
Neural State Machine for 2D and 3D
Visual Question Answering

by

Leon Kochiev

B.Sc., Moscow Institute of Physics and Technologies, 2019

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
School of Computing Science
Faculty of Applied Sciences

© Leon Kochiev 2021
SIMON FRASER UNIVERSITY

Fall 2021

Copyright in this work is held by the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.



Declaration of Committee

Name: Leon Kochiev

Degree: Master of Science

Thesis title: Neural State Machine for 2D and 3D Visual
Question Answering

Committee: Chair: Greg Mori
Professor, Computing Science

Angel Xuan Chang
Supervisor
Assistant Professor, Computing Science

Anoop Sarkar
Committee Member
Professor, Computing Science

Frederick Popowich
Examiner
Professor, Computing Science

ii



Abstract

This thesis focuses on the Visual Question Answering (VQA) task in 2D images and 3D
environments using the Neural State Machine (NSM). The NSM is a state-of-the-art ap-
proach for VQA that simulates reasoning over scene-graphs. We re-implement and extend
the NSM by adding a narrowing mechanism for localised attention, and by applying bilinear
attention on scene graph representations of the input scene. We show that these extensions
lead to improved performance on the VQA task in both the 2D and 3D domains. Prior
work on VQA has focused on reasoning in the 2D image domain, and has not addressed
how the VQA task can be formulated with 3D data. To address the latter domain, we create
a 3D VQA dataset based on 3D reconstructions of real environments. Then, we compare the
performance of the NSM with common approaches for 3D VQA in on a range of question
types. We show that the NSM is competitive with other VQA methods in the 3D domain
and our extensions also lead to improved VQA accuracy in the 3D domain.
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Chapter 1

Introduction

Nowadays, personal assistants are strongly integrated in our daily lives, but for now their
abilities are limited to search queries, note taking and interacting with applications. There
is a limited ability to answer questions based on both visual and language input. Develop-
ing computational systems model that can analyze visual streams and provide informative
answers would be a useful feature for smart security systems, assistants for people with
disabilities and other applications.

The Visual Turing Test [20] was proposed as a test of an AI agent’s ability to perceive
and reason, and requires integration of visual and language capabilities. Motivated by this
challenge, the Visual Question Answering (VQA) [8, 70] problem has been widely studied in
the vision-and-language community. VQA tasks span a spectrum from visual reasoning in
abstract ‘blocks world’ [31] settings to answering questions about complex real-world scenes
while incorporating common-sense knowledge [70]. Despite the rapid progress in this area
the technology cannot yet meet people’s expectations of an intelligent agent. Looking at
state-of-the-art results of models it is worth noting, that the existing models can perform
simple synthetic visual question answering based on the CLEVR [31] dataset, but when
models face real world data from the VQA [8] or GQA [29] datasets they tend to fail more
frequently. This area offers much room for growth, an intuitive setting, various directions
for further work, which makes it attractive for students and researchers.

Visual Question Answering has a variety of underlying aspects, and models that tackle
it are required to have perceptual abilities such as distinguishing objects and understanding
their attributes, relationship between objects as well as estimating the number of certain
objects in the scene, comparing attributes, performing logical inference and making infer-
ences based on general world knowledge. Various datasets ([31, 39, 8, 22]) were introduced
to study how to address these key challenges. Designing a diverse and comprehensive set of
questions can be as difficult as building a model for solving them.

The ideal VQA model has to consist of perfect components: feature extractors and
feature combiners. The majority of modern approaches focus on the most studied part
of the problem: recognising entities and patterns (feature extractors), while paying less
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attention to the way of combining them to properly reason the answer (feature combiners).
The simplest VQA model takes the input question and image and extracts language and
visual features, which are concatenated and used to predict the answer. The Neural State
Machine (NSM) [27] proposes an interesting and unique approach to scene understanding
and cross-modal data alignment. The NSM operates on a scene-graph representation of
the image, where objects are represented as nodes and relationships between the objects
are represented as edges. Associated with each node and edges are continuous embedding
vectors that capture the properties of the objects and relationship between objects. In
addition, there is a probability weight for each node. The question text is converted into a
sequence of instructions, each represented as an embedding vector as well. The NSM then
takes the encoded question (as a sequence of instructions), and simulates the computation
of a finite state machine by using a neural network to compute transition functions for
distributing attention across different states. This generic representation of visual data
using scene graphs allows us to apply the NSM approach to 3D visual data as well.

1.1 Thesis contribution

In this thesis, I investigate the ability of the NSM to answer questions over scene graphs
for both standard 2D image based VQA and in 3D environments. NSM is a state-of-the-
art model on the GQA [29] dataset. As there is no available codebase for the model from
GQA, I started by re-implementing the NSM and evaluating the model on ground truth
scene-graphs. For evaluation we use standard metrics such as accuracy as well as metrics
introduced by Hudson and Manning [29] for GQA.

I considered two extensions to the NSM: adding a narrowing mechanism for localized
attention and applying Bilinear Attention on scene graphs. The narrowing mechanism is
motivated by considering how humans ask questions about objects in relation to other
objects. Typically, when formulating questions, people will provide information to narrow
the area of interest to be within a few relations of objects mentioned in the question. For
instance, if someone is asking about a pizza on a plate, they may say ‘What is on the plate?’.
It is unlikely for them to say ‘What is in the kitchen by the chair on the table and on the
plate?’. Thus I propose to narrow the attention weights of the NSM to a restricted subgraph
based on the question. The size of the subgraph is determined by from the number of words
in the question. Using this narrowing mechanism, we are able to improve the performance
of the Neural State Machine on the GQA dataset.

Another idea that sparked my interest was applying Bilinear Attention [36] on scene
graphs. Bilinear attention has been shown to be a strong multimodal fusion method with
good performance on VQA and thus it is more plausible for it to find connection between
constrained representations of scene graphs and words. In this paper we compare the per-
formance of this attention mechanism with the NSM one.
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In addition to exploring these extensions to the NSM, I also investigated the applica-
tion of the NSM to 3D VQA. Using ScanNet, we developed the first 3D Visual Question
Answering dataset. It allowed us to conduct experiments using NSM in 3D environments
and compare it against other VQA models.

1.2 Thesis organization

This thesis is structured as follows: Chapter 2 gives an introduction to Visual Question
Answering and describes recent advances of datasets and models for VQA. Chapter 3 de-
scribes the Neural State Machine (NSM) and my efforts to re-implement it, as well as initial
experimental results on GQA. Chapter 4 describes the proposed extensions to the NSM (at-
tention localization and bilinear attention) and experiments comparing the extensions with
the basic NSM. In Chapter 5, we present 3DVQA along with baseline models and experi-
ments comparing the NSM on 3D VQA with a simpler fused model. Chapter 6 concludes
the thesis and describes potential future work and limitations of our work.
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Chapter 2

Visual Question Answering

This chapter introduces the problem of Visual Question Answering and provides a brief
summary of the terminology, datasets, recent advances in the field and ways to measure
performance of a VQA model.

In the VQA task, the system is given as input an image and a question related to it
and needs to generate as output the answer to the question Figure 2.1. A natural model
architecture for solving this problem arose: visual encoder, language encoder, fusion module
to align visual and language features and answer predictor. The answer can either be free-
form, multiple choice, or binary (‘yes’/‘no’).

Are there blankets 
under the brown cat?

No

Visual encoder

Feature aligner

Language 
encoder

Figure 2.1: VQA system receives image and question pair, extracts features from both and
combines them in the feature aligner (or fusion module) to produce the answer.

Research in VQA has focused on different aspects of the problem. Some researchers
examine how to improve the backbones used for the language and visual encoders by using
the latest neural architectures such as EfficientNet [60] for images and transformers for
language [47, 59, 10]. A key challenge of visual question answering lies in improving the
fusion module for aligning the visual and language features. One way to improve the fusion
module is by using more sophisticated attention algorithms [36, 28, 46], while others explore

4



Name Number of
images

Number of
questions

Images
type

Questions
type

Functional
programs

Scene
graphs

CLEVR [31] 100,000 999,968 Synthetic Synthetic X X
VQAv2 [22] 204,721 1,105,904 Real Real 7 7

Visual Genome [39] 101,174 1,773,258 Real Real 7 X
GQA [29] 113,018 22,669,678 Real Synthetic X X

Table 2.1: Comparison of important datasets in VQA.

new reasoning architectures that reason over objects and relations in the images. In this
thesis, we study the Neural State Machine, introduced by Hudson and Manning [27].

The choice of visual representation can drastically influence the model performance. A
common choice is to extract grid features from the image using CNN, while later systems
used object detectors to identify objects. More recently, researchers have used a graph
representation of the image, known as a scene-graph (SG) that represented objects as nodes,
and relationship between objects as edges. More formally, given a set O of objects from the
scene, set of their attributes A and set of relations R connecting objects, we define a graph
G = (O,R) - called scene graph. Each object oi from O paired with a set of object attributes
ai from A. Typically, a set of objects and their attributes are generated using object detection
models, and the relations are predicted with scene graph generation models.

2.1 Datasets

To investigate the different challenges of VQA, a variety of datasets was proposed in recent
years ([29, 31, 8]). We provide a short overview of some important datasets commonly
used for Visual Question Answering. They can be divided by how they were collected. It
can be fully synthetic [31], partially synthetic [29] or consist fully of human created data
[39]. To collect natural question and answers from humans, researchers typically turn to
crowdworkers. While collected questions and answers are linguistically diverse and capture
the type of questions and answers that people are likely to provide, there can be problems
with these human created question and answers. For one, the collected data is often noisy
and contain misspellings and other errors. In addition, it’s difficult to control for diversity
in vocabulary and comprehensiveness in the set of collected questions. It is also challenging
to obtain the precise set of reasoning steps that were used to obtain the answer.

To allow for systematic control over questions and answers, researchers turn to generat-
ing questions and answers automatically [31, 29]. The questions and answers are typically
generated using a functional program (FP) that can be run over a semantic representation
(typically a scene-graph) of the image to obtain the answer. From the function program, a
set of templates or probabilistic grammar is used to synthetically generate the questions.
The functional program is typically provided with the dataset. It is provided as a textual
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instruction describing a set of actions that need to be executed over an image’s scene graph
to find the correct answer. The set of basic actions varies between datasets. Generally it
is an elementary operation of visual reasoning such as filtering by attribute, counting or
comparing values. Often if the dataset is annotated with object bounding boxes the dataset
will also include links between text and object bounding boxes for the objects mentioned in
the question and answer.

