workers among schedulers (§3.3). For the first problem, when the

scheduler receives a new task, it examines its memory to identify the load of workers and chooses

the worker that minimizes the task waiting time. We present a scheduling policy that does not require

10



queuing incoming tasks inside switches, adapts to dynamic loads, and runs for the whole datacenter

at line rate. For the second problem, we present a method for the schedulers to update the state at

switches, which balances between the freshness of maintained load values and the communication

overhead.

Saqr agents are lightweight processes that run on servers to monitor the load of workers. They

also run a health check mechanism with the leaf controller to enable Saqr to detect and react to

worker/server failures efficiently. The agents, however, are not involved in the actual scheduling

decisions. Agents attach Saqr headers to packets. Saqr uses a layer-4 header attached, which makes

it compatible with and deployable on top of various routing protocols. Figure 3.2 shows the header

format for Saqr packets. The srcID and dstID fields are used to distinguish the components in our

system. Since programmable switches only allow index-based access to the register arrays, we as-

sign fixed IDs for components of each layer (e.g., spine switches get 0–N indices). This allows us

to use the IDs as a hash for accessing the register arrays corresponding to the components inside

the data plane without using complex hashing mechanisms in switches. To forward Saqr packets,

each ID is mapped to a specific component. Thus, a switch only needs match-action tables at the

last stage to write the destination IP address.

The centralized controller handles system configurations such as application initialization, ter-

mination, worker migrations, and switch failures. In case of switch failures, the controller propagates

the received failure events to affected switches and clients to modify their internal memory, as de-

tailed in §3.4. The controller also interacts with existing subsystems such as the resource allocation

manager to retrieve the placement information for the workers of each virtual cluster. In §3.5, we

describe how the centralized controller uses this placement information to select the leaf and spine

switches to schedule tasks for every virtual cluster.

At a high level, the task scheduling in Saqr is done as follows: Clients send their tasks to a

randomly-selected spine scheduler, which selects a rack for the incoming task and sends it to the

leaf scheduler. In each rack, the leaf scheduler schedules the task to one of the workers running in

servers physically connected to the switch. After task execution is done, the agent attaches the latest

load information of workers to the headers of reply packets. Upon receiving a reply packet, the leaf

scheduler updates the load state in its memory and sends an update message to a spine scheduler if

needed.

Design Principles. We summarize the principles that guided our design of Saqr.

• Load-aware Scheduling Policy. The load on workers in datacenters is subject to spatial and

temporal variations due to resource allocation policies, application requirements, and sea-

sonality nature of workloads. We propose a scheduling policy that does not queue tasks at

schedulers, efficiently tracks the idleness and average load of workers and minimizes the task

tail response time.

• Hierarchical Scheduling The state at switches increases with the numbers of workers and

virtual clusters. However, switches cannot maintain this increasing amount of information

11
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Figure 3.1: Overview of Saqr: The first distributed in-network task scheduler for datacenters.

in their stateful on-chip memory. We carefully divide the load information among switches,

and hierarchically manage the collection and update of this information. This significantly

reduces the memory and communication overheads.

• Avoiding State Consistency Overheads Saqr avoids the complexity of replicating state

across switches, by maintaining the load information of a worker or rack at one scheduler.

In addition to reducing processing on switches, this principle enables each scheduler to main-

tain and update its view of a subset of workers without querying other schedulers. Thus, Saqr

can achieve a high scheduling throughput with minimum overheads. Saqr also employs a

simple failover mechanism to ensure the scheduler availability during failures.

• Selective State Update Saqr makes scheduling decisions based on the maintained state with-

out queuing tasks. Thus, updating the state is important to reflect the latest changes. This,

however, may increase the communication overhead, despite the hierarchical structure of

Saqr. Our idea is that an update does not need to be propagated to a switch if that switch

can make a decision using its current state. Our approach identifies when an update needs

to be propagated by calculating a drift between actual load values and the latest load infor-

mation available at schedulers, and only updates the state of a scheduler when the drift may

negatively impact the scheduling quality.
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3.2 Scheduling Tasks in the Network

Saqr has two layers of hierarchy consisting of spine and leaf schedulers. Each leaf scheduler tracks

the load of individual workers belonging to the same rack, whereas a spine scheduler monitors the

load of multiple racks of workers.

3.2.1 Policy Overview

Spine and leaf schedulers employ a similar scheduling policy to assign an arriving task to a lower-

layer node. A node for a spine scheduler refers to a rack, whereas it refers to a worker for a leaf

scheduler. At a high level, a scheduler maintains two types of state about the lower-layer nodes: (1)

IDs of idle nodes and (2) queue length values of nodes. To update their states, schedulers exchange

different types of messages, such as idleAdd and idleRemove, which will be described in the next

section.

When a new scheduling request arrives, if the scheduler is aware of an idle node, it will send the

task to that idle node. Otherwise, the scheduler takes d samples (assuming d ≥ 2) from the queue

length state of nodes and selects the least loaded node among the sampled values. In our system,

we set d to two to balance between the scheduling quality and required memory and processing

resources on switches. In literature, this is referred to as power-of-two choices [62].

For spine schedulers, an idle node is a rack that has at least one idle worker because if a leaf

is selected, the leaf scheduler will select the idle worker which results in zero queuing time. In

addition, we calculate the mean queue length of all worker queues inside a rack as an indicator

of how loaded this rack is. We employ the mean value because leaf schedulers balance the load

between their tracked workers. We describe the memory layout to represent virtual clusters. Then,

introduce our ideas to efficiently realize the proposed scheduling policy for idle and busy nodes.

Memory Layout and Allocation. We maintain load state of nodes in register arrays, which are

stateful on-chip memory in programmable switches. Saqr uses separate data structures for storing

state of idle nodes (referred to as idle list) and storing the queue length of busy nodes. To support

virtual clusters, a switch needs to store the state about each virtual cluster in a separate register array.

Since the number of register arrays is limited by the number of stages in the switch pipeline, it is

infeasible to allocate a single array for each virtual cluster. Instead, Saqr pre-allocates large arrays

to store the state for all virtual clusters, and uses the clusterID field in packet headers to map each

virtual cluster to a base index in the arrays. For simplicity and brevity, we do not show this step

when discussing accesses to register arrays, and present the data structure of each virtual cluster as

a dedicated one.

3.2.2 Scheduling Tasks to Idle Nodes

We use register arrays to keep a list of IDs of idle nodes, where each slot represents an ID of a single

idle node. Since programmable switches only allow one access to the register array per packet, the

13
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Figure 3.2: Saqr header format.

proposed data structure should support efficient GET, ADD, and REMOVE primitives with a single

read-modify-write operation.1

Our insight is that a scheduler needs only to know whether there exists an idle node and retrieves

its ID. It does not need to identify the temporal order for when these nodes became idle. Thus, we

design a list that guarantees the first contiguous slots to be valid, and the remaining slots to be

invalid. This way, a scheduler can always access the top of the idle list, while knowing for sure that

the top slot is valid. To realize efficient accesses, we use an additional register called p as a pointer

to the top of the idle list, and a register array called idleIndex (maintained only at spine scheduler)

to store the index of each idle node. Algorithm 1 lists the pseudo code for handling idle nodes in

data plane.

Adding an idle node to the list happens when a scheduler receives a state update packet, i.e.,

idleAdd, about a node becoming idle. The scheduler accesses p and increments its value, then writes

the ID of the idle node to the corresponding slot based on the initial value of pointer (Line 2). The

scheduler also maintains the current index p in the idleIndex register array to be used later. When a

new scheduling request arrives, the switch reads p and then retrieves the ID of idle node from the

array (Line 9).

Unlike adding an idle node, removing an idle node after being selected by SCHEDULETASK-

IDLE depends on the scheduler type. A leaf scheduler needs to remove the selected idle worker

immediately after sending a task to it because the worker is no longer idle. For a spine scheduler,

however, sending a task to an idle leaf does not necessarily mean that the rack is not idle anymore.

This is because the rack may have more than one idle worker. Therefore, a spine scheduler only

reads p and does not decrement it. Instead, removing an idle node in a spine scheduler is triggered

by an idleRemove packet sent by a leaf scheduler.

