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Abstract

Contemporary fisheries management involves setting quantitative objectives, and estab-
lishing decision rules that determine management actions in response to monitoring data.
Within that system, feedback harvest strategies are developed via simulation, where var-
ious decision rule features are tested against realistic fishery conditions, and are ranked
by their relative performance measured against the quantitative fishery objectives. While
the adoption of formal harvest strategies has been increasing globally for some time, most
contemporary harvest strategies, and their associated stock assessments, continue to be
single-species oriented despite a high prevalence of technical interactions in fisheries. Over
three research chapters, I use a simulation approach to investigate whether multi-species
harvest strategies, based on hierarchical stock assessment models and multi-species ref-
erence points that incorporate technical interactions among species, are better suited to
the management of data-limited, multi-species fisheries than traditional single-species ap-
proaches. First, I use simulation-evaluation to show that the estimation performance of
hierarchical multi-stock surplus production models is more robust to declining data quality
than a single-stock version of the same model, creating potential for improved information
feedbacks in data-limited contexts. Next, I show that TACs set based on hierarchical model
estimates of biomass and productivity are better able to maximise yield under all data
quantity scenarios, thanks to negatively correlated biases in key management parameters
and target harvest rates that acknowledge technical interactions. Finally, I use closed loop
simulation to compare the economic and conservation risks of single-species maximum sus-
tainable yield (MSY ), multi-species MSY , or maximum economic yield (MEY ) harvest
strategies. Taken together, the results of my thesis support expanded usage of hierarchical
models in fisheries stock assessment and management, which may lead to wider adoption
of formal harvest strategies. Further, I show that yields, food security, and/or economic
rent can be increased (not always at the same time) by including technical interactions in
reference point calculations.

Keywords: fisheries science; multi-species stock assessment; data-limited; groundfish; har-
vest strategy
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Chapter 1

Introduction

Contemporary fisheries management involves setting quantitative objectives and establish-
ing decision rules that determine management actions in response to monitoring data [30].
Within this system, feedback harvest strategies are developed via simulation, where vari-
ous decision rule features are tested against realistic fishery conditions, and are ranked by
their relative performance measured against the quantitative fishery objectives [38, 116].
Within feedback harvest strategies, harvest decisions generate fish stock responses, which
feed back through observational data to affect future harvest decisions [65]. Harvest deci-
sions are based on management procedures, which are formal rules for making management
decisions under uncertainty, and represent the link between fishery dependent and inde-
pendent data, stock assessment, and management actions (e.g., catch limits). Uncertain
fishery observations, such as survey and catch data, flow through an estimation model (or
empirical rule) to produce biomass and/or productivity estimates, which are in turn used to
set total allowable catch (TAC) via a pre-defined harvest decision rule (Figure 1.1). TACs
are then distributed to harvesters as quota, who apply fishing effort, produce catch, and
deplete both quota and the fish stock. Feedback from management decisions often facilitates
learning about the productivity of the stock, allowing managers to adapt the managment
procedure and more closely achieve the objectives of the harvest strategy.

While the adoption of formal, simulation tested harvest strategies has been increasing
globally [112, 90], most contemporary harvest strategies, and their associated stock as-
sessments, continue to be single-species oriented despite a high prevalence of multi-species
technical interactions in fisheries [131, 85]. In particular, non-selective harvesting in multi-
species fisheries creates choke effects in output controlled fisheries [6]. Choke effects occur
when less productive or easier to catch species have their catch limits filled faster than other
technically interacting species, prematurely restricting access to fishing grounds. When har-
vest decisions ignore technical interactions, they are, by design, unlikely to produce desired
fishery management outcomes [100].

The status quo for multi-species fisheries is to manage them like a collection of single-
species fisheries (Figure 1.1(a)), which has two main disadvantages. First, when technical
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Figure 1.1: Three conceptual models of multi-species fishery management: (a) status quo
single species approach, (b) total aggregation of species, and (c) hierarchical multi-species
model. Each arrow indicates influence of one element on another, with arrows in two di-
rections showing feedback effects. To reduce complexity, influences of catch on the data
element, and stocks on the survey elements, are not shown.

interactions are ignored, catch and quota are often imbalanced because harvest rules are
based on single-species population equilibria, or biological reference points, that are derived
without technical interactions. When fishing effort is applied, technical interactions lead to
bycatch (or byproduct when landed), and quota for bycatch/byproduct species is utilised
faster than expected [6]. The resulting catch/quota imbalance then leads to aforementioned
choke effects, when quota for easier to catch, or choke, species becomes more scarce, and
therefore more expensive to acquire, limiting harvester access to fishing grounds and reduc-
ing profitability. Second, parallel single-species management systems are linear, or chain-like,
with limited (or no) redundancy (Figure 1.1(a)), and so are vulnerable to interruptions at
any point along the chain. For example, if a survey indexing stock biomass is discontinued
for any reason, but fishing continues after the survey ends, then the information feedback
required to link management actions (quota) to stock health via stock assessments is weak-
ened or, when assessments become impossible, eliminated. Such data limited scenarios and
their weakened feedbacks also amplify choke effects, when highly uncertain stock status
estimates lead to more improperly scaled catch limits for all species [15].

Data-limitations in multi-species fisheries are sometimes reduced by aggregating (or
pooling) data across species for assessment and management. Pooling effectively increases
the data sample size, creating higher statistical power data. The pooled multi-species com-
plex is then assessed as a single stock, producing total biomass and average productivity
estimates, which can be used to set a quota for the complex as a whole (Figure 1.1(b)). Such
methods are often used to manage tropical reef fisheries, where there are a high number of
species with only catch and effort data available, and insufficient resources for single-species
management [3, 31]. Technical interactions between species are no longer an issue when
catch limits are not allocated to individual species, because catch is limited for the complex
as a whole. However, a lack of individual species catch limits could lead to overfishing when
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quotas are based on average productivity of the complex, meaning that half of the species
are likely to become overfished. Furthermore, without any allocation of quota to individ-
ual species, there is no control over the composition of fish that harvesters catch to fulfil
the complex quota. Therefore, conditions may arise (e.g., changes in landed values) that
encourage targeting or avoidance of one or more species, which can also create overfishing.

There are a number of examples where hierarchical statistical models provide