2.1.1 Fully human annotated datasets

With the proposal of the Visual Turing Test[20], there were concurrent efforts to formalize
and investigate the problem of VQA, with several different datasets including FM-IQA[18]),
Toronto COCO-QA[57], DAQUAR [48], Visual7W[70], and the VQA dataset[8]. Due to its
large size and a series of yearly benchmark challenges, the VQA dataset[8] became one of the
most widely used datasets. The dataset was constructed by taking images from MS COCO
[42] and abstract scenes datasets [71], and asking crowdworkers on Amazon Mechanical
Turk (AMT) to provide questions and answers. For each question, they collected a set of
10 answers and chose the most frequent one as the correct answer. One issue with this
initial VQA dataset (VQAv1) was that it was heavily biased. For instance, binary questions
account for about 38% of all questions, with 59% of them having positive answer (‘yes’).
This is due to a human propensity to pose questions about objects that they see. For
instance,a person would ask ‘Is there a bird in the sky’ when shown a image of an bird
flying. This type of dataset bias allows a model that simply guess ‘yes’ for all questions to
achieve 59% accuracy on binary questions, and 22% accuracy overall. In addition to the
overall bias in answers, the data was also biased when conditioned on just the question.
Kafle and Kanan [33] showed that with a language only model it was possible to achieve
49% on the dataset. Zhang et al. [69] attempted to balance the binary questions, and later
Goyal et al. [22] introduced a balanced version of the dataset, VQAv2 that also address the
issue with language priors. The balanced VQAv2 dataset was significantly more challenging
than VQAv1, leading to drastic drops in performance for existing state-of-the-art models.
For instance, the accuracy of the co-attention model from Lu et al. [46] dropped by 3%, and
a bilinear pooling based model from Fukui et al. [17] dropped by more than 1% compared to
an original accuracy of 66.7% on the unbalanced VQAv1. The VQA dataset further received
more updates in Agrawal et al. [2] with newer splits and it is still used as a state-of-the-art
benchmark for testing models.

Note that at around the same time that the VQA dataset was introduced, the Visual7w
dataset [70] was also introduced. Compared to the VQA dataset Visual7w had more vari-
ability and included annotated regions of the images. In addition, the dataset was designed
to be more balanced. Despite these strengths, the Visual7w dataset was less popular than
the VQA dataset.
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Visual Genome

Another key step in the development of VQA datasets is Visual Genome (VG) [39]. Visual
Genome provided densely aligned language-to-image annotations on top of MS-COCO in
the form of scene-graphs. Using crowdworkers, they collected bounding boxes for regions in
each image along with descriptions for each region. Each description is then decomposed into
objects (nouns), attributes (adjectives), and relations (verbs and prepositions) and linked to
the image in a semi-automated fashion to create region graphs. For each region description,
workers annotated the objects and linked them to a corresponding object bounding box
in the image. The Stanford CoreNLP toolkit [49] was used to help automatically extract
nouns as candidate objects to be identified. Attributes and relations are marked by the
workers and associated with the appropriate objects. By combining the region graphs, a
scene-graph containing all mentioned attributes, objects, and relationships is constructed
for each image. For objects whose bounding boxes overlap significantly (>0.8 IoU), workers
were asked to indicate whether the objects are the same so co-referent object nodes can be
merged together. To normalize the terms, words are matched against WordNet [16] using
heuristics favoring the most common sense, and checked by crowdworkers.

In addition to collecting the scene-graphs, Krishna et al. [39] also collected question
and free-form answer pairs for both the entire image and selected regions (regions that
are relatively large). To increase the overall difficulty of questions, this dataset did not
include binary (‘yes/no’) questions. Overall Visual Genome has greater diversity of answers
compared to other datasets. For instance, 100 most frequent answers of VG covers only 65%
of the VG dataset while the top 100 answer for VQA covers 82% [34]. In addition only, 57%
of VG answers are single words, compared to 88% in the VQA dataset. However, the quality
of the VG scene-graphs were far from perfect. The scene graphs were noisy and incomplete,
and since they were derived from free-form text, the set of object classes, attributes, and
relations were overlapping and ambiguous (despite normalization efforts). There were also
large biases in the types of relations that were included in the scene-graphs [62, 68]. Despite
the richness of the VG VQA dataset, it did not achieve the popularity of the VQA dataset.

2.1.2 Synthetic datasets

CLEVR

Another impactful dataset is CLEVR [31], a fully synthetic diagnostic dataset designed for
exploring VQA models that requires spatial reasoning. In the CLEVR dataset, rendered
scenes composed of simple arrangements of 3D shapes with different colors, shapes, and
materials. These functional programs are built using simple basic operations of visual rea-
soning, such as count or relate. Because the dataset was synthetically generated, it came
with ground truth annotations for object position and attributes, and questions with ex-
ecutable programs. This dataset became a test bed for exploring different VQA models
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for improved attention and visual reasoning ([5, 50, 54]). CLEVR was designed in order
to challenge the model’s visual reasoning simple shapes were used instead of complex ob-
jects to allow for easier object detection. In addition to the synthetically generated question
and answers, Johnson et al. [32] also introduced CLEVR-Humans composed of questions
and answers written by humans. To collect this data, crowdworkers on Amazon Mechanical
Turk were primed with a question from CLEVR and restricted to answers in the CLEVR
answer space. The CLEVR-Humans dataset still focused on visual reasoning but was more
challenging as it provided more linguistic variability.

GQA

To address the limitations of the previous datasets, Hudson and Manning [29] introduced
the GQA dataset, a dataset designed for visual reasoning over real images. The GQA dataset
draws inspiration fromthe construction of CLEVR to generate questions and answers using
a functional program. Instead of using synthetically generated scenes of simple shapes,
GQA leverages the scene-graphs provided by Visual Genome from which the functional
programs are created. Following the development of the VQA datasets, GQA also takes
care to balance the dataset. Hudson and Manning [29] attempt to remedy many of the
drawbacks of the Visual Genome dataset to produce the GQA dataset. They take images
and scene graphs from VG, generating a completely new set of question and answer pairs
with a functional program for each question-answer pair. Each answer has a full and short
version, and a region to which the answer is related (represented as a bounding box). The
VG scene graphs are normalized by mapping all words to 2,690 classes and then adding
language variation for these classes. After that they trim inaccurate or unrealistic edges.
As a final part of the normalization process, information about position of objects in the
image and semantic properties (location, weather) are added. For question generation they
use a template-based engine (which composes questions from a small set of sub-templates)
and covers 524 (250 unique, 274 from the VQA dataset) patterns. To increase diversity they
used synonyms for objects and attributes, as well as alternative expressions and optional
phrases. Distractor objects and attributes are used to rewrite questions to form questions
with negative answers. These negative questions were added with a careful sampling of
distractors. Distractors were selected to avoid extremely unrealistic questions (Is the girl
eating a machine?) and provide more plausible substitutes (Is the girl eating meat? when
the girl is eating ice cream in the image). Almost the same strategy was chosen for attribute
distractors, with the only difference being that they have to vary enough from ground truth
data (pink vs violet). After generating the whole dataset they obtained a little over 22 million
questions, from which they sub-sampled a balanced set of 1 million. This is needed to avoid
most frequent questions which appear due to normal real world biases. One major drawback
of the dataset which remains from the VG is noise in the scene graphs. Normalization of
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the SGs partially solved the problem and improved the quality of it a bit, but they still
require work.

1. Q: What is this bird called?;  A: parrot;  Global: bird; 
Local: 11q-bird; FP: select: bird ->query: name [0]

2. Q: Do you see trains to the right of the fence?; A: No; 
Global: None; Local: 13-fence-train; FP: select: fence 

-> relate: train,to the right of [0]->exist [1]

3. Q: What color does this parrot have?; A: white;  
Global: ‘color’; Local: 10q-parrot_color; FP: select: 

parrot -> query: color [0]

4. Q: Is that a parrot or an eagle?; A: parrot; Global: bird; 
Local: 08oc-eagle_parrot; FP: select: this -> choose 

name: parrot/eagle [0]

(a) Visual and language data example

bird

eye

sky

on

on

bird

un
de

r

to the left of

to the left of

to the left of

near

near
under

under

on

in front of
on

ladder stone

leaves

palmcloudpalm

beak straw

near
fence hillside

cloud
under

(b) Scene graph example: nodes - objects, edges - relations between the objects

Figure 2.2: Sample from GQA dataset

2.2 Models

Since the introduction of the VQA task, a large number of VQA models was proposed.
Despite the diversity of models, all models follow the same basic structure: vision feature
extractor, language feature extractor and feature combiner. Covering all of them within this
thesis would be impossible, so we chose to touch upon only those models that made the
most impact from our very subjective point of view.

2.2.1 Standard VQA Model

The standard VQA model consists of a visual encoder, a language encoder, and a fusion
module to align features from the two modalities to obtain a fused representation that is
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used for determining the answer. The answer prediction module is typically a classifier that
classifies over the possible answers (either a small number of multiple choice options or a
larger space of all possible answers). In the case of multiple choice VQA, there is often
an answer encoder that encodes the answer options, and the answer encoding are also fed
into the fusion module. For longer free form answers, sometimes a sequence decoder is used
to generate the answer. The performance of an VQA system is dependent on all of these
components. Typical choices for the visual encoder is a backbone trained on ImageNet [15],
such as Resnet-101 [23]. For encoding the question, word embeddings are used to encode
words and then passed into a sequence encoder, such as an RNN. The simplest fusion module
is to concatenate the embedded language and visual features and feed the concatenated
vector into a multilayer perceptron (MLP) and use a cross-entropy loss to predict the
correct answer. Early work in neural-based VQA explored these types of models [8, 48, 18,
57, 70]. Jabri et al. [30] showed that a simple model can outperform more complex models.
Their model used ResNet-101 as visual feature encoder, and encoded question words with
Word2Vec [52] and then used a bag-of-words model to average the embeddings to obtain
the question features. The language and visual features were concatenated together and a
MLP is used predict the answer. By also encoding the answer choices and supplying it to
the MLP, this simple model was able to outperform more advanced fusion modules (such
as Multimodal Compact Bilinear Pooling [17], see Section 2.2.3) on multiple choice settings
for VQA and Visual7W.

2.2.2 Attention based models

From the beginning, attention based models have been found to be very useful for VQA
[66]. Attention puts weights on parts of the input, and allows the model to focus on some
areas more than others. In addition, attention weights can also shift over time. For instance,
as the question is passed, attention weights over the image can shift to focus on more parts
of the image that is more related to the words being processed. Various attention methods
has been proposed including stacked attention [66] and hierarchical attention[46]. On the
vision side, typically these attention are over image grid cells and are driven in a top-
down manner by the task at hand. Another work that influenced the field and remained
a standard point of comparison as well as being on top of the VQA leaderboard 1 for an
extended time is Bottom-Up attention network [4]. For bottom-up attention, it utilizes
an object detector (Faster R-CNN [58]) to identify objects and extract object-level visual
features to be used as input into the VQA model. This is similar to bottom-up attention in
humans where people identify objects without having a specific goal in mind. The question
is encoded with word embeddings that are fed into a GRU [11]. For top-down attention,
the encoded question is used to determine attention weights over the objects. An attention

1https://eval.ai/web/challenges/challenge-page/1/leaderboard
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score is computed for each object by taking the concatenation of the visual features of
each object and the question encoding, and passing it through a single-layer feedforward
network. Once the attention weights are computed, an overall attended visual representation
(weighted sum of the individual object visual features) is element-wise multiplied with the
question encoding to obtain a fused representation which is used to predict the answer.
This model mimics human attention, by combining bottom-up attention corresponding to
when a human identifies objects in the image (how Faster R-CNN looks for objects) and
top-down, goal driven attention when a human looks for specific object (how LSTM attends
for language over visual features).