Upon receiving an idleRemove packet, the spine scheduler examines the idleIndex array to check

the index of pkt.srcID in the idle list. The spine scheduler resubmits the packet with the current

last node ID lastNodeId and the index of the node to be removed removedNodeIdx. In the

resubmission path, the scheduler only places the lastNodeId in the slot of removedNodeIdx and

updates the idleIndex accordingly. With this approach, instead of removing items from the array,

1An atomic operation that prevents race conditions in the pipeline.
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Algorithm 1 Scheduling and state updates for idle nodes
- p: reg. pointing to the next available slot in idleList
- idleList: reg. array that holds the IDs of idle nodes
- idleIndex: reg. array holding indices of the nodes in idleList.

1: // On an idleAdd pkt received
2: function ADD(pkt)
3: readInc(p)
4: idleList[p]← pkt.srcID // pkt.srcID is idle node ID
5: idleIndex[pkt.srcID]← p

6: function GET()
7: readDec(p) // Only a leaf scheduler decrements p
8: return idleList[p]
9: function SCHEDULETASKIDLE(pkt)

10: selectedNode← GET()
11: Update pkt with IP of selectedNode and Forward
12: A On an idleRemove pkt received: First Path
13: function REMOVE(pkt)
14: removedNodeIdx← idleIndex[pkt.srcID]
15: readDec(p)
16: lastNodeID ← idleList[p]
17: resubmit(lastNodeID, removedNodeIdx)
18: B On an idleRemove pkt received: Resubmit Path
19: function REMOVE(lastNodeID, removedNodeIdx)
20: idleList[removedNodeIdx]← lastNodeID
21: idleIndex[lastNodeID]← removedNodeIdx

we keep reusing the memory locations and validate/invalidate them based on the pointer value. We

note that current programmable switches does not preserve the order of processing of resubmitted

packets. For example, before processing the resubmission path of an idleRemove packetA, the first

path of another idleRemove packet B could be processed by the switch. In such case, the index

of removedNodeIdx observed by B might be incorrect since the linearization point of procedure

is done after processing the resubmission path. To handle this issue, we use a single register as a

logical lock for the REMOVE operation, where the lock is acquired in the first path and released

in the resubmission path. In case of unsuccessful removal, the spine scheduler drops the packet,

and the leaf scheduler will resend another idleRemove packet after receiving another task from the

linked spine.

3.2.3 Scheduling Tasks to Busy Nodes

When there is no idle node, the scheduler examines a list of load values of the tracked nodes, which

is called the load list. Unlike scheduling tasks to idle nodes, realizing the power-of-two choices for

busy workers is more challenging. This is because a scheduler needs to read two randomly selected

indices from the load list and select the least loaded one. The first challenge is that it is not allowed

15



B u s

St a g e 3 St a g e 4

 

3 1 1 0...drift

0 1 2 nn o d e I D

2

St a g e 4

 

3 1 1 0...drift

0 1 2 nn o d e I D

2

St a g e 1

3 3 4 6...l o a d

0 1 2 nn o d e I D

St a g e 2

3 3 4 6...l o a d

0 1 2 nn o d e I D

m et a. n o d e I D 1 = 1
m et a.l o a d 1 = 3

m et a. n o d e I D 2 = n
m et a.l o a d 2 = 6

m et a. s el e ct e d I D = 1
m et a. dif f = 3

m et a.r e s u b Fl a g = F al s e h dr . d st I D = 1

St a g e 6

...

F or w ar d t o
d st N o d e

B u s

St a g e 3 St a g e 4

 

3 1 1 0...drift

0 1 2 nn o d e I D

2

St a g e 4

 

3 1 1 0...drift

0 1 2 nn o d e I D

2

St a g e 1

3 3 4 6...l o a d

0 1 2 nn o d e I D

St a g e 2

3 3 4 6...l o a d

0 1 2 nn o d e I D

m et a. n o d e I D 1 = 1
m et a.l o a d 1 = 3

m et a. n o d e I D 2 = n
m et a.l o a d 2 = 6

m et a. s el e ct e d I D = 1
m et a. dif f = 3

m et a.r e s u b Fl a g = F al s e h dr . d st I D = 1

St a g e 6

...

F or w ar d t o
d st N o d e

B u s

St a g e 3 St a g e 4

 

3 1 1 0...drift

0 1 2 nn o d e I D

2

St a g e 4

 

3 1 1 0...drift

0 1 2 nn o d e I D

2

St a g e 1

3 3 4 6...l o a d

0 1 2 nn o d e I D

St a g e 2

3 3 4 6...l o a d

0 1 2 nn o d e I D

m et a. n o d e I D 1 = 1
m et a.l o a d 1 = 3

m et a. n o d e I D 2 = n
m et a.l o a d 2 = 6

m et a. s el e ct e d I D = 1
m et a. dif f = 3

m et a.r e s u b Fl a g = F al s e h dr . d st I D = 1

St a g e 6

...

F or w ar d t o
d st N o d e

St a g e 3

c o m p ar e  

( m et a.l o a d 1,  
 m et a.l o a d 2)

B u s

St a g e 3 St a g e 4

 

3 1 1 0...drift

0 1 2 nn o d e I D

2

St a g e 4

 

3 1 1 0...drift

0 1 2 nn o d e I D

2

St a g e 1

3 3 4 6...l o a d

0 1 2 nn o d e I D

St a g e 2

3 3 4 6...l o a d

0 1 2 nn o d e I D

m et a. n o d e I D 1 = 1
m et a.l o a d 1 = 3

m et a. n o d e I D 2 = n
m et a.l o a d 2 = 6

m et a. s el e ct e d I D = 1
m et a. dif f = 3

m et a.r e s u b Fl a g = F al s e h dr . d st I D = 1

St a g e 6

...

F or w ar d t o
d st N o d e

R o uti n g 

T a bl es

St a g e 5 St a g e 6

M et a 
D at a

n o d eI D 1 = 1 n o d eI D 2 = n

l o a d 1 = 3 l o a d 2 = 6

s el e ct e dI D = 1

diff = 3
r e s u b Fl a g = F al s e h dr. d stI D = 1

( a)  C as e 1: S c h e d ul e a t as k usi n g a st al e st at e a n d u p d at e t h e drift list i n o n e p ass

B u s

St a g e 3 St a g e 4

 

3 1 1 0...drift

0 1 2 nn o d e I D

2

St a g e 4

 

3 1 1 0...drift

0 1 2 nn o d e I D

2

St a g e 1

3 3 4 6...l o a d

0 1 2 nn o d e I D

St a g e 2

3 3 4 6...l o a d

0 1 2 nn o d e I D

m et a. n o d e I D 1 = 1
m et a.l o a d 1 = 3

m et a. n o d e I D 2 = n
m et a.l o a d 2 = 6

m et a. s el e ct e d I D = 1
m et a. dif f = 3

m et a.r e s u b Fl a g = F al s e h dr . d st I D = 1

St a g e 6

...

F or w ar d t o
d st N o d e

B u s

St a g e 3 St a g e 4

 

3 1 1 0...drift

0 1 2 nn o d e I D

2

St a g e 4

 

3 1 1 0...drift

0 1 2 nn o d e I D

2

St a g e 1

3 3 4 6...l o a d

0 1 2 nn o d e I D

St a g e 2

3 3 4 6...l o a d

0 1 2 nn o d e I D

m et a. n o d e I D 1 = 1
m et a.l o a d 1 = 3

m et a. n o d e I D 2 = n
m et a.l o a d 2 = 6

m et a. s el e ct e d I D = 1
m et a. dif f = 3

m et a.r e s u b Fl a g = F al s e h dr . d st I D = 1

St a g e 6

...

F or w ar d t o
d st N o d e

B u s

St a g e 3 St a g e 4

 

3 1 1 0...drift

0 1 2 nn o d e I D

2

St a g e 4

 

3 1 1 0...drift

0 1 2 nn o d e I D

2

St a g e 1

3 3 4 6...l o a d

0 1 2 nn o d e I D

St a g e 2

3 3 4 6...l o a d

0 1 2 nn o d e I D

m et a. n o d e I D 1 = 1
m et a.l o a d 1 = 3

m et a. n o d e I D 2 = n
m et a.l o a d 2 = 6

m et a. s el e ct e d I D = 1
m et a. dif f = 3

m et a.r e s u b Fl a g = F al s e h dr . d st I D = 1

St a g e 6

...