2.2.3 Multimodal fusion

There are many different ways to fuse information from the visual and language features. The
simplest consist of taking a concatenation of the visual and language features and passing
them through a MLP. Other alternatives include taking element-wise sum or product of the
features. These simple fusion methods are constrained in how the elements from the two
modalities can interact. To allow for more flexibility, Bilinear Pooling [44] was introduced. In
Bilinear Pooling, the fused features is the result of a learnable weight matrix multiplied by
the linearized outer product of the vision and language features. Bilinear Pooling allows for
multiplicative interaction between all elements of the language and visual features. While
more flexible, Bilinear Pooling suffers from having a larger number of parameters that are
learned. For example, in bilinear pooling, if the input visual and language features are
both of size 2048, then the learnable weight matrix would have more than 12.5 billion
parameters. To reduce the number of learned parameters, Kim et al. [35] proposed low-rank
bilinear pooling where a low rank factorization ofthe weight matrix is used. Fukui et al.
[17] proposed idea of Multimodal Compact Bilinear (MCB) Pooling, an alternative way to
reduce the number of learnable parameters through the use of kernels. This method utilizes
idea of Gao et al. [19] applied to multimodal case. Specifically, in MCB, the input features
are projected into a higher dimension space using the Count Sketch projection function
[9], and the Fast-Fourier Transform (FFT) is used to efficiently convolve the count sketch
vectors by transforming the convolution into an element-wise multiplication.

2.2.4 Reasoning Based Models

The introduction of CLEVR has inspired the development of VQA models focusing on visual
reasoning. Many of these models make use of the idea of a semantic parser to parse the
question into a program. Semantic parsers are commonly used in the NLP community for
text-based QA. This approach was adapted to VQA in the a line of work on CLEVR [7, 6, 32,
26, 50]. Andreas et al. [7] proposed Neural Module Networks (NMN), modular composable
functions that were built from neural networks. These module correspond to different visual
and logical operations such as: find, transform, combine, describe, and measure. ‘Find’
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is an attentional operation on the image. It transforms the input image to an attention
map, and can be used to attend to a region of the image matching either an object or
attribute. ‘Transform’ modules it into a two-layer perceptron. The ‘combine’ module merges
two attentions using pipeline of stack, convolution and ReLU operators. The ‘describe’
module maps attention combined with image on the label space. Measure takes attention
and maps it on labels space. This building block is good for answering counting questions.
With these building blocks, the problem of VQA decomposes into parsing the question into
a the neural program composed of the neural modules and then running the program on
the image. The neural program or layout specified how to arrange and connect the modules.
In the original NMN, the layout was deterministically obtained from running the Stanford
Lexicalized Parser [38] and converting the resulting constituency parses to dependency
parses [51], and then applying another set of rules over the dependencies to obtain the
layout. In followup work, Andreas et al. [6] trained a model to generate the layout directly
from the question. Since the training objective was not directly differentiable, they used
reinforcement learning to train the layout model. Later, Hu et al. [26] proposed an end-to-
end network using NMN. Johnson et al. [32] proposed to learn the program using a sequence
to sequence model.

An alternative line of work[28, 27] investigated neural network architectures for reason-
ing. Hudson and Manning [28] noted that work based on NMN relied on human specified set
of operators and were hard to train. They proposed MAC (Memory, Attention, and Com-
position), a new neural architectural cell modeled after standard CPU architectures with
a read/write/control units, each a small neural network. The cells connected together in a
recurrent manner, similar to a RNN. The MAC model reached 98.9% accuracy on CLEVR
and 81.5% accuracy on CLEVR-Human, outperforming other VQA methods at the time
such as the NMN line of work [27, 6, 26, 32]. Hudson and Manning [27] then proposed the
Neural State Machine, which simulates the computation of a finite state automaton. It op-
erates on a probablistic scene-graph representation of the image and converts the question
in to a series of instructions that is run over the graph. We describe the NSM in more details
in Chapter 3.

One of the current best performing model on the CLEVR dataset is Neural Symbolic-
VQA [67]. This method is so good at answering CLEVR that it even outperforms humans!
For each image Mask R-CNN [24] segments every mask over each object of the scene along
with its material, color, shape and size. Each of the produced outputs is paired with original
images and fed to ResNet-34 [23] to extract the spatial pose and 3D coordinate. For trans-
lation from questions into programs Yi et al. [67] utilise encoder-decoder (the encoder is a
bidirectional LSTM, the decoder is a unidirectional LSTM) model fused with attention over
its both outputs. The next part of the model is the program executor, which is a collection
of deterministic Python functions that operates over visual output guided by generated pro-
gram. Training of the language parser is a two-step procedure. They first train it on a small
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subset of programs with direct supervision and then train in a reinforced learning manner
to fine tune it on the full set of programs. A similar idea is used by Neuro-Symbolic Concept
Learner [50]. Surprisingly, this model performs slightly worse compared to the predecessor.
It utilizes the same concept with one difference: instead of learning attributes and working
within natural language it operates with a concept space. Another very minor difference is
the Neuro-Symbolic Concept Learner used a GRU instead of a LSTM for processing the
language.

2.3 Evaluation metrics

VQA is typically evaluated under had two settings: an open ended setting where the model
has to generate a free-form string as the answer, and a multiple choice setting where the
model selects the most likely answer. For both settings, accuracy is the most prevalent
metric in Visual Question Answering.

2.3.1 Evaluating multiple choice answers

In the multiple choice setting, evaluation is simple and non-ambiguous. Models are easily
evaluated using accuracy as there is no ambiguity as to whether an answer is correct or not.

accuracy = number of correctly answered questions
total number of questions

2.3.2 Evaluating free-form answers

On the other hand, evaluating free-form answers can be tricky. The problem of comparing
a generated answer with reference answers is similar to determining if two phrases are
paraphrases of each other, which remains a unsolved task in NLP. If exact string match is
used, models that produce a free form answer that differs form the correct answer by even
a single character would be considered wrong. It does not differentiate between roughly
correct answers (‘kitten’ vs ‘cat’) and complete incorrect answers (‘kitchen‘ vs ‘cat’). For
example, the model’s answer ‘grey’ to the question ‘what color is that door? ‘ when the
correct answer is ‘gray’ will be incorrect for this metric same as ‘giraffe‘. For humans, it is
obvious that these two cases are not equivalent and the first one should be penalized much
less than the second. To handle these issues, researchers use one of the following metrics:

Comparison against reference answers

One way to evaluate free-form answers is to compare it against reference answers. When
multiple answers are solicited, it is common to take the majority answer as the correct
one. Antol et al. [8] proposed to consider an answer to be correct if it matched responses
provided by at least k worker. The VQA dataset has 10 answers for each question and for
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evaluation they defined the accuracy to be:

accuracy = min
(number of people provided that answer

3 , 1
)

This partially addresses the issue with using exact match for accuracy and allows for multiple
possible answers to a question. However it does not completely solve the problem of answers
that are paraphrases. This metric requires agreement between at least three people before
an answer is considered to be correct. However, there can be many different answers that are
equivalent. For instance, English has many words that have multiple synonyms. Specifically
in the VQA dataset, 59% of ‘why’ questions has less then 3 identical answers from people,
which makes it impossible to answer questions these perfectly. For 13% of ‘yes/no’ questions
both ‘yes’ and ‘no’ are considered correct answer by this metric as each was provided by
workers as an answer more than 3 times.

Wu-Palmer Similarity (WUPS) [64]. It measures the semantic difference between
words based on their distance in WordNet [16]. WUPS assigns a number from 0 to 1 to
pair of words by finding least common subsummer (LCS) of both words in the WordNet
hierarchy. The score is computed based on depth of the two words (the predicted answer
and the correct answer), and the depth of the LCS:

WUPS(word1, word2) = 2× depth(LCS)
depth(word1) + depth(word2)

Note that this metric has several drawbacks. For one, it can only cover words that are
present in WordNet. In addition, the WordNet hierarchy is known to have inconsistent
depths based on topic. Along with it WUPS does not consider questions about very specific
topics.

2.3.3 GQA metrics

For evaluating VQA models, accuracy is a good initial metric. However, it does not take
into account whether some questions are more difficult to answer than others. For example,
binary questions are obviously easier to answer than questions with a larger answer space.
thus often results are broken down by question type. Some questions may require more
reasoning steps then the others. One simple proxy for the number of reasoning steps is the
question length and analyze performance by question length. However, in some datasets [31]
question length is not a good measure of the number of reasoning steps since the question
may contain extra information or unnecessary phrase. This is often done to train models
that are more robust to irrelevant information in the question. Another issue with accuracy
is that it does not provide any insight into why the model answered the way it did. For
instance, it is possible for a model to ignore important keywords of the question but still
produce the correct answer by chance [1]. Value of the most common questions answered

14



correctly should has less impact on the final metric value then the value of more distinct
ones. To address these issues, Hudson and Manning [29] introduced the following evaluation
metrics

Consistency. This metric measures consistency between responses. For example if a
model answer with a ‘yes’ to the question ‘Are there any armchairs in the room ?’ then for
the question ‘How many armchairs are there in the room ?’ the models should answer with
such a number that is one or more. To compute this metric, a set of entailed questions with
inferred answers need to be defined. Current, the GQA dataset is the only dataset with a
set of entailed questions for computing this metric. For each correctly answered question,
the metric measures the model’s accuracy over the entailed set passing score for a single
question. After that, all scores are averaged into the final result.

Validity and Plausibility. Validity checks whether the answer given is related to the
question scope, e.g. giving an answer with a number to a counting question. Plausibility
measures whether the answer given is a plausible. For example, answering with ‘50’ to the
question ‘How many walls are there in the scene?’ sounds implausible. For now, very few
datasets have data available to conduct analysis based on this metrics. We added data in
3DVQA to introduce validity computation and planning to add plausibility. Both scores
computed by dividing number of validly (plausibly) answered questions by total number of
questions.

Distribution. The Distribution metrics measure how well the distribution of the model
predictions matches the distribution of ground-truth answers. This metric shows, if the
model correctly predicts only most common questions or less frequent ones. This metric is
computed by applying Chi-Square statistic over predicted and truth distribution.

Grounding. Grounding allows us to evaluate whether a model is able to ground or
attend to relevant regions in the image, or whether it relies on language priors. This metric
is only applicable to attention based models. It checks whether the model attends to the
correct region that is relevant to the answer. For a dataset to support computation of this
metric, the dataset needs to provide additional information In addition to the standard
(image, question, answer) triplet. This can be in the form of a dense alignment of text to
regions as found in Visual Genome, or specification of relevant region for the answer. Both
the GQA and our 3DVQA dataset provide information for evaluating this metric.
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Chapter 3

The Neural State Machine

The Neural State Machine [27] (NSM) is a sequential VQA model. It reasons using language
over a probabilistic scene graph by using a specific attention mechanism. The NSM is divided
into two stages: modeling and inference. In the modeling stage, the image is transformed
into a scene-graph, and the question is converted into a sequence of reasoning instructions.
During the inference stage reasoning is performed by processing the language instructions
and shifting attention over the scene graph.

3.1 NSM model

The NSM is a sequential model where on each step of computation it redistributes weights
associated with the nodes of a probabilistic scene graph. The NSM is an extension of finite
state machine where the computation is performed by a neural network and the alphabet,
states, and edges have embeddings associated with them. The simulation of the NSM is
similar to the computation of a finite automaton [25] over the scene graph, with only
difference in an initial weight distribution. The NSM runs for a a constant number of steps
for instead of reaching an end state. Mathematically, the NSM can be described as a set
(C, S,E, {ri}Ni=0, p0, δ) where:

• C is the model’s alphabet represented as embeddings

• S is the collection of states (nodes of the scene graph)

• E is the collection of edges (edges of the scene graph)

• {ri}Ni=0 is the set of reasoning instructions

• p0 is the initial probability distribution

• δ : pi × ri → pi+1 is the state transition function which redistribute weights between
states at each step
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Figure 3.1: he modeling (a) and inference (b) stages of the NSM. During the modeling
stage (top), the image is translated into a scene graph,and the question into reasoning
instruction. During the inference stage (bottom), the reasoning instructions are used to
re-distribute attention over the scene-graph nodes. At the end of the process, the final
scene-graph representation is concatenated with the encoded question (last hidden state of
the LSTM encoder), and passed into a multilayer classifier to obtain the final answer.

In the NSM model, the model’s alphabet maps to a concept vocabulary (C), initialized
with GloVe vectors that will be used to capture and represents the semantic content of
input images. The vocabulary is divided into three parts: set of object identities (CO = C0),
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set of concepts for set attributes AC = ⋃L
i=1Ci (where L is the number of attribute types

and Ci is a set of concepts for attribute ai), and set of relationship concepts CR = CL+1.
Similarly a set of embeddings (D) for properties is introduced.

3.1.1 Modeling stage

At the beginning of the modeling stage a probabilistic scene graph (PSG) is created. Unlike
a regular scene graph (SG) which has only one prediction without probabilities, the nodes of
a PSG, corresponding to objects in a image, is equipped with a set of label predictions with
corresponding probabilities. Similarly, probabilities are kept for attributes and relationships.

To represent information on the scene graph, for each node s ∈ S, the NSM maintains
a set of L+ 1 property variables {sj}Lj=0. Each property variable sj is an embedding vector
that is a weighted sum of concept embeddings:

sj =
∑

ck∈Cj

Pj(k)ck

where ck ∈ Cj denotes each embedded concept, and Pj refers to the probability distribution
of a corresponding property. By maintaining a probability distribution over properties,
the NSM can maintain information for multiple values of an attribute. For instance, if an
object has two colors (e.g. a fabric with checkerboard pattern), then the NSM can distribute
probability over the two colors. In contrast, a model that relies on one predicted attribute
will only be able to capture a single color. Similarly the edge representation is defined as:

e′ =
∑

ck∈CL+1

PL+1(k)ck

for each edge e ∈ E.
To generate reasoning instructions from the language, the first step is to embed words in

the instruction to the closest matching word in the model’s . Vocabulary for unknown words
that do not match any of the dictionary words closely, the default embedding c′ is used. To
find the closest word in the concept vocabulary for embedded word wi, a distribution based
on similarity is computed

Pi = softmax(wT
i WC)

where wi is an embedded word and W is a weight matrix which is initialized to the identity
matrix. Next we represent each word as a linear combination of words from the concept
vocabulary and c′ literal. Note that all structural and non-content words, such as ‘the’ and
‘and’, are treated as unknown words.

vi =
∑

c∈C\c′

Pi(c)c+ Pi(c′)wi
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Once we have the embeddings for the question, they are passed through an encoder-
decoder LSTM to obtain the reasoning instruction. Given a question of P normalized words
V P×d the encoder LSTM outputs its final state q which is used to represent the encoded
question. Then a decoder LSTM outputs N+1 hidden states {hi}Ni=0 which are transformed
into reasoning instruction

ri = softmax(hiV
T )V

The reasoning instructions are obtained by taking a normalised attention over question
words and guides the state machine during inference.

3.1.2 Inference stage

During the inference stage, the NSM performs its sequential computations and outputs final
scores for the answers. Based on reasoning instructions {ri}Ni=0, a neural module δ acts as
the state transition function and shifts attention weights from pi to pi+1.

We first find the property type that is most relevant to the instruction ri by computing:

Ri = softmax(rT
i ◦D)

where D ∈ R300×(L+2) is a set of property embeddings.
During the inference stage we determine the probability distribution over the states at

each reasoning step. For that purpose, we sequentially compute the relevance score for nodes
and edges:

γi(s) = σ

 L∑
j=0

Ri(j)(ri ◦Wjs
j)


γi(e) = σ

(
ri ◦WL+1e

′)
where e′ is an embedding for the edge type and Wj ∈ R300×L+1,WL+1 ∈ R300×1 are learned
parameters with 300 corresponding to the embedding size.

After obtaining the relevance scores we redistribute attention pi from the current nodes
s ∈ S to its reachable neighbors:

ps
i+1 = softmaxs∈S(Wsγi(s))

pr
i+1 = softmaxs∈S(Wr

∑
(s′,s)∈E

pi(s′)γi((s′, s)))

pi+1 = Ri(L+ 1)pr
i+1 + (1−Ri(L+ 1))ps

i+1

Here we obtain new probability distribution by averaging transition probability pr
i+1 and

probability of state being addressed by the guidance signal ps
i+1. To obtain the final encoded

representation m for the scene graph, we average first by instruction type (RN ) and then
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by attention over the states (pN ). This can be described by the following equation:

m =
∑
s∈S

pN (s)

 L∑
j=0

RN (j)sj


Answer Prediction

To predict the answer, once the NSM is simulated for a fixed number of steps (N = 8), the
final representation m is concatenated with the question vector q and is fed into a MLP
classifier: 2-layer fully-connected layers with ReLU and dropout followed by softmax over
the entire vocabulary.

The process described above allows us to simulate state machine guided by instructions
derived from the questions. Given the image and question, the model infers a probabilistic
scene graph over which the state machine runs. The language inputs are transformed into
instructional guidance signals. All representations are determined using embeddings of the
concept vocabulary, which adds alignment in two different streams of data. Then, the model
starts its iterative pass, at each step it shifts along detected relationships - edges of scene
graph and its attention between detected objects - nodes of scene graph. It allows deter-
mining image patterns which were addressed by a certain part of question and reasoning
over SG to finally focus on the answer.

3.1.3 Scene Graph Generation

As input to the NSM, probabilistic scene graphs are first extracted from the images. The
predicted scene-graphs were generated using a variant of MaskRCNN [24] to identify ob-
ject masks and a graph R-CNN [65] is used to identify edges between the objects. For
MaskRCNN, ResNet-101 [23] is used for feature extraction and FPN [43] for region pro-
posal. Instead of just predicting the object class in a flat manner, the detection heads were
updated to predict the object class and category using a hierarchical softmax, as well as
the object attributes for each property type. This results in a probability distribution for
the object properties. The scene graph structure is predicted following Yang et al. [65]. To
reduce computational overhead and produce a sparser graph, edges are restricted to close
by objects (objects with a distance that is less than 15% of the image dimensions in both
axes). After obtaining the scene graph structure, graph attention networks [63] was used
to predict the label of the edges and obtain probability distribution over the relation type
for each edge. The object detector and graph generation model were both trained over the
normalized VG scene-graphs provided by GQA.
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3.2 GQA

We run experiments on the GQA dataset [29] on which the original NSM model was de-
veloped and evaluated. The GQA dataset is designed to be a balanced dataset constructed
using scene-graph from Visual Genome for real-world images. It first normalizes the scene-
graphs from VG and then construct synthetic questions and answers, ensuring diversity in
the questions and answers.

We chose to evaluate our solution on GQA dataset due to its novelty and richness. The
dataset is a recent general-purpose VQA dataset and it uses careful balancing to remove
biases from the data. In addition, it is one of a few datasets with scene graphs which are
required for our model.

3.2.1 Dataset Structure

The full GQA dataset consists of 113K images and 22M exhaustively generated questions.
Answers exist in two forms: single word and a detailed response. Answers are associated
with relevant regions in the image, which allows non standard VQA models to be trained.
For each question a functional program is constructed. It describes reasoning steps to be
performed which allows a tight control over answer distribution.

3.2.2 Dataset statistics

Hudson and Manning [29] used rejection sampling to take a subset of questions to
balance the diversity of question and answer types. At the end of balance, the final dataset
has 1.7 million questions. The dataset consist of five question groups: verify, query, choose,
logical, compare. The most common category is query, which occupies more than a half of
the dataset. The dataset was also balanced by number of semantic types. There are four
types of them: object, attribute, category, relation and global. The dataset has distribution
over the number of semantic steps needed to resolve the question. They include relating
objects between each other, determining its color and any other interaction with the scene
graph (see Figure 3.2 for distribution of the GQA dataset). The dataset is split into 70%
train, 10% validation, 10% test and 10% challenge.
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Figure 3.2: GQA distribution by semantic steps, structural types, semantic types. Figure
reproduced from Hudson and Manning [29]

3.3 Re-implementation and Experiments

3.3.1 Implementation

Since the original NSM code was not released, I re-implemented the NSM using PyTorch
following the details provided in the paper1. While I aimed to follow the design of the NSM as
specified, there are certain details and components that were challenging to match. Hudson
and Manning [27] did not provide any information about number of groups (L) in concept
vocabulary, as well as the initialization for learned vector of <UNK> literal.

For my re-implementation of the NSM, I chose to use an enlarged concept vocabulary.
Similarly as the original code the concept vocabulary was not released and I collected it
based on the GQA dataset. By enlarging the concept vocabulary, it was no longer necessary
to map to the closest word (except non-content words which are mapped into <UNK >).
Another aspect of the original paper that was difficult to replicate was the extraction of
predicted scene-graphs from the image. The authors did not provide the predicted scene
graphs and the paper lacks details necessary for full re-implementation. I investigated using
an existing scene-graph predictor [61] to generate the predicted scene-graphs, but found it
was challenging to train and run due to memory limitations. In addition, for the full re-
implementation of the scene-graph prediction model, it was necessary to update the model to
predict attributes and determine appropriate hyperparameters. As scene-graph generation
is not a core component of the main NSM model, I focused on running experiments with
the ground-truth scene-graph instead of the predicted scene-graph. While the overall VQA
system performance will improve with the use of state-of-the-art scene graph generator, it is

1At the beginning of the project I tried contacting the first author, Drew Hudson, for the code. While
she indicated that she would like to release the code as soon as possible, the original implementation for the
NSM is still unavailable as of the time of this thesis.
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not a direct component of the NSM model. In this thesis, I aimed to improve performance of
the NSM which is responsible for Visual Question Answering, not scene graph generation.