F or w ar d t o
d st N o d e

St a g e 3

c o m p ar e  

( m et a.l o a d 1,  
 m et a.l o a d 2)

B u s

St a g e 3 St a g e 4

 

3 1 1 0...drift

0 1 2 nn o d e I D

2

St a g e 4

 

3 1 1 0...drift

0 1 2 nn o d e I D

2

St a g e 1

3 3 4 6...l o a d

0 1 2 nn o d e I D

St a g e 2

3 3 4 6...l o a d

0 1 2 nn o d e I D

m et a. n o d e I D 1 = 1
m et a.l o a d 1 = 3

m et a. n o d e I D 2 = n
m et a.l o a d 2 = 6

m et a. s el e ct e d I D = 1
m et a. dif f = 3

m et a.r e s u b Fl a g = F al s e h dr . d st I D = 1

St a g e 6

...

F or w ar d t o
d st N o d e

R o uti n g 

T a bl es

St a g e 5 St a g e 6

M et a 
D at a

n o d eI D 1 = 1 n o d eI D 2 = n

l o a d 1 = 3 l o a d 2 = 6

s el e ct e dI D = 1

diff = 3
r e s u b Fl a g = F al s e h dr. d stI D = 1

St a g e 3

c o m p ar e  

( m et a.l o a d 1,  
 m et a.l o a d 2)

S u m  

l o a d  

a n d d rift

St a g e 6

M et a 
D at a

n o d eI D 1 = 0 n o d eI D 2 = 2

l o a d 1 = 3 l o a d 2 = 4

s el e ct e dI D = 0

diff = 1

r e s u b Fl a g = Tr u em et a. n o d e I D 1 = 0
m et a.l o a d 1 = 3

m et a. n o d e I D 2 = 2
m et a.l o a d 2 = 4

m et a. s el e ct e d I D = 0
m et a. dif f = 1

m et a.r e s u b Fl a g = T r u e
m et a. drift S el e ct e d = 3B u s

St a g e 3 St a g e 5

 

3 2 1 0...drift

0 1 2 nn o d e I D

m et a. drift Ot h er = 1

St a g e 4

 

3 2 1 0...drift

0 1 2 nn o d e I D

St a g e 1

3 3 4 6...l o a d

0 1 2 nn o d e I D

St a g e 2

3 3 4 6...l o a d

0 1 2 nn o d e I D

l o a d 1

l o a d 2

n o d e I D 1

n o d e I D 2

St a g e 6 R e s u b mit

m et a. n o d e I D 1 = 0
m et a.l o a d 1 = 3

m et a. n o d e I D 2 = 2
m et a.l o a d 2 = 4

m et a. s el e ct e d I D = 0
m et a. dif f = 1

m et a.r e s u b Fl a g = T r u e
m et a. drift S el e ct e d = 3B u s

St a g e 3 St a g e 5

 

3 2 1 0...drift

0 1 2 nn o d e I D

m et a. drift Ot h er = 1

St a g e 4

 

3 2 1 0...drift

0 1 2 nn o d e I D

St a g e 1

3 3 4 6...l o a d

0 1 2 nn o d e I D

St a g e 2

3 3 4 6...l o a d

0 1 2 nn o d e I D

l o a d 1

l o a d 2

n o d e I D 1

n o d e I D 2

St a g e 6 R e s u b mit

m et a. n o d e I D 1 = 0
m et a.l o a d 1 = 3

m et a. n o d e I D 2 = 2
m et a.l o a d 2 = 4

m et a. s el e ct e d I D = 0
m et a. dif f = 1

m et a.r e s u b Fl a g = T r u e
m et a. drift S el e ct e d = 3B u s

St a g e 3 St a g e 5

 

3 2 1 0...drift

0 1 2 nn o d e I D

m et a. drift Ot h er = 1

St a g e 4

 

3 2 1 0...drift

0 1 2 nn o d e I D

St a g e 1

3 3 4 6...l o a d

0 1 2 nn o d e I D

St a g e 2

3 3 4 6...l o a d

0 1 2 nn o d e I D

l o a d 1

l o a d 2

n o d e I D 1

n o d e I D 2

St a g e 6 R e s u b mit

m et a. n o d e I D 1 = 0
m et a.l o a d 1 = 3

m et a. n o d e I D 2 = 2
m et a.l o a d 2 = 4

m et a. s el e ct e d I D = 0
m et a. dif f = 1

m et a.r e s u b Fl a g = T r u e
m et a. drift S el e ct e d = 3B u s

St a g e 3 St a g e 5

 

3 2 1 0...drift

0 1 2 nn o d e I D

m et a. drift Ot h er = 1

St a g e 4

 

3 2 1 0...drift

0 1 2 nn o d e I D

St a g e 1

3 3 4 6...l o a d

0 1 2 nn o d e I D

St a g e 2

3 3 4 6...l o a d

0 1 2 nn o d e I D

l o a d 1

l o a d 2

n o d e I D 1

n o d e I D 2

St a g e 6 R e s u b mit

drift S el e ct e d N o d e = 3
drift Ot h er N o d e = 1

m et a. n o d e I D 1 = 0
m et a.l o a d 1 = 3

m et a. n o d e I D 2 = 2
m et a.l o a d 2 = 4

m et a. s el e ct e d I D = 0
m et a. dif f = 1

m et a.r e s u b Fl a g = T r u e
m et a. drift S el e ct e d = 3B u s

St a g e 3 St a g e 5

 

3 2 1 0...drift

0 1 2 nn o d e I D

m et a. drift Ot h er = 1

St a g e 4

 

3 2 1 0...drift

0 1 2 nn o d e I D

St a g e 1

3 3 4 6...l o a d

0 1 2 nn o d e I D

St a g e 2

3 3 4 6...l o a d

0 1 2 nn o d e I D

l o a d 1

l o a d 2

n o d e I D 1

n o d e I D 2

St a g e 6 R e s u b mit

m et a. n o d e I D 1 = 0
m et a.l o a d 1 = 3

m et a. n o d e I D 2 = 2
m et a.l o a d 2 = 4

m et a. s el e ct e d I D = 0
m et a. dif f = 1

m et a.r e s u b Fl a g = T r u e
m et a. drift S el e ct e d = 3B u s

St a g e 3 St a g e 5

 

3 2 1 0...drift

0 1 2 nn o d e I D

m et a. drift Ot h er = 1

St a g e 4

 

3 2 1 0...drift

0 1 2 nn o d e I D

St a g e 1

3 3 4 6...l o a d

0 1 2 nn o d e I D

St a g e 2

3 3 4 6...l o a d

0 1 2 nn o d e I D

l o a d 1

l o a d 2

n o d e I D 1

n o d e I D 2

St a g e 6 R e s u b mit

R e s u b mitt e d H e a d er

( b)  C as e 2:  R es u b mit a t as k p a c k et t o u p d at e t h e st at e, a n d s c h e d ul e t h e t as k b as e d o n a fr es h st at e
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t o r e a d  m or e t h a n o n e it e m p er p a c k et fr o m t h e s a m e r e gist er arr a y. S e c o n d, t h e s c h e d ul er n e e ds t o

s c al e t o t h o us a n ds of n o d es a n d a c hi e v e f ast a c c ess. Fi n all y, aft er t h e s c h e d ul er  m a k es a d e cisi o n, it

s h o ul d k e e p a fr es h vi e w of t h e l o a d v al u es  w hil e r e d u ci n g t h e pr o c essi n g o v er h e a d.

T o a d dr ess t h e first t w o c h all e n g es, S a qr  m ai nt ai ns t w o i d e nti c al c o pi es of t h e l o a d list i n t w o

diff er e nt st a g es,  w h er e e a c h arr a y st or es t h e l o a d of all d o w nstr e a m n o d es ( o n e n o d e p er sl ot).

St ori n g t w o c o pi es all o ws t h e s c h e d ul er t o r e a d o n e r a n d o m i n d e x fr o m e a c h c o p y a n d t h e n c o m p ar e

t h e m.  W h e n a n e w st at e u p d at e f or a n o d e arri v es at a s c h e d ul er, it  writ es t h e u p d at e d l o a d v al u e o n

b ot h c o pi es. Pri or  w or ks, e. g., [ 7 6], c a n  m ai nt ai n o nl y l o a d v al u es i n t h e or d er of n u m b er of pi p eli n e

st a g es (i. e., 1 0 – 2 0 n o d es).  T his is b e c a us e it all o c at es o n e r e gist er f or e v er y l o a d v al u e a n d pl a c es

t h e m at diff er e nt st a g es t o all o w r e a di n g  m ulti pl e v al u es i n a si n gl e pi p eli n e p ass.