Implementation details

For the experiments we utilized the same parameters and initialisation for the network as in
original paper. Namely number of reasoning steps is equal to 8, batch size to 32, number of
epochs to 15, learning rate to 10−4 and its scheduling, GloVe vectors, output answer space.

For our version of NSM we used Adam optimizer, while original paper used SGD. Ex-
periments with SGD gave me 1% less then ADAM in the same epoch. SGD was reaching
peak accuracy around 5-7 epochs later than ADAM. This allowed us to reach the reported
results on 10th epoch and the rest of the training does not increase the accuracy more than
0.004%. Also computation speed using ADAM was significantly higher.

For our experiments we chose GloVe vectors with length of 300 for initialisation of
learned vectors. The answer space for the model final classifier is words from the GloVe
dictionary. After experimenting with various hyperparameters, we determine that most
beneficial number of reasoning steps is 8 for GQA dataset. We experimented with different
learning rates, initialization of learned parameters, and number of reasoning steps. I fol-
lowed the NSM paper and set the initial distribution to the uniform distribution over the
nodes, or to 1/n for every node, where n is a number of nodes. I also experimented with
sampling the weight of each node from a Gaussian distribution (N (1/n, 1/n2)) within the
first quantile and then normalizing, but found that it hurt the model’s performance. For
reasoning steps we experimented with values between 4 and 10, the results are shown on
Figure 3.3. Adjusting the learning rate from 0.01 to 0.003 gave significant improvement,with
lowering the learning rate further resulting in worse results. Also, I noticed that there is no
significant difference in the results obtained from models trained with learning rates within
0.003± 0.002.

Figure 3.3: Accuracy of NSM depending on number of reasoning steps
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Model Scene
Graphs Binary Open Consistency Validity Plausibility Distribution Accuracy

NSM
re-implemented Predicted 85.39 53.08 96.14 97.58 86.23 3.19 67.16

NSM
original

Ground
truth 78.94 49.25 93.25 96.41 84.28 3.71 63.17

Table 3.1: Evaluation of NSM on the GQA validation split. Note that the two rows are not
directly comparable since for the re-implemented model, we use ground-truth scene-graphs,
while for the original results from the NSM paper is with predicted scene-graphs.

Models were trained on a workstation with a Core i9-9900K CPU and RTX 2080 Ti
GPU. Training lasted 15 epochs with ADAM [37] optimizer. Initial learning rate of 0.003,
decaying the learning rate by half every two epochs. Running time and memory usage of
re-implemented model matches the same values of reported model, namely 30 hours and
11GB. The model is trained on train split, the reported accuracy is for test split of the data.

3.3.2 Experiments

Table 3.1 shows results of the results of the re-implemented NSM on ground truth scene-
graph compared with the original NSM results with predicted scene-graphs as reported in
the paper on the GQA dataset. The results indicate that my re-implementation of the NSM
is able to achieve reasonable performance on GQA with ground-truth scene-graphs. Note
that the results in Table 3.1 is not directly comparable due to the use of ground truth scene
graphs for the re-implementation and the predicted scene-graphs for the original NSM.

From Table 3.1, we can see a clear advantage from using ground-truth scene-graphs.
The results show that ground-truth scene-graphs enhance the model’s ability to provide
more plausible and valid answers (higher Plausibility and Validity), and correctly predict
less frequent answers (lower Distribution). Comparing binary and open-ended questions
performance, we see that binary questions benefit more from ground truth scene-graphs.
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Chapter 4

NSM Extensions to 2D VQA

In this chapter, I describe two extensions that I make to the NSM model: attention local-
ization and using bilinear attention networks (BAN [36]). Attention localization helps NSM
to consolidate its reasoning on a very narrow area which prevents redistributing of model
confidence on irrelevant data. Bilinear attention is a well known model for Visual Question
Answering which shows strong reasoning skills. I decided to test its performance on scene
graph reasoning by replacing the existing NSM inference stage with a BAN.

4.1 Attention localization

We make the observation that questions asked by people are usually answered with an
object located on the image close to question subject, ignoring questions which do not have
an object related answer like yes/no, left/right part of the image, etc. Consider the example
question ‘What is in the sky?’ from the VQA dataset (see Figure 4.1 for image and scene
graph). Since the original VQA dataset did not have scene graphs so we asked 10 volunteers
to draw a scene graph for the given image. We consolidated the 10 scene graphs and selected
the most common objects and relationships).

In this example, the question subject ‘sky’ is located one edge away from the answer
‘clouds’. The edge corresponds to the only spatial relationship used in the question - the
word ‘on’. If we can correctly identify this central object (‘sky’) from the question in the
scene-graph, and only focus on the narrow sub-graph of radius one around it, we can easily
identify the answer (‘cloud’) as there are less nodes to distribute the probability over.

We formalize the idea by introducing the following terminology and notation:

• Question radius is the number of relationship words in the question. (QR)

• Question center is a node in the scene graph which refers to an object from question
or to an object with the attribute mentioned in question. (QC)

• Answer center is a node in the scene graph which refers to the central object from
the answer. (AC)
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(a) VQA image for ‘What is in the sky?’
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(b) Constructed scene graph
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(c) Red node - question center, yellow nodes -
nodes of narrowed scene graph
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(d) Red node - question center, green node - an-
swer center

Figure 4.1: Scene-graphs illustrating the narrowing mechanism for attention localization.
From the image (a), we construct a scene-graph (b). Then we predict the question center
and question radius from the question, and use it to extract a sub-graph for the attention
weights to distribute over (c). Finally, the answer is show in green (d).
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• Narrowed questions is a set of questions with AC within QR + 1 distance from QC .

• Accuracy narrowed is an accuracy on questions with AC within QR + 1 distance
from QC .

• Graph distance between A and B (d(A,B)) is the length of the shortest path
between node A and node B.

To implement the idea, we adjust the NSM modeling stage to compute QR and QC

for each question. To obtain the question center, QC , we identify the first object in the
sentence. Recall that in the original NSM modeling stage, each word was matched to an
embedding in the concept vocabulary. Using this mapping, we know what words map to
objects, attributes, and relations. Taking the first object, we find the corresponding node in
the scene graph. If there are multiple matching nodes, we use the attributes and relations to
avoid ambiguity. Since we have identified the relation words in the sentence, we can easily
compute the total number of relations in the sentence. We use as the question radius (QR)
the number of relationship words in the sentence plus one. We retain every vector (namely
vectors e′ and sj) of data within QR + 1 graph distance from QC and mask out vectors
beyond the QR + 1 graph distance. In our NSM with localized attention, the model will
predict the question radius QR + 1, a question center QC . Using the predicted QR + 1 and
QC , it will mask out (set to zero) attention weights for nodes and edges that are more
than QR + 1 edges away from QC . In Figure 4.1c a narrowed graph is shown with yellow
nodes. This redistribution will allow the model to concentrate more on the most probable
nodes and ignore irrelevant objects in the image. In Figure 4.1d shows that the green node
- answer center lies inside the narrowed graph. Note that this extension can be applied only
to questions with answers that involve objects (i.e. the answer is an object, or is an attribute
of an object, or a object relation). Both GQA and CLEVR datasets also contain questions
for which this localization idea does not apply. Based on the question we determine its type
and then determine if it might be useful for us to apply our idea to it. For this purposes I
created a dictionary of keywords, which define the question type. Our dictionary consist of
8 words which cover all questions which prediction can be improved. Namely, these words
are: ‘what’, ‘which’, ‘who’, ‘on’, ‘how’, ‘what’s’, ‘where’, ‘the’. For example 29% of all GQA
questions starts with ‘what’ which is a part of our dictionary. Similarly for CLEVR dataset
size of the dictionary is 10. For example, questions about the global position of an object
in the image where the answer would be ‘the left bottom corner’ or ‘the right middle part’
of the image.

For deeper understanding of how this idea should work let’s look at example on Fig-
ure 4.1. The question and answer pair is ‘What is in the sky? Clouds’, so in this case the
question center (QC) would be sky and answer center (AC) would be clouds. ‘In’ is a re-
lationship word, so QR = 1 here, so from Figure 4.1c we get a subgraph which remain
untouched. The full SG consists of 8 nodes which provides a 8 × 8 attention map in the
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original NSM. In NSM with attention localization a meaningful part of the attention map
will be squeezed to the size of 3 × 3, which allows the model to concentrate on the most
plausible nodes. Formally one could think of applying function f on attribute embeddings:

f(attr) =


attr,

if object related attribute within
QR from QC

0, otherwise

And for each relationship from E:

f(E(m,n)) =

E(m,n), if n within QR from QC

0, otherwise

To check the feasibility of this idea we computed statistics on both the GQA and CLEVR
dataset (using predicted values of QC , Qr and AC over ground truth scene graphs provided
along with the datasets. Similar to how we computed QC , we compute AC by taking the
provided answer and identifying nodes from the scene graph which correspond to it. In case
if there are multiple nodes that match, we take the farthest (in terms of graph distance d)
node from QC . We then grouped the data into questions with answers involving an object
and those that did not (for these, the narrowing idea is not applicable). Of the questions
with answers that involve an object, we checked whether there was 1) no path between QC

and AC , 2) the distance between the two centers is within the question radius (d(QC , AC)
< QR) and 3) the distance is greater than the question radius d(QC , AC) > QR. We report
the results of our analysis in Table 4.1. The percentage of questions that can be potentially
improved is 48% and 34.3% for GQA and CLEVR datasets respectively. We believe that
there are answers which are not within the distance or do not have a path in the scene graph
between QC because the GQA scene graphs are incomplete and noisy. In contrast, for the
synthetically constructed CLEVR, all answers involving objects are within the narrowed
subgraph. On GQA, the basic version of NSM predicts only 72% of answers questions are
within the radius and only 52% of them are correct. The gap indicates that there is space
for potential improvement.

Figure 4.2 shows the distribution of distances between question centers and answer
centers for questions with answers involving an object. Note that these questions correspond
to the data samples that can be improved using the narrowing idea. To understand the
coverage of the question radii we also plot the distribution of the full scene graph radii
(see Figure 4.2c, 4.2d). By comparing these two sets of histograms, we see that for the full
graphs the area where attention is being distributed is much larger than for the localized
sub-graph. By comparing the graphs for the two datasets, we also see that GQA has larger
variance of radii due to the fact the images were captured in the real world and annotated
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GQA CLEVR
Condition Count Percent Count Percent
no path 2192 1.7 0 0
within 58141 44.0 240321 34.3

not within 3825 2.9 0 0
not object related 67904 51.4 459668 65.6

Table 4.1: Statistics on whether the question/answer center have no path, are within the
narrowed subgraph, not within, or the answer does not involve an object (in which case,
the narrowed attention localization does not apply).

by humans, while CLEVR uses a deterministic algorithm for generating the images and
questions-answer pairs.