F or a d dr essi n g t h e t hir d c h all e n g e, a s c h e d ul er s h o ul d u p d at e its l o c al vi e w o n t h e l o a d i nf or m a-

ti o n (i. e., t h e l o a d list) aft er  m a ki n g s c h e d uli n g d e cisi o ns .  T his r e q uir es t h e s c h e d ul er t o  writ e b a c k

t h e u p d at e d l o a d v al u e t o t h e c orr es p o n di n g r e gist er sl ot.  As d es cri b e d e arli er, t h e s a m e r e gist er ar-

r a y c a n n ot b e a c c ess e d t wi c e p er p a c k et.  A str ai g htf or w ar d s ol uti o n is t o r es u b mit e a c h p a c k et t o t h e

pi p eli n e a n d u p d at e t h e l o a d st at e o n t h e s e c o n d p ass.  T his, h o w e v er, r es ults i n a si g ni fi c a nt pr o c ess-

i n g o v er h e a d, i n cr e as es t h e s c h e d uli n g l at e n c y, a n d d o u bl es t h e b a n d wi dt h r e q uir e d f or t as k p a c k ets.

We n ot e t h at c o n v e nti o n al d o u bl e b uff eri n g t e c h ni q u es c a n n ot b e us e d t o u p d at e t h e s c h e d ul er vi e w

of b us y  w or k ers. I n t h at c as e, o n e r e gist er arr a y  will b e us e d f or r e a di n g v al u es a n d a n ot h er o n e  will

b e us e d f or  writi n g t h e  m o di fi e d v al u es.  H o w e v er, d o u bl e b uff eri n g c a n n ot b e r e ali z e d i n t h e d at a
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plane since it violates the P2 property, mentioned in §2.3. As an example, consider buffer A to be

placed at stage x and B at a later stage x + 1. For the first packet, switch can read from A, select

the node and write back the incremented value to B. For the next packet, first it needs to read B and

then write back to A which contradicts the initial register stage placement.

Our key idea is that a scheduler keeps scheduling tasks using the stale view of the load list until

it detects an update is needed. The scheduler resubmits the packet to the pipeline only when the load

list needs to be updated. We refer to this idea as selective state update. In our solution, the scheduler

maintains a drift value per node to measure how far the maintained load of a node is from the actual

load of the same node.2 Specifically, the scheduler maintains two copies of the drift list placed in

two stages. Figure 3.3 illustrates an example of the proposed solution.

When a scheduling request arrives, the scheduler reads two samples from the copies of load

list and calculates the difference between the load values. Next, the scheduler accesses the first

copy of drift list to check how many more tasks are actually queued in the node that the scheduler

initially selected as least loaded. If the drift value is lower than the difference between load val-

ues (Figure 3.3a), the scheduler increments the corresponding drift value in each copy of the drift

list. Otherwise, the initial scheduling decision may be underestimating the actual load of the node

(Figure 3.3b). Thus, the scheduler reads the drift value for the second node from the second copy,

calculates the actual load of a node as the sum of drift and load values, and resubmits the packet

with this data. In the resubmission path, the scheduler becomes aware of the actual load values and

it selects the least loaded node. The load list is updated with the new load value, and the drift list

is reset indicating that the load value in the load list is up-to-date. Notice that in the resubmission

path, the scheduler does not read items from the load list or drift list as these values are injected in

the resubmitted packet. Thus, the scheduler guarantees to update the load list and drift list.

Number of Samples in Power-of-d Choices. The power-of-d choices algorithm has been analyzed

in the literature using the mean field theory [52]. We summarize this analysis here and relate it to

our datacenter scheduling problem.

Consider n workers serving tasks in first-come-first-serve (FCFS) manner. Tasks arrive accord-

ing to a Poisson process with rate nλ. The task service time is assumed to have an exponential

distribution with mean 1. Upon receiving a task, the scheduler samples d workers independently

and uniformly at random from the n workers and chooses the worker that currently has the fewest

tasks in its queue. The task will then wait inside the queue of the selected worker until the worker

becomes available to serve the task. Within this setup, the total time that a task spends in the system

(i.e., response time) consists of the task waiting time in the worker queue and the task service time.

The analysis provides bounds on the expected task response time based on the number of samples.

It has been shown that setting d = 2 yields an exponential improvement in the expected task

response time compared to randomized worker selection (i.e., d = 1). Increasing d to greater than

2Since the load value of every node is maintained at only one scheduler, schedulers do not face issues such as race
conditions.
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two, however, decreases the maximum task response time by just a constant factor. Particularly, the

maximum queue length of workers over a period T will be lnln(n)
ln(d) + O(1) with high probability

p, where O(1) depends on λ (i.e., load) and the duration T , and the probability p = 1 − O(1/n).

That is, for sufficiently large n, the expected response time improves exponentially when d = 2
compared to the case of d = 1. Furthermore, their simulations show that even for relatively small n

(e.g., 100 workers), the system is expected to follow the same behaviour.

We note that, sampling more load values (increasing d) can be realized inside the switch, but

it requires significant amount of memory and processing resources on the switches. Specifically,

to find the smallest value among d samples, we need at least log(d) sequential operations, which

also means we need at least log(d) stages of the switch processing pipeline for this process (refer

to the P3 property mentioned in §2.3). Also, reading d samples from the memory requires access

to d different memory locations while based on the P1 property (§2.3), each register array can be

accessed only once per packet. In addition, the scheduler needs to update the load value for the

selected worker in its memory while the P1 property does not allow writing back the incremented

value on the same register array. As discussed in §3.2.3, we use additional data structures and a

new algorithm to overcome the mentioned challenges for realizing power-of-two choices inside the

switch while keeping a fresh state after each decision. We evaluate the impact of number of samples

on the performance of Saqr in §6.3.

3.3 Distributing State Among Schedulers

We design simple mechanisms to distribute the necessary information among leaf and spine sched-

ulers to update their states. This enables the execution of the proposed scheduling policy using fresh

information with minimal overheads.

3.3.1 Distributing Worker State to the Leaf Layer

Since scheduling tasks to workers of a rack is only done by leaf schedulers, each leaf scheduler

updates its state when selecting a worker for a task as described in §3.2. When a task is done

executing on a worker, the agent modifies the queueLen field in the header (Figure 3.2) and uses the

reply packets to report the updated load to the leaf scheduler. If the reply packet indicates that the

worker is idle, the leaf scheduler adds the srcId to the idle list (Algorithm 1) and updates the load

list for the corresponding index.

3.3.2 Distributing Rack State to the Spine Layer

We consider two types of information to be distributed to the spine layer: (i) idleness of the rack,

and (ii) average load of the rack. Instead of naively sending every change to any spine scheduler, we

define two state linkage primitives to send information about each rack to only one spine scheduler.

Idle Linkage. When a leaf scheduler becomes aware of an idle worker, it sends probe packets to

two randomly-selected spine schedulers and asks for the number of idle racks each spine scheduler
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Figure 3.4: Distributing idle state from a leaf to spine scheduler.

is aware of. Then, it sends an idleAdd packet to the spine scheduler that has the smallest number

of idle racks. After this step, the spine scheduler will know that the sending leaf scheduler has idle

workers and sends incoming tasks to it. Figure 3.4a shows the probing step of idle linkage process

and Figure 3.4b shows the last step in linkage where the leaf selects the spine scheduler to link

with. The probing mechanism in our design is similar to the [49] which allows us to distribute

the information about idle racks among the spine schedulers. Using this simple mechanism, the

probability of the event that a randomly chosen spine is aware of some idle racks is increased and

therefore it improves the scheduling quality. We also note that Saqr can be easily configured to avoid

using probing for idle linkage and randomly send the idleAdd to one of the spine scheduler to reduce

the linkage delay and communication overheads. Once there are no more idle workers available in

the rack, the leaf scheduler sends an idleRemove packet to the linked spine which removes the leaf

from its idle list.

Load Linkage. Each spine scheduler in our system tracks the average load of a subset of racks.

Given that workers are placed on L racks and S spine schedulers are selected, each spine tracks

the average load of R = L/S racks. The controller divides the racks in disjoint subsets of size R

and assigns each subset to one of the spine schedulers. It also sends the IDs of the leaf schedulers

of the selected racks to each assigned spine scheduler. Each leaf scheduler receives and stores the

ID of the linked spine scheduler for the virtual cluster, and uses this information for sending load

state updates to it later. This way, we divide the state about the load of the racks among the spine

schedulers, and ensure that load state of each rack is only tracked by one spine scheduler. Figure 3.5

shows an example of load linkage for a virtual cluster with workers that span four racks (L = 4),

and uses two spine schedulers (S = 2). Using this linkage primitive, Saqr avoids replicating load

information among multiple schedulers.
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Realizing Average Queue Length. Calculating an average value in the data plane is infeasible due

to the lack of support for floating point operations in programmable switches. To handle this, we

define a convention between schedulers to use a fixed-point representation for the average using a

16-bit value where 5 bits represent the fraction part and 11 bits show the decimal part. When cluster

resources are allocated, the leaf controller calculates the fixed-point representation of 1/#workers
and stores this value in a table. In the data plane, the leaf scheduler uses the clusterID as a key to

access the table, and uses add/subtract to increase/decrease the average value for every change. The

5-bit fixed-point representation has a maximum conversion error of 0.015625, i.e., 2−(5+1). Saqr

can trade a larger header size for a better precision.

Selective Updates From Leaf to Spine. Instead of sending the updated average load to a spine

scheduler after each change, the leaf scheduler only sends a state update packet when the view of

the spine scheduler is drifted from the actual average load by a threshold of T = 1. To realize this,

when a task arrives at a spine scheduler, it assigns the task to a rack and increments the average

load of the selected rack in its memory (as described in §3.2). Also, each leaf scheduler passively

tracks the average load of the rack by observing the incoming tasks from spine schedulers and reply

packets from workers. Therefore, each leaf scheduler detects when the drift of a spine scheduler

view is larger than the threshold and sends a state update packet with type loadSignal to that spine

scheduler which contains the latest average load for the rack. This allows Saqr to reduce the number

of update packets sent to spine schedulers by the factor of number of workers in the rack without

sacrificing the scheduling performance.

Assuming that load is perfectly balanced between the workers in each rack, this approach results

in the same waiting time as tracking the actual real-time average. When a spine scheduler view

shows an average load µ for a rack while the actual average is µ ±∆. When ∆ < 1, the new task

will be assigned to a worker with at most µ pending tasks. On the other hand, when ∆ ≥ 1, it means

that every worker in the rack has ±1 pending tasks in their queues. Therefore, a spine scheduler

needs to be updated.
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3.4 Handling Failures

In this section, we introduce the mechanisms for handling failures of different components of Saqr.

Spine Switch Failure. We rely on existing network protocols [73, 53, 41] for detecting failures and

we assume that the Saqr controller receives the failure event from the fabric manager.

A failed spine switch can be in charge of scheduling for multiple virtual clusters depending

on worker placements and the initial spine selection algorithm. Upon receiving a failure event, the

controller first checks the virtual clusters that were using the failed spine as scheduler and does the

following to mitigate the impact on applications: (1) Send the failure event to the clients of impacted

virtual clusters. Each client removes the failed spine scheduler from the list of schedulers to avoid

sending future tasks. (2) Send the ID of failed spine to the leaf switches that were in the scheduling

path of the impacted virtual clusters. The control plane of leaf switch needs to modify the number

of available spine schedulers and reset the state linkage registers if the leaf scheduler was linked

to the failed spine scheduler. This ensures that leaf schedulers do not send the state updates to the

failed spine scheduler anymore and report to the other available spine schedulers.

Leaf Switch Failure. Similar to a spine failure, the controller sends the ID of the failed leaf to all

spine schedulers of impacted virtual clusters. Each spine controller removes the failed leaf from

the idle and load arrays (Line 13 in Algorithm 1) to avoid sending tasks to the failed rack. When

the leaf switch recovers from the failure, the Saqr controller sends the information about the spine

schedulers and workers in the rack to the leaf switch. The leaf controller then sends a hello message

to all servers in the rack, and the worker agents reply with their load. The leaf scheduler distributes

the state using the method mentioned in §3.3.

Worker Failures. To detect worker failures, the leaf controller exchanges heartbeat packets at a

fixed rate with the server agents. The leaf controller locally detects the failures of the workers in the

rack based on a fixed timeout value. Since Saqr handles worker monitoring at rack-level, detecting

and handling failures can be done independently in each rack. After detecting a failure, the leaf

controller decreases the number of available workers and instructs the data plane to remove the

failed worker from its data structures.

Controller Failure. We assume that the logically centralized controller is replicated on multiple

servers using existing practices, e.g., Paxos [44], and it is reliable. We note that the Saqr controller

is only essential for virtual cluster re-configurations and handling switch failures while scheduling

and state update operations are done entirely inside the data plane.

3.5 Selecting Spine Schedulers

At leaf layer, all of the switches that are physically connected to the workers are in charge for

monitoring workers and scheduling tasks on them. For spine schedulers, the controller selects S

switches upon receiving the initial configuration request from the cluster resource manager. The

spine switches that handle the task will be selected from the switches in the pods that workers are
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located to avoid sending Saqr-related traffic to other pods that do not have any workers. We select

more than one spine scheduler to distribute the traffic load on the switches as one switch might

not be able to handle the aggregate throughput for M rack of workers. In addition, the distributed

approach ensures high availability in case of spine switch failures.

Applications can request the minimum number of required spine switches Smin depending

on the availability requirements. We assume that network operator allows a fraction of switch-

ing capacity of each spine switch to be consumed for handling scheduling-related packets. There-

fore the controller gets the available capacity in terms of packet per second for each spine switch

= [Ci, C2, ..., Ck] as an input. Based on the number of allocated workers in each virtual cluster

N , and the minimum processing time of task by workers Tmin, we provision the maximum task

arrival rate that needs to be handled by the schedulers as Rmax = N
Tmin

. Beside the processing re-

quests, switch needs to process the reply packets for state updates from the workers once they finish

executing the tasks (§3.3) which will be at worst case equal to Rmax.

For the initial configuration request from the resource manager, the controller run a best-effort

greedy algorithm to select the spine schedulers based on the given inputs while satisfying the ca-

pacity requirements of each switch. If the packet rate is beyond the remaining capacity of the spine

switches in the pod, the algorithm divides the load on more switches until it can satisfy the require-

ment. Because of the dynamic nature of virtual clusters it is not valid to assume all of them are

initialized at time zero and therefore the proposed solution will be sub-optimal in terms of using

switch capacity. If the algorithm fails to find switches with required capacity even with distributing

the load upon all of the pod switches we return an error meaning that no more clusters can be placed

for the selected resources.
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Chapter 4

Implementation and Practical
Considerations

4.1 Implementation of Saqr

We have implemented a proof-of-concept of Saqr consisting of leaf and spine schedulers and mon-

itoring agents. Both scheduler programs are implemented in P4 [16] based on the algorithms de-

scribed in Chapter 3.

Current programmable switches have limited flexibility for generating new packets inside the

data plane. Packet generation can only be triggered using periodic timers or on port failure events.

In Saqr, the leaf scheduler might need to send a new update message to spine and this event is

triggered upon receiving a packet. To realize the communication between Saqr schedulers for state

propagation, we use the mirror (also known as clone) feature in programmable switches to make a

copy of the original packet. Upon receiving a packet, if a leaf scheduler needs to send an additional

state update to spine schedulers, it makes a copy and sends the copy to the destination based on

the original header fields. Then, it changes the original packet headers accordingly and sends this

version to the spine scheduler. For example, consider the case when a leaf scheduler receives a reply

from a worker and it needs to send a loadSignal packet to update the load list of a spine scheduler. In

this case, the leaf scheduler will mirror the reply packet to its destination address so that the results

are forwarded to the client. Then, it modifies the same packet by setting the type field to loadSignal

and the queueLen field to the latest average load of the rack. It then sends the packet to the spine

scheduler.

At servers, we implemented a modified version of Shinjuku scheduler [39] to run inside each

machine and added our monitoring logic on top of it. The OS scheduler inside each server runs

Dune [14] for process virtualization. Unlike Shinjuku, Saqr does not use a shared queue for all of

the worker cores, and it uses separate per-worker queues to isolate resources in the multi-tenant

environments. Saqr schedulers select the worker core(s) based on the virtual cluster, and inside

each server we enqueue/dequeue the task to the corresponding worker queue. We implemented the

monitoring agent in C on top of Shinjuku with less than 100 lines of code. The monitoring agent
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adds the queue state information to the reply packet headers after task execution is done. Similarly,

Saqr can be integrated with other existing OS schedulers to run the tasks on CPU cores.