In the bottom part of Figure 4.2, we plot the distribution of QR + 1. Comparing Figure
4.2f,4.2e with 4.2b,4.2a an overlap between QR+1 and the actual radius can be noted. In this
thesis, I determined the QR based on the number of relationship words in the question. It is
also possible to use a model to learn to predict the QR (the localization radius). The overlap
between QR + 1 and the actual radius indicates that there can be gains in performance by
learning the localization radius Learning of the question radius might reduce the attention
localisation area only in case of precise enough predictions. In order for this model to induce
better localization, it should produce a smaller total sum of differences (between prediction
and minimum possible distance between QC and AC) compared to the current baseline
(which deterministically assigns QR + 1 to each question).

4.2 Bilinear attention in scene graphs

The other extension we explored was to use Bilinear attention [36] as the alignment method.
In this case we retain the modeling stage of NSM, and use the same technique of language
and image preprocessing as before. The inference stage is reworked so that it follows Kim
et al. [36].

Recall that in the modelling stage we have transformed the extracted probabilistic scene
graphs into set of vectors representing edges and nodes. Each word in the question is trans-
formed into the closest concept embedding (GloVe is used for the embedding), and is passed
into an encoder LSTM. The last hidden state of the encoder is passed into a decoder LSTM
which is unrolled for N steps to convert the sequence into N hidden states. Then the hidden
states are combined with the initial question representation to obtain N reasoning instruc-
tions. We take these reasoning instructions and the encoded probabilistic scene graph as
inputs into the BAN model.

In the inference stage, we replace the shifting attention used to simulate the NSM
with BAN model to fuse the two inputs. In the inference stage, we stack the N generated
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(a) Distance for GQA dataset (b) Distance for CLEVR dataset

(c) Total graph radius for GQA dataset. (d) Total graph radius for CLEVR dataset.

(e) QR+1 distribution for GQA dataset. (f) QR+1 distribution for CLEVR dataset.

Figure 4.2: Distribution of distances between AC and QC for questions which can be im-
proved (top part). Distribution of QR+1 (middle part). Distribution of QR+1 (bottom
part.

reasoning instructions into Y ∈ RN×300, where 300 is an embedding dimension. For each
node of scene graph we construct a representation Si

n =
L+1∑
j=1

sj where sj ∈ R300 for node n.

This results in a set of SiM
i=0 where M is the number of nodes in scene graph. We obtain a

vector output f by using a bilinear attention map A ∈ R300×300. The kth element of f (fk)
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is given by:
fk = (XT U)T

k A(YT V )k

where X ∈ RN×300 is a stacked node representations, V ∈ RN×K ,U ∈ RM×K .
The bilinear attention map A is given by:

A = softmax
((

(1 · pT ) ◦XT U
)

V TY
)

where 1,p ∈ R300. ◦ operator denote the Hadamard product. Note that p is a new learnable
parameter, in addition to the previously mentioned learnable parameters V ,U . BAN can be
used with multiple attention maps that are chained together. When using multiple attention
maps all weights are shared between the different attention maps with the exception of pg,
for which is there a different set of weights for each attention map Ag:

Ag = softmax
((

(1 · pT
g ) ◦XT U

)
V TY

)
At the end after performing multi-channel alignment we sum over channel dimension,

concatenate it with LSTM encoder output in order to give model like it is done in NSM.
This vector is being fed into two-layer classifier over the whole vocabulary.

4.3 Results and Analysis

We implement the extensions on top of our re-implementation of the NSM and conduct
experiments on GQA and CLEVR ground truth scene graphs comparing the two extensions
with the basic NSM model.

Model Accuracy Accuracy narrowed Accuracy non-narrowed
NSM basic 52.24% 48.81% 58.56%

with narrowing 53.23% 50.16% 59.28%
Bilinear attention on SG 51.12% 46.84% 57.32%

Table 4.2: Results on CLEVR dataset. Performance of different NSM modifications on full
set of questions, on narrowed questions and non-narrowed questions.

We found our extensions to the NSM required significant increases to the training time
and memory usage for both GQA and CLEVR. For NSM with narrowing, the memory usage
increased by 20% (from 9 GB to 11 GB) compared to the original NSM model. For BAN,
network on scene graph the memory usage increased by to 15% (from 9 GB to 10.35 GB).
Training time of the models is 30 hours for basic NSM, 112 hours for enhanced NSM and
150 hours for NSM with BAN over SG. Both versions of NSM were written from scratch.
For re-implementation of core functions of the BAN model we follow the original paper and
source code [36]. Both versions of NSM were trained with the following settings: N = 8
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(number of produced reasoning instructions), batch size = 32, learning rate = 10−4 and a
learning rate schedule of decreasing learning rate every third epoch by 1/3 of its value. The
output answer space is constrained to 400000 words which form GloVe vocabulary.

Note that the performance improvement is not restricted to the “narrowed question”
for which the answer involves an object (47% of the data). Even for the “non-narrowed
questions”, the performance improvement is also 2%. Keeping in mind a through careful
reader can note that this improvement does not fully describe the general performance
improvement, because the specified subset consist of only 47% of original data. That means
that questions which were not affected by the improvement also benefited from it. We believe
the gain comes from the partitioning of the two groups, and the attention localization itself
for the “narrowed” group. From Table 4.1, we also see that the BAN performs much worse
than the original NSM. This indicates that the proposed simulation of the NSM was critical
to its performance.

Figure 4.3 shows that with narrowing the model is able to achieve higher results on
common question types from the narrowed question set. These results also show that verifi-
cation and logical questions can also benefit from our improvement. And, as it was stated,
the untouched question category - comparing does not benefit from the enhancement.

Considering that the difference between model performances for narrowed and non-
narrowed versions are almost the same (4.01% and 4.54%) we can assume that the most
impactful part of the enhanced model is data partition. That separation into two parts might
give internal information to the model, that the answer for the non-narrowed question lies far
from the question subject. Such a difference between two classes of questions (affected by the
improvement vs not affected) mostly achieved by the imbalance between question groups.
As it was described, binary questions and questions about global position of an object on the
image can not be improved by the narrowing idea, which leads to that inequality between
two classes.

Model Accuracy Accuracy narrowed Accuracy non-narrowed
NSM basic 67.16% 63.15% 71.70%

NSM with narrowing 69.82% 65.28 % 73.50%
Bilinear attention on SG 61.22% 51.13% 67.97%

Table 4.3: Results on GQA dataset. Performance of different NSM modifications on full
set of questions, on narrowed questions and non-narrowed questions.

Comparing the difference between the whole and narrowed set of questions for NSM-
based models (4%) and the same value for the BAN model (11%) we see considerable
difference between them. This indicates that the BAN model is less adapted for solving
query and choose questions (see Table 4.4). These are two categories of questions that are
most common in the narrowed questions set in (see Figure 4.3).
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Model Query Choose Verify Compare Logical
NSM basic 58.80% 65.41% 72.31% 59.55% 81.08%

NSM with narrowing 60.17% 67.00% 75.14% 59.29% 84.94%
Bilinear attention on SG 49.13% 61.73% 71.69% 58.20% 77.08%

Table 4.4: Accuracy on GQA for each question type..

12% Logical

90% Query

9.5% Choose9.5% Choose
0.5% Compare

51.5% Query

12% Logical
3% Compare

12% Choose

21% Verify

Figure 4.3: Question distribution for narrowed questions set (left) and full dataset (right).

To further show the effectiveness of our enhancement we compute the number of predic-
tions within the narrowed subgraph (see Table 4.5). We see that compared with the basic
NSM, narrowing produces a significantly higher number of predictions and correct answers
within the narrowed subgraph.

Model Predictions within Correct within
NSM basic 19695 12749

NSM with narrowing 21228 14589
Bilinear attention on SG 17784 11203

Table 4.5: Number of predicted answers and correctly predicted answers on narrowed set of
questions.

We provide a comparison of the models using metrics introduced by Hudson and Man-
ning [29] for GQA: consistency, validity, plausibility, distribution. From the results in Ta-
ble 4.6, we see that the performance of the NSM models is very similar, except on distri-
bution where our NSM with narrowing surpasses the others. From the distribution score of
NSM with narrowing we see that it predicts significantly less common answers. Also, from
the same metric it can be seen that BAN on SG fails to predict more distinctive answers.
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Validity scores are almost the same for all models which indicates that they rarely predict
answers which are not connected to the question subject. Plausibility metric scores signify
that all models produce similarly plausible results (i.e. equally often answer ‘chicken’ to the
question ‘What does the chicken eat?’)

Model Validity ↑ Plausibility ↑ Distribution ↓
NSM basic 93.20% 89.66% 108.01

NSM with narrowing 93.32% 89.90% 83.37
Bilinear attention on SG 93.59% 89.87% 145.67

Table 4.6: GQA metrics for implemented models.

For qualitative results, we show a couple examples of ‘image, question, answer’ triplets
which were correctly answered by the narrowed model and wrong using the standard model
in 4.7 and Section 4.3.
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Figure 4.4: Image A Figure 4.5: Image B

Image Question Prediction NSM
original

Prediction NSM
narrowed

A Which color does the sofa have? purple brown
A What vegetable is to the right of the tomato? tomato lettuce
A What is the tomato in? sandwich salad

B Which color is this fence? orange blue
B What is the person to the right of the flag doing? standing skiing

B Is the man to the right or to the left
of the device the person is holding?

left right

Table 4.7: Examples of correctly answered questions by narrowed NSM vs original NSM.
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Chapter 5

Visual Questions Answering with
Point Clouds

The material in this chapter is from work in collaboration with Yasaman Etesam and
Angel Chang. Yasaman worked on developing the dataset, the baseline models and was
responsible for running models (except NSM). Leon worked on models design (VoteNet,
VoteNet+language, NSM), contributed to the dataset construction and visualization. Angel
Chang is the principal investigator and provided guidance, consolidation of ideas and results,
and help in writing. This thesis focuses on comparing the NSM with more standard VQA
models extended to the 3D VQA setting.

All prior work in Visual Question Answering lies in the area of reasoning in 2D and can
not provide expertise in system’s ability to reason in 3D setting. There is work on VQA for
360◦ panoramas [12] but this setting is still subject to the limitations of visual reasoning
only within a 2D image domain. Recently, embodied question answering (EQA) [14, 21] was
proposed to investigate an agent’s ability to answer questions in a 3D environment where
it can move, act, and perceive. The EQA setting is quite complex as it couples navigation,
interaction, perception, and reasoning. This makes it difficult to disentangle whether failure
to provide correct answers is due to the inability to move or act correctly, or an inability
to model and reason about the 3D environment. Moreover, dataset biases may mean the
agent does not even need perception to provide a correct response [3]. In this part of the
thesis, we investigate the ability of a model to answer questions given a 3D environment
represented as a 3D point cloud. The 3D point cloud provides 3D structure information,
and allows us to focus on spatial relations and size.