4.2 Practical Considerations

Deployability. Saqr does not dictate a specific routing protocol in the datacenter and it can work

with any of the existing ones since it utilizes layer-4 headers. In addition, Saqr does not need to be

deployed on all switches in the datacenter. Thus, Saqr can be incrementally deployed in datacenters

that have programmable and legacy switches. For example, Saqr leaf schedulers can be deployed

only on leaf switches of racks where the workers for latency-sensitive applications are placed. Also,

Saqr spine scheduler can be deployed on a subset of the switches. This is because the controller gets

the information about the available Saqr schedulers running on programmable switches, and selects

the schedulers for the given resources (as described in §3.5).

Handling Multi-packet Tasks. When a task is composed of multiple packets, Saqr schedulers

need to send these packets to the same worker. Saqr can leverage prior approaches, e.g., [50, 76],

to support multi-packet tasks by maintaining state for multi-packet tasks inside the switches. In

particular, schedulers only make a scheduling decision for the first packet of a task, and maintain in

memory a mapping between 〈clusterID, reqID〉 and the chosen node. For subsequent packets of

the same task, a switch retrieves the previously selected node to forward the packets to. Although

this approach consumes additional memory resources at switches, the distributed design of Saqr

allows it to handle larger scales compared to centralized schedulers. This is because the total load

can be divided between multiple spine schedulers. Also, each leaf scheduler only needs to maintain

state for the subset of requests sent to the rack.

In addition to the mentioned stateful approach, a stateless approach can be used to handle multi-

packet tasks as proposed in prior works (e.g., [58, 11, 43]). In this case, the switches do not maintain

the state of the connection for the packets of the task. Instead, the selected worker sends a reply to

the client after it receives the first packet of the task. The client will then send the remainder of

packets to the selected worker using normal procedures.

The two approaches make a trade-off between the latency and switch memory resources. Ide-

ally, both stateful and stateless approaches can be employed by Saqr for different workloads in the

datacenter. Workloads with low latency objectives can use the switch memory and other workloads

can employ the stateless approach.

Handling Heterogeneous Workloads. Today’s datacenters host a diverse set of applications in-

cluding latency-sensitive online services and best-effort batch workloads that run in the background

[26, 48, 21]. The tasks for batch workloads can be many orders of magnitude longer than the tasks

for online services. Saqr is designed to realize low-latency scheduling for short tasks in the dat-

acenters. In Chapter 6, we used workloads consisting of tasks of up to two orders of magnitude

difference in service time to evaluate Saqr, and our results show that Saqr can substantially im-

prove the performance compared to the state-of-the-art. However, adding further diversity in the
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workloads could impact the performance of Saqr. Specifically, for extremely diverse workloads, the

worker queue length would no longer be a predictor of task waiting time, and short tasks might be

blocked behind the long ones in the queues. There are two common practices in the literature for

handling heterogeneous workloads in datacenters, and Saqr can support them as follows.

The first approach disallows latency-sensitive services from sharing resources with other work-

loads, and it deploys such services on dedicated servers [27, 72, 20]. Saqr, by-design supports such

mechanism via the virtual cluster abstraction. The dedicated workers for latency-sensitive tasks

form a separate virtual cluster of workers and will be handled in isolation by Saqr schedulers. This

approach can provide guarantees on tail latencies for short tasks by reserving resources at the cost

of possible under-utilization of resources [48].

As an alternate approach, both type of workloads can be collocated on the same workers to

improve the utilization by taking advantage of the unused capacity on the machines for running

batch workloads. Similar to [55, 76], Saqr can support priority-based scheduling for the shared

workers while assigning higher priority to latency-sensitive tasks and using multiple queues to avoid

blocking them behind long tasks of batch workloads. In this case, each worker maintains one queue

for each priority type and Saqr schedulers keep track of the state of queues for each priority. When

a task arrives at the scheduler, it looks up the task priority and based on that checks the state of the

corresponding queues for making decisions. When task arrives at the worker, it will be enqueued in

the corresponding queue and the worker will fetch the tasks from these queues according to their

priorities.

Intra-Server Performance Isolation. To guarantee performance isolation within servers and across

workers, we also need mechanisms to detect and prevent interference among workers [54, 48]. This

is especially important in multi-tenant environments where VMs of different tenants can be placed

on a single physical server [21]. We note that, such mechanisms are orthogonal to our work and are

handled by the operating systems running on the end-hosts [60, 39, 30] or VM placement algorithms

that handle resource allocation for tenants [70, 36]. Saqr addresses fine-grained task scheduling on

the workers across multiple servers and it can be integrated with existing intra-server operating

systems and schedulers (e.g., Shinjuku [39], which we used in our prototype implementation) that

run on these servers.

Limitations and Extensions. Deploying Saqr in graph-based datacenter networks, e.g., Jellyfish

[67] and Xpander [68], may introduce multiple challenges. For example, Jellyfish’s lack of structure

requires new algorithms to divide the load information between more than two layers.
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Chapter 5

Evaluation in a Testbed

In this chapter, we evaluate Saqr in a testbed and compare its performance and overheads versus the

state-of-the-art in-network scheduler.

5.1 Testbed Setup

Hardware. Our testbed, illustrated in Figure 5.1, has one 3.2 Tbps Intel Tofino switch, which has

two hardware pipelines. We configure one of the hardware pipelines as a spine switch and run the

spine scheduler of Saqr on it. We emulate four leaf switches on the other hardware pipeline, where

each switch represents a rack of servers. We connect the leaf switches to the spine switch using 100

Gbps links. Leaf switches run the leaf schedulers of Saqr. In addition, the testbed has seven servers

connected to the leaf switches through 10 Gbps links, each server is equipped with an Intel 82599ES

10 GbE NIC. Up to two of these servers are used as clients to generate scheduling requests and the

others are used to host workers to execute these requests.

We consider two settings for the distribution of workers across racks: (1) Uniform: a total of 32

workers are uniformly distributed across all racks, where each rack has eight workers running on

a physical server attached to the leaf switch (1 worker/core). The 32 workers run on four identical

servers, each has Intel Xeon E-2186G CPU, 3.80 GHz, 12 cores, 32 GB memory. (2) Skewed: a

total of 48 workers are distributed as follows: two racks have four workers each, one rack has eight

workers, and one rack has 32 workers (running on three physical servers, where one of the servers

has has Intel Xeon E5-2650 CPU, 2.3 GHz, 40 cores, 128 GB memory and runs 16 workers and

the other two servers have the same specifications as the ones used in the Uniform setup and run 8

workers each).

Systems Compared Against. We compare the performance of Saqr against Racksched [76], which

is the state-of-art in-network scheduler designed for short tasks within a single rack. To scale it

beyond a single rack, we implemented two variations of Rachsched as follows: (i) Racksched-

Hierarchical (RS-H), where instances of the scheduler are replicated to spine and leaf layers (Fig-

ure 5.2a), and (ii) Racksched-Random (RS-R), where each rack has its own scheduler, and clients

send tasks to one of the leaf schedulers randomly (Figure 5.2b). For RS-H, similar to Saqr, we allow
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the median time of each request is 40 µs. We use two workload distributions of to evaluate the

schedulers under different practical scenarios. The first distribution consists of 50% GET and 50%

SCAN requests, whereas the second one. We assume no prior knowledge about the service times

and use the same priority queues for both SCAN and GET tasks.

5.2 Experiments and Results

We vary the system load by incrementally increasing the number of requests submitted for schedul-

ing. The system load is measured in kilo requests per second (KRPS) and we keep increasing it

until we reach the capacity of the system, where the response time becomes unacceptably high for

latency-sensitive applications (e.g., seconds or even minutes for tasks that should complete in mi-

cro or milliseconds). The response time is defined as the time from when a task arrives at a spine

scheduler until it finishes execution on a worker, and it is the most important metric for scheduling

systems. Most datacenter scheduling systems strive to optimize the tail response time which is de-

fined as the 99th-percentile response time for the tasks. The tail response time is important because

in a real-world setting, an application/job cannot complete until the result of its last task is ready.

Another important metric for scheduling systems is the achievable throughput, which we define

as the maximum system load that can be processed while achieving a given bound on a target

performance metric, e.g., the 99th-percentile of the response time should not exceed 3ms.