We created a 3D VQA dataset using 3D reconstructions of real environments from
ScanNet [13], along with set of models aimed to solve it. To support generation of questions
based on spatial relations, we construct a 3D scene graph for each ScanNet scene. Using the
3D scene graph, we create a set of synthetic questions and answers). We use synthetically
generated questions to control the complexity of the questions and to control the aspects of
vision-language reasoning we study. This paradigm follows prior work such as CLEVR [31]
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and GQA [29] which also programmatically generate question-answer pairs. Compared with
CLEVR [31], which consists of a few simple shapes (cube, sphere, and cylinder), our dataset
consists of various real-world objects over 500 categories. Our aim is similar to GQA [29]
(to provide a VQA dataset for investigating reasoning and compositionality in real-world
scenarios), but we focus on 3D indoor environments instead of 2D internet images.

5.1 Dataset

chair

TV

desk

Q: Is there any white banner on the tv?;   Qtype: 
Binary; A: No; FB: <select>:banner - <filter 
color>:white [0] - <relate>:on [1] - <select>:tv - 
<existence> [3]

Q : How many chairs are there ?; Qtype: Count; 
A: 4; FB: <select>:chair - <count> [0]

Q: what is the color of the tv ? Qtype: Query 
attribute; A: grey; FB: <select>:tv - <measure 
color> [0]

Q: where is the grey tv ?; Qtype: Location; A: 
above the cabinet; FB: <select>:tv - <filter 
color>:grey [0] - <get location> [1]

(a) Visual and language data for part of the sample

TV Table Chair

TV - smaller, 
skinnier

skinnier,
same height

Table larger, 
wider

- larger,
same height,
wider, next to

Chair wider,
same height

smaller,
same height,

skinnier, next to

-

From

To

(b) Partial scene graph of the sample

Figure 5.1: Partial sample from 3DVQA dataset with 3 objects.
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The 3D scenes are represented as a point cloud with a set of values assigned to
each point, including: object id, class id, RGB values, XYZ coordinates. Each scene was
equipped with a scene graph. Similarly to 2D case, the 3D scene graph consists of objects
at the nodes, and relationships between the objects. Scene graphs were used to generate
question answer pairs.

For synthetic dataset the question of balancing is acute. Thus similarly to [29] we decided
to introduce a measure of question difficulty. We define it as the number of times we need
to look at the scene graph to determine the correct answer. Having a difficulty measure
we can carefully weight all classes with respect to difficulty of questions. Having all control
levers we can study the complexity of different question groups and the effect of complexity
level on the performance of different models.

Similarly to other VQA datasets in order to widen the range of problems which can be
addressed with the dataset we added: functional programs and ids of answer objects. This
will allow using our dataset for such problems as semantic parsing and VQA but with other
forms of output.

5.1.1 Scene graph generation

We built scene graphs using annotated objects from ScanNet and their oriented bounding
boxes (OBB). We extracted four attributes for each object: color, lightness, height, and size
(volume).

To obtain the color name for an object, we classify the color of each object’s point
using a lookup table with predefined RGB colors. To account for the variation of human
visual system sensitivity to different parts of the visible spectrum and the common use of
gamma-corrected color values in cameras, we follow [41] and measure the distance between
two RGB colors as:

D(RGB, rgb) =
√

((R− r)× 0.3)2 + ((G− g)× 0.59)2 + ((B − b)× 0.11)2

Using this distance, we match against a list of predefined colors commonly used in indoor
scenes. We take the majority vote of the points to obtain the final color name.

We compute object lightness by converting the RGB color for each point to HSL (hue,
saturation, lightness) and taking the mean of lightness (L) for all points of the object.

For size attributes (height, volume), we use the axes length of the OBBs to estimate the
height (z) and size (volume as the product of the axes lengths). Such volume calculation
provides coarse estimation of object size.

Since all introduced attributes (excluding color) are gradable we base a subset of ques-
tions on comparison of the properties. For each of the attributes we induce three levels of
intensity (below average, within average, and above average). For each class of objects and
each characteristic we compute mean and standard deviation within certain object class.
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For characteristic to be within average it has to be within standard deviation from mean
value, everything outside from that interval will be lower and higher than average. Thus
we have 3 levels for each of 4 attributes for each object category which has more than one
object instance in it. With respect to designated level we choose the appropriate adjective
(short vs tall, small vs large) for describing the attribute.

We divided the set of possible relationships into two parts: spatial and comparative ones.
Since we are operating in a view-agnostic manner, we include only view-independent spatial
relationships: on, under, above, support, next to, and between. Where between relation
is based on whether the bounding box of one object is in between the bounding box of two
other objects. For comparative relations, we use the attributes to determine if two objects
are: same color, lighter, darker, same category, same volume, larger, smaller, same

height, taller, shorter, same width, skinnier, and wider.
Based on the objects from point clouds and retrieved information we build a scene graph

for each scene.

5.1.2 Question and answer generation

The dataset consists of four types of questions using templates: counting, query attribute,
location, and binary (yes/no). Question type correspond to the type of the answer. Using
the templates, we can generate questions of varying complexity with different lexical surface
forms. We generate questions ranging from difficulty level 1 to 5.

How many blue chairs are there?are there? 0

How many

What is the number of
attr obj are there

which are

with the
rel

than

as
the attr obj ? <Number>

Template:

Example:

Figure 5.2: One question template with an example from 3DVQA dataset

Figure Figure 5.2 shows a template we use, as well as example question and answer pair.
Similarly as in the problem of 2D Visual Question Answering binary (yes/no) are the

easiest questions which can be answered with only ‘yes’ and ‘no’. Thus we decided to put
fewer of them into final version of dataset. For them we generate questions that require
checking the existence of a specified object, comparison of counts, and checking the relations.
Answers to location questions are designed to be in the form of a short phrase, indicating the
relative spatial location of the focus object relative to another object. This question category
is the most challenging due to the biggest answer space. Query attribute questions ask about
the color, height, or size of an object. Counting questions are designed to assess the ability
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of a model to pick out and count the number of objects matching a set of attributes and
relations.

By looking at the functional programs it can be noted, that overall sequence of actions
which has to be performed to answer the question are quite similar. But as it will be covered
further models fail to follow that chain.

To determine the answer, we traverse the scene graph to identify nodes in the graph
matching the focus objects (category and attributes). If there are multiple objects that
match the reference, we consider the question to be ambiguous and discard the question.
We then consider the relationship between the matched nodes to determine the appropriate
answer. For query attribute, location, and check relation, we will also ensure that the target
object is non-ambiguous.

5.1.3 Dataset statistics and analysis

The dataset has more than 40M questions for 707 scenes, from which we sampled around
0.5M questions. A lot of questions address the same objects on the scene but have different
answers (due to rich interior in the scenes) and a lot of binary questions are collected
addressing a lot of similar attributes/objects. Thus we need to balance the dataset and our
main target was to counterbalance all question categories. Since binary questions are easier,
we aim for less binary questions than other question categories, resulting in a split of 16%
binary questions and 27− 30% for the other question types.

To ensure that the generated questions and answers agree with human judgement, we
sampled 153 questions from 4 scenes. Our generated answers matched at least one human
response 84.31% of the time and matched both 66.01% of the time. Humans were able
to answer binary (yes/no) and counting questions with high accuracy (91.89%). For query
attribute questions, color was easier for humans than height/size questions. Answers to
location questions had the most variation, and matched generated answers less frequently
due to the free-form nature of the answer.

5.2 Approach

Along with the first 3D VQA dataset we provided a set of baselines and models. The
problem of visual question answering in 3D space can be formulated as the following: given
the question and a point cloud which represents the scene, the model has to give an answer
to the question. Every point in the point cloud has six components: (x,y,z) position and
(r,g,b) color values. In the original ScanNet reconstructions, the number of points for each
scene can vary significantly, so we ollow prior work [55] and sample 40K for each scene. We
start with a set of ‘single data stream’ baselines which only utilize either language, or visual
data. and enrich it with unique pipelines we developed. We consider all answers which the
model encountered during training as our answer space at other stages.
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VoteNet

We use VoteNet [55], a 3D object detection network, as a backbone for a two of our models.
Using VoteNet we obtain object-level features from a raw point cloud. This 3D object
detection network takes the point cloud as an input and outputs object labels for each
point. It operates over the 18 most common categories of the ScanNet dataset. It utilizes a
unique voting algorithm, similar to Hough voting [40]. Firstly points are being passed into
the PointNet++ [56] backbone which outputs M seed points equipped with feature vectors
and (x,y,z) coordinates, each point has one vote. A shared voting module (which is a MLP)
generates votes. Next, votes are clustered by simple sampling and are grouped (with radius
r) by searching for the nearest one using Euclidean measure. Given a vote cluster C = {wi}
and its center wj , where wi = [zi, ji] - concatenation of vote location and its feature, the vote
location is being transformed into a central coordinate system with center at votes cluster:
zi = (zi − zj)/r. These transformed votes are then passed into PointNet-like module:

p(C) = MLP

(
max

i=1...n
(MLP (zi;hi))

)
The resulting vector is a proposal equipped with a bounding box, objectness score and
semantic classification scores.

The original VoteNet mode color data, which is provided for each point. We modified the
model to consider the RGB values of each point and at the inference time it will predict the
RGB value of each point along with the object class. We compute the mean of RGB values
for each object individually to obtain its unified color. We use this unified color represented
as RGB values as ground truth data. Similar to the original model we pass coordinates with
their colors into PointNet backbone and then into proposal module. This layer is the final
destination of color features which are used to produce color proposals for each detected
object.

5.2.1 Fused attention

In our fused attention model, we adapt the multimodal low-rank bilinear attention network
(MLB) proposed by Kim et al. [35] to 3D VQA. The input is the final hidden state hn ∈ Rdl

of the LSTM as the question encoding q, and visual features V ∈ RK×dv extracted by the
3D encoder (PointNet++ or VoteNet). For PointNet++ we use K = N2 = 1024 and for
VoteNet we use K = N = 256.

We then apply language-guided spatial attention on the 3D features V to obtain attention-
weighted visual features. To compute the attention, we first project the visual V and lan-
guage features hn into a common space by passing each of them through fully connected
layers fv and fq with fv(V ) = σ(WvV

T ), fl(q) = σ(Wlq) where Wv ∈ Rd×dv , Wv ∈ Rd×dl

and σ is a non-linear activation. We use σ = ReLu as we experimentally found ReLu worked
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better than tanh. We then compute attention over the K visual features vi to obtain the
attended visual features vatt = ∑K

i=1 αivi with α = softmax(g) where g are the attention
scores. The attention scores are computed by taking the low-rank bilinear approximation
g = wa(fv(V ) ◦ fq(hn · 1T )) where ◦ is the Hadamard product (i.e. element-wise multi-
plication), 1 ∈ RK is a column vector of ones, and wa ∈ Rd are learned weights. Note
that bias terms are omitted for simplicity. Finally, we concatenate the visual and language
representations and feed them through our answer prediction module.

Answer prediction

We use a softmax classifier to predict the answers from the visual and textual represen-
tations. The answer module takes the concatenated visual and texual features and pass
them through a simple classifier consisting of linear, ReLU, and Softmax layers. Our answer
space consist of all answers encountered at the training stage, which means that the model
potentially can not answer some questions. For our dataset the fraction of unanswerable
questions is 8% and is mostly due to location questions. The metric that we use to measure
error in this case is accuracy.