Response Time. We measure and report the tail response time for different workload distributions

and worker setups in Figures 5.3 and 5.4. The figures show that Saqr consistently and substan-

tially outperforms RH-H and RS-R across all workloads and worker setups. For example, in the

Uniform worker setup with 90% GET and 10% SCAN requests (Figure 5.3b), Saqr reduces the

99th-percentile of the response time by 85% compared to RS-H when the system load is 250 KRPS;

RS-R could not support this load. This also means that Saqr can achieve much higher throughputs

(i.e., process higher system loads for any given target response time) than RS-H and RS-R. For

the same example in Figure 5.3b, if the target 99th-percentile of the response time is 2.5 ms, Saqr

can achieve a throughput of up to 325 KRPS, whereas RS-R and RS-H can only achieve up to 25

and 150 KRPS, respectively. That is, Saqr can improve the throughput by up to 13X and 2.17X

compared to RS-R and RS-H, respectively, in this case.

Communication Overheads. We measure the number of update messages per second exchanged

between leaf and spine schedulers. The results for different workloads and worker placement setups

are shown in Figure 5.5. The figure shows that compared to RS-H, Saqr reduces the rate of state

update messages for all load conditions. For example, for the Skewed worker setup and 90% GET

and 10% SCAN requests (Figure 5.5d), the rate is reduced by up to 31.5X when the system is lightly

loaded (50 KRPS) and up to 5.1X when system is heavily loaded (425 KRPS). We note that when

the system load is 425 KRPS, the rate of idle linkage messages in Saqr is reduced because racks

have less idle workers and, therefore, the rate is not monotonically increasing as in RS-H.
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Figure 5.3: Response time in the Uniform worker placement.
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Figure 5.4: Response time in the Skewed worker placement.
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Figure 5.5: Rate of state updates.

We also note that RS-R does not exchange update messages, because it randomly selects racks.

It, however, significantly increases the response time (Figures 5.3 and 5.4).

Processing Overheads. A Saqr scheduler may selectively resubmit a fraction of task packets to the

switch pipeline to update the scheduler view after making a scheduling decision. Figure 5.6 shows

the fraction of task packets that are processed twice by a switch in our experiments. The results show

that maximum fraction of the task packets that are resubmitted is 14%. When the load is low, the

scheduler does not need to resubmit tasks as rate of reply packets is high enough to automatically

update the scheduler state. We note that simple solutions to update the state would result in a 100%

resubmission rate because they resubmit every packet after scheduling a task.

In addition, we measure the total processing overheads on switches which includes the total

number of additional packets (all except the task packets) that are processed by the five switches in

our testbed. The processing overheads for Saqr consists of processing the (i) resubmitted packets

(including the idleRemove and task packets) and (ii) state update messages from leaf schedulers.

Figure 5.7 shows the result for experiments with different worker placement and workloads. As

shown in the figures, Saqr consistently reduces the processing overheads on the switches for every
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Figure 5.6: Fraction of resubmitted tasks.

load condition. For example, in the Skewed setup with 90% GET and 10% SCAN (Figure 5.7a),

Saqr reduces the total processing overheads by up to 31.5X when the system is lightly loaded and

up to and 2.5X when the system is heavily loaded.

Overall, our results show that Saqr effectively adapts to different conditions in the system to

enable low communication and processing overheads without having any prior knowledge about

the workloads and arrival rates.
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Figure 5.7: Total packet processing overheads.

32



Chapter 6

Evaluation using Simulation

We conduct simulations to evaluate the performance of Saqr versus Racksched [76] in a large-scale

datacenter.

6.1 Simulation Setup

Topology and Virtual Clusters. We simulate a network with a multi-rooted Clos topology con-

sisting of 27,648 hosts. Each host has 32 cores and accommodates a maximum of 32 workers (one

worker per core). The network has 1,152 spine switches and the same number of leaf switches dis-

tributed in 48 fully connected pods. We simulate the operations of 1K concurrent virtual clusters

in the datacenter. We use a setup similar to prior works [65, 47] to allocate workers to virtual clus-

ters. The number of workers per virtual cluster follows an exponential distribution with min=50,

max=20K and mean=685, where the total number of workers is 685K. Each worker has its private

task queue and runs a first-come-first-serve (FCFS) policy to process tasks.

Workloads and Task Arrival Model. To capture the performance in multiple realistic settings, we

generate three workloads with different distributions for task processing times: (1) Exp (100) is an

exponential distribution with mean=100 µs, which represents a set of tasks with similar processing

times such as single type of query for in-memory key-value stores and caching servers [39, 76], (2)

Bimodal (50%–50 µs, 50%–500 µs) and (3) Trimodal (33.3%–50 µs, 33.3%–500 µs, 33.3%–5000

µs), which together simulate request patterns typically observed in a mix of simple and complex

processes such as get/put and scan operations [57]. We run the experiments using each mentioned

workload to observe the behaviour of Saqr under different task service time distributions.

We generate requests following a Poisson arrival process. This stresses the system as non-

uniform inter-arrival delays generate bursts that can cause temporary queue imbalance and impact

the tail latency [60]. We keep increasing the system load (by increasing the arrival rate of requests)

until we reach the maximum load for each virtual cluster, which is given by λ = n/s, where n is

the number of workers in virtual cluster and s is the meas task execution time. In the figures, we

report the system load as a percentage of the of maximum load.
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Figure 6.1: Response time for different workload distributions in our simulations.

6.2 Comparison against the State-of-Art

We compare Saqr versus the two variations of Racksched described in ?? that support multi rack

scheduling.

Response Time. In Figure 6.1, we present the tail response time of Saqr and Racksched for each

workload distribution. To show the performance overall distributions, we report the average re-

sponse time across the three workload distributions.

Figures 6.1a to 6.1c depict the tail response time observed by the median virtual cluster. Saqr

reduces the tail response time by up to 3X at moderate loads and achieves higher throughput for any

given response time value. The gains are more significant when the dispersion in the service times

is higher. For the Trimodal distribution, Saqr achieves 5X higher throughput than RS-H when the

target tail response time is 10 ms.

Figure 6.1d shows the average task response time across all workload distributions and virtual

clusters. The response time of RS-R grows rapidly with load: the average response times become 10
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Figure 6.3: Rate of state updates.

ms and 32 ms at throughput values of 10% and 90%, respectively. Compared to RS-H, Saqr reduces

the average response time by up to 71% at throughput of 90%.

To assess the impact of worker distribution imposed by the resource allocation policy and avail-

able resources [10], we measure the response time versus the variance in number of workers per

rack. A high (low) variance indicates scattered (clustered) workers per virtual cluster. Figure 6.2

shows the average and standard deviation of tail response times (at 90% load) observed by differ-

ent virtual clusters. Saqr has stable and small response times with low variability even when the

workers are scattered across racks. For example, when the workers are scattered (i.e., variance is

140), Saqr reduces the average response times by up to 94% and 99% compared to RS-R and RS-H,

respectively.

Communication Overhead. Figure 6.3 shows the rate of state update messages processed by a

single spine scheduler for the Exp(100) workload distribution. We observe a similar trend for other

distributions. In RS-H, leaf schedulers send the updated average load of a rack after receiving a

reply from the workers and the rate linearly increases with the task arrival rate. Leaf schedulers in

Saqr, however, selectively send update messages to the spine layer. Thus, Saqr reduces the rates by

up to 67X and 15.5X at 10% and 99% loads, respectively.

6.3 Analysis of Saqr

Breaking Down Saqr Benefits. We analyze the contributions of the two components of the pro-

posed scheduling policy: (i) scheduling tasks to idle nodes using idleness information, and (ii)

scheduling tasks to busy nodes using power-of-two choices. In this experiment, we focus on five

sample virtual clusters with sizes ranging from 50 to 20K workers and use the Bimodal task dis-

tribution. We compare Saqr versus schedulers using only idle worker selection or power-of-two

choices. In the case of idle node selection, and similar to prior works [49], the scheduler assigns

tasks to nodes randomly if it is not aware of any idle nodes. We also simulate two variants of the

power-of-two choices scheduling. The schedulers in the first variant immediately update their state
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Figure 6.4: Break-down of Saqr performance benefits.

after making a decision. In the second variant, the schedulers rely only on the reply packets from

workers to update their local view, which is referred to as delayed updates (DU) [76].

We present in Figure 6.4a the average response time versus the system load. The results show

that the scheduling policy of Saqr outperforms all other policies for all load values. To get a better

understanding, we plot the CDF of task waiting times at 90% load in Figure 6.4b. The task waiting

time is the time from when a task arrives at a worker until it begins execution. Idle worker selection

policy increases the fraction of tasks experiencing zero waiting time by 2X compared to power-of-

two choices policies. However, power-of-two policies can significantly reduce the tail waiting times

when a scheduler is not aware of any idle nodes. The scheduling policy in Saqr uses both idleness

and load information to reduce the task waiting time. In addition, as shown in the figures, relying

on delayed updates increases both the average response time and tail waiting time at every load

condition because the policy has no fresh view of workers.

Impact of Number of Samples on Scheduling Decisions. Saqr schedulers use power-of-d choices

to schedule a task on less loaded workers when the scheduler is not aware of any idle worker. We

evaluate the response time when increasing the d value. The setup for this experiment is similar

to the previous experiment. We simulate schedulers that only use power-of-d choices policy. In

addition, we simulate a centralized hypothetical Oracle scheduler that tracks the real-time load

of every single worker in the entire datacenter. The Oracle scheduler selects the worker with the

minimum number of pending tasks for each arriving task.

Figure 6.5 shows the results at different load values. Saqr policy is less impacted by the number

of samples compared to the power-of-d choices algorithm. For example, in Saqr, at 90% system

load (Figure 6.5b), setting d to 16 improves the tail response times up to 13% compared to d = 2.

Also, when d = 2, Saqr is able to achieve the same performance as power-of-d choices with d = 16.

36



2 4 8 16
# Samples (d)

0

2

4

6

8

99
%

 R
es

po
ns

e 
Ti

m
e 

(μ
s) ×103

13.1

Saqr
Pow-of-d
Pow-of-d (DU)

(a) At 70% load

2 4 8 16
# Samples (d)

0

2

4

6

8

99
%

 R
es

po
ns

e 
Ti

m
e 

(μ
s) ×103

13.1 37.8

Saqr
Pow-of-d
Pow-of-d (DU)

(b) At 90% load

2 4 8 16
# Samples (d)

0

2

4

6

8

99
%

 R
es

po
ns

e 
Ti

m
e 

(μ
s) ×103

15.5 46.9

Saqr
Pow-of-d
Pow-of-d (DU)

(c) At maximum load (i.e., 99%)

Figure 6.5: Impact of number of samples on scheduling decisions for different policies. Dotted line
shows the performance of an Oracle scheduler.

Our results show that when system load is less than or equal to 90%, Saqr achieves compa-

rable performance to the Oracle scheduler using only two samples. When the load is maximum

(Figure 6.5c), the tail response time for our solution is 34% larger than the Oracle.

The results show that increasing the number of samples with delayed state updates significantly

degrades the performance. These results are in line with both testbed and simulation results from

previous works [76, 22]. This is because with more samples, schedulers tend to send multiple con-

secutive tasks to the worker that apparently has least load until the load gets updated by the worker.

This results in system instability where schedulers keep overloading different workers.

Overall, our simulation results show that Saqr requires small d values because of its policy

that uses idle information and load values efficiently. Setting small d values is important for in-

network schedulers. Because of the limited programmability and computing resources, increasing

the number of samples inside the data plane requires maintaining additional copies of load arrays

in the limited memory (one access per register array) and additional computation stages (log(d)
sequential comparisons). Furthermore, avoiding delayed updates inside the switches with large d

values is not trivial and requires additional bandwidth and resources (as discussed in §3.2.3).

Impact of Scheduler Failures. We analyze the impact of spine scheduler failures where all of the

1K virtual clusters are running. Upon detecting a failure event, the controller sends the event to

clients that were using the spine scheduler. We use a trace-driven delay model for the latency of a

control message from the centralized controller to the clients (based on [34]). The simulator places

clients and the centralized controller in randomly-selected racks and decides the one-way delay

from the controller to client depending on the number of hops. The experiment is repeated 30 times,

each time we fail one random spine scheduler. Burst spine failures are rare and median time between

failures is multiple hours [32]; therefore, we only consider single spine failures.

We use the value r as the ratio of leaf to spine schedulers to control the number of spine sched-

ulers per virtual cluster. When r equals the number of racks in a virtual cluster, the load state for

the racks is maintained at only one spine scheduler. As we decrease r, the state will be partitioned

among more spine schedulers. For example, the value r = 40 indicates using fewer spine sched-

ulers compared to when r = 10. Each failed switch in our experiments is in charge of scheduling

37



0 200 400 600
# Control Msgs to Leaves

0.00

0.25

0.50

0.75

1.00
Fr

ac
tio

n 
of

 fa
ilu

re
s

Ratio (r)
40
20
10

(a) Number of control messages for each failure

40 20 10
Leaf/Spine Scheduler Ratio

0.0

0.5

1.0

To
ta

l F
ai

le
d 

(%
)

1e−1

10

20

30

40

Pe
r-

C
lu

st
er

 F
ai

le
d 

(%
)

(b) Fraction of tasks failed during failover window

Figure 6.6: Impact of spine switch failures on the applications.

for 2–8 virtual clusters. Figure 6.6 shows the impact of spine switch failures and the trade-off for

using different number of spine schedulers for clusters. Figure 6.6a shows the number of messages

sent from the centralized controller to the leaf switches as a result of the failure. When the state is

distributed among more spine schedulers (i.e., small r values), a failure can result in larger number

of control messages. This is because the Saqr controller sends a message to each leaf switch that

needs to update its state. In the worst case (r = 10), an average of 306 (maximum 624) messages

need to be sent for each spine failure event. The centralized controllers in today’s datacenters can

send thousands of updates per second [53, 74].

Figure 6.6b shows the fraction of failed scheduling requests during the failure, i.e., before all

impacted clients use another spine scheduler. The left-axis shows the fraction of total scheduling

requests and the right-axis shows fraction of scheduling requests per each virtual cluster that were

using the failed spine as scheduler. In the worst-case, when using fewer spine schedulers (i.e., large

r values), Saqr can handle more than 99.2% of scheduling requests of the datacenter under a spine

switch failure. Using more spine schedulers provides better availability for each cluster (right-axis)

during the failure. When r = 10, more than 97% of tasks of each cluster are handled by other

schedulers during the failure.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we presented the design, implementation, and evaluation of Saqr, a datacenter-wide

in-network task scheduler for multi-tenant datacenters. In contrast to traditional schedulers, Saqr

offloads the scheduling to network switches, which enables scheduling tasks at high rates. Saqr

distributes the load information of workers among leaf and spine schedulers. We proposed a new

scheduling policy that tracks the load information of workers and minimizes the task response time.

We presented multiple ideas and data structures to efficiently realize the scheduling policy in pro-

grammable switches. We also designed methods to propagate updated load values among sched-

ulers. We implemented Saqr in a testbed with a modern programmable switch and compared its

performance against Racksched [76], the state-of-art in-network scheduler. We also evaluated the

performance of Saqr using large-scale simulations. Our experimental and simulation results showed

that Saqr is scalable and robust against failures, and it substantially outperforms Racksched across

all performance metrics.

Part of our contributions addressed the limitations of state-of-the-art programmable switch tech-

nology for offloading applications to the network. We presented new ideas and data structures to re-

alize Saqr in the data plane. We believe that the design principles and high-level ideas for efficiently

tracking worker states and scheduling the tasks using multiple switches inside the network will re-

main useful in the future despite the potential technological advancements. Our work takes a step

forward towards distributed in-network computing and realizing scalable low-latency task schedul-

ing. With technological advancements in the switch hardware capabilities in future, the simplicity

of Saqr would allow multiple applications to be offloaded to the network at the same time. Saqr can

also benefit from more memory and processing resources on the switches to scale to larger clusters

or realize more complex scheduling policies inside the switches.
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7.2 Future Work

The work presented in this thesis can be extended in multiple directions. One important aspect that

can be extended is realizing other scheduling policies inside the network. For example, fast task

migrations between worker queues can be realized using the state that is stored inside the switches.

This could improve the performance in heavily dispersed workloads by avoiding the head-of-line

blocking in the worker queues. Using similar state distribution mechanisms as presented in this

thesis, the mentioned extensions can be realized by identifying the idle workers and moving the

tasks from the queues of the other workers to idle workers. From a holistic perspective, the in-

network scheduler can be integrated with the application-layer schedulers to support a more diverse

set of applications hosted in today’s datacenters. The in-network scheduler can be helpful to provide

high throughput and low latency for a certain type of tasks while the application-layer scheduler

can be used for more complex decision making processes such as handling inter-task and locality

constraints (e.g., the tasks for virtual cluster A must not run on racks with tasks for virtual cluster B),

and different resource sharing policies. Designing such architecture and carefully offloading parts of

the scheduling to the network is an interesting research problem that would benefit a broader range

of applications in datacenters.
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