The input to this module is a concatenation of the encoded question and 3D features
which is set as the initial hidden state of the decoder LSTM.

5.2.2 Baselines

Non-neural baselines

Firstly, we establish random and majority baselines. We consider four variations: fully
random (Rand), random considering question type (Rand (Q-type)), full majority (Maj)
and majority considering question type (Maj(Q-type)). Random baselines for all questions
pick an absolutely random answer. Majority baseline chooses as an answer to all questions
the answer that occur mostly frequently given across the whole dataset. Random consid-
ering question type picks an arbitrary answer only from the answers which occur for a
given question type. A similar scheme is used for Maj(Q-type) with one answer chosen for
questions with the same question type based on the most frequent answer for that question
type.

Neural Baselines

In order to estimate competence of backbone modules and overall contents of the
dataset, we experimented with language-only and vision-only models. In every model, we
use LSTM in order to get features from language data.

Language models. We consider language-only baselines with a sequence model based
on an LSTM.
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In that case we use LSTM with a combination of GloVE [53] embeddings of size 300. We
pad each question to the length of the longest question in the training set. In single-layer
LSTM, we have a hidden state of size dl = 300. To improve the language encoding, we
apply one hop of self-attention [45] to get the attended representation Q. For a question
of length n, let H = (h1, . . . ,hn) ∈ Rn×dl be the hidden states of the encoder stacked into
a matrix H. We compute the attention weights as A = softmax(Wa tanh(WhH

T )), where
Wh ∈ Rda×dl and Wa ∈ Rr×da are learnable weights, and this softmax is performed across
the second dimension. The final self-attended question representation is then Q = AH. We
use one-hop self-attention (with r = 1) and set da = dl.

Vision models. For vision-only baselines we use VoteNet.
2DVQA. We also consider a 2D VQA baseline where instead of using the point clouds,

we use a 2D top-down rendering of the scene as input. We use ResNet-18 on the 2D top-
down rendering to get the visual features. The concatenation of this vector and the language
representation are passed through a classifier to predict the answer. Since we use the bird-
eye-view (BEV) as input, we refer to the model as LSTM+BEV. The vision-only version
of this model is referred to as BEV and consist of ResNet-18 in combination with standard
classifier.

5.2.3 Implementation details

All our models are implemented in PyTorch. We use the official VoteNet implementation.
We train our models on a workstation with a Core i9-9900K CPU and RTX 2080 Ti GPU.
The stopping criterion was a change of less than 0.0001 in validation set accuracy between
epochs. We used dropout on the last network layers. For the 3D fused model, we used
ADAM [37] with an initial learning rate of 0.001, decaying the learning rate by half every
two epochs, and a dropout rate of 0.7. We trained the network for up to 30 epochs, with
the training stopping when the validation accuracy stabilizes (increase less than 0.0001),
typically after 10 epochs. For the NSM, we trained using ADAM with a learning rate of
0.0003, decaying learning rate by half every epoch. We used a last layer dropout rate of 0.15
and trained up to 10 epochs.

5.3 Experiments

In our experiments, we follow the ScanNet v1 scene split, ensuring consistenccy with other
papers. It contains 494 scenes for train, 71 for validation, and 142 scenes for the test.
Table 5.1 compares the performance of different models using the accuracy, validity and
distribution metrics. The random baselines show that it is challenging to randomly guess the
answer. The majority baselines show that there is some bias in the dataset (e.g., most binary
questions are answered by ‘no’). Similarly the bias is reflected in the strong performance of
the language-only baseline (LSTM). In contrast, the low performance of the 3D point-cloud
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only baselines using VoteNet, shows that since there are many questions for each scene, the
text of the question is necessary for determining the answer. The other cause for such low
performance is due to the in noise in ScanNet scenes. The ScanNet scenes were initially
reconstructed from scans of indoor environments. Due to the quality of the reconstructions,
the scenes are noisy and incomplete. Models that combine information from the question
and the visual modality, improve the performance only slightly over the LSTM only model.
Incorporating VoteNet on top of the LSTM improves the performance by 0.9% while using
the top-down view improves the performance by 0.5%.

There is no conceptual difference between 2D and 3D case for NSM as it uses scene
graphs as input. One key difference between the two settings is that the scene-graphs in
3DVQA is more complete with many relations between objects, while the scene-graphs in
GQA has only a partial set of relations between objects that were hard annotated.

Val Test
Method Acc↑ Val↑ Dist↓ Acc↑ Val↑ Dist↓

Rand 0.03 3.56 133.58 0.05 5.27 267.88
Rand(Q-type) 11.08 44.58 2141.49 9.92 46.78 5564.31

Maj 10.11 28.77 1094.32 9.13 26.79 1430.89
Maj(Q-type) 27.44 87.72 2082.14 25.04 86.44 2113.33

LSTM 42.02 98.91 1874.36 41.44 98.72 1652.45
BEV(2D) 9.21 28.88 163.33 8.72 28.84 314.92
VoteNet 11.47 30.79 174.44 9.62 29.59 381.47

LSTM + BEV(2D) 42.52 96.94 1324.47 40.75 97.56 609.86
LSTM + VN 42.98 98.99 542.28 43.07 98.76 608.99

NSM on GT SG 41.32 95.68 252.32 41.44 96.91 234.4
NSM narrowed on GT SG 41.72 95.93 303.81 41.87 96.36 289.46

NSM on predicted SG 37.12 96.04 275.48 37.24 95.79 312.60
NSM narrowed on predicted SG 39.06 95.81 243.30 39.15 95.42 286.95

Table 5.1: Performance of different models on 3DVQA-ScanNet. Accuracy, validity, distri-
bution trends are most correlated across models.

We conduct experiments using the NSM with both ground truth and predicted scene-
graphs. We construct the predicted scene-graphs using VoteNet trained on ScanNet v1 train
split with ScanNetv2 annotations. Because VoteNet is typically trained and evaluated on
the 18 most frequent classes of ScanNet, we subsample our dataset to restrict it to question-
answer pairs mentioning only objects from these 18 classes.

To check the quality of the generated scene graphs we measure the performance of
VoteNet predictor that was used to detect objects in the scene. Note that we adapted
our VoteNet model to not only predict the object category, but also the object color by
taking the mean of the RGB values of points belonging to the predicted object. To measure
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Method mAP@0.25 AR @0.25 mAP@0.5 AR @0.5 Color error
VoteNet re-implemented 0.50 0.62 0.31 0.42 0.019

VoteNet original [55] 0.52 0.65 0.33 0.45 N/A

Table 5.2: VoteNet performance on test split with color error. Error is averaged among R,
G, B channels.

Val Test
Method Acc loc count query y/n clr h/s Acc loc count query y/n clr height/size
LSTM 37.71 6.29 46.20 39.43 78.69 33.59 28.38/36.27 38.25 6.47 47.72 39.43 74.49 40.58 38.54/37.89

LSTM + BEV(2D) 38.34 6.71 47.69 35.45 75.25 35.93 32.24/37.70 36.53 4.90 45.26 37.86 73.55 43.10 29.62/34.63
LSTM + VN 39.12 10.82 46.04 36.70 74.46 33.59 39.38/41.19 38.88 9.45 48.68 39.18 72.02 40.58 34.26/40.75

NSM on GT SG 36.71 6.48 41.01 36.09 76.90 31.26 39.19/44.26 35.51 6.89 41.68 36.60 72.31 35.26 36.66/39.24
NSM narrowed on GT SG 42.25 9.52 49.89 42.11 79.62 35.43 45.32/38.67 40.13 9.07 45.33 39.56 70.40 46.40 38.22/40.15

NSM on predicted SG 34.13 5.97 40.68 36.12 76.11 30.79 38.41/43.06 33.50 6.71 42.01 36.25 71.64 34.29 36.02/38.57
NSM narrowed on predicted SG 42.87 14.06 50.26 44.01 75.68 50.57 41.15/36.85 40.76 8.96 49.90 40.29 73.22 54.21 40.53/39.08

Table 5.3: Performance of baselines and NSM models on 18 object category 3DVQA dataset.

the quality of color prediction we measure the average RGB color error of the predicted
color from the ground truth color. The error is computed as an absolute value of difference
between prediction and ground truth. Table 5.2 shows the performance of our re-trained
VoteNet. Our retrained model has a slightly lower performance compared to the results
reported in the original VoteNet paper.

In Table 5.3, we report the performance of the NSM models on the 18-object subset
of question-answer pairs. Considering the fact that in 3DVQA the scene graphs are more
complex with more spatial relations, we would expect bigger improvements. From Table 5.3
we see that that of narrowing works in all NSM applications and potentially can improve
attention mechanisms which involve matrix as a learnable parameter.

In Table 5.3 we also split out height/size questions to a separate category to highlight
significant overlap of our 3D models compared to LSTM and 2DVQA baselines. We hy-
pothesize that height/size questions cannot be answered correctly without modeling the 3D
extent of objects in the 3D scene. And from the results it can be observed that specifically
designed 3D scene-aware models perform notably better (>10%) than the others for these
questions.
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Chapter 6

Conclusion

To conclude, in this thesis we studied the performance of the NSM model for VQA.
We re-implemented the NSM and considered two extensions (attention localization and the
use of BAN) on 2D VQA on the GQA dataset. We found that while BAN did not improve
performance, the attention localization helped to improve performance. We also presented
our work on 3D VQA where we constructed a synthetically generated set of questions
and answers for ScanNet. Using this dataset, we conducted experiments and compared the
performance of NSM against baselines and more standard VQA models. Again, we showed
that the attention localization helped improve the performance over the basic NSM.

One key limitation of the NSM is its dependency on an external module to extract a
probabilistic scene-graph from the image. Since a only a few datasets have scene-graphs,
it makes it challenging to investigate the performance of NSM with ground-truth scene-
graphs. The simulation of the NSM during the inference stage is also computationally and
memory intensive. After adding our extensions, the inference time doubled. This make it
impossible for the model to be used in real-time applications or mobile devices. While it is
possible to use multiple GPUs or GPUs with more memory, the computational inefficiency
of the NSM makes it less appealing for real-world use.

Our 3DVQA work is limited by its construction methodology. It is challenging to create
a fully balanced subset considering all objects and all distributions. With real world scenes
there will always exist natural biases: for instance, the majority of tables are brown and
almost every pillow is on the bed or sofa. While we can attempt to correct for these biases,
it is impossible to completely eliminate them nor is it entirely desirable. While it is impor-
tant to have a balanced dataset for the purposes of investigating models that can perform
compositional reasoning, it is also important to study whether models capture the common
sense priors of the world. We believe there is a lot of potential future work in the area of
3DVQA.

In the short term, for 3DVQA we plan to add oriented bounding boxes. This would
allow us to induce new relative spatial relationships such at in front, to the left, and
to the right. Along with that would add choice and logical questions. This will increase
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the diversity of questions we have. In the future, we hope the 3DVQA would become a basis
for work by other researcher exploring VQA systems in 3D environments.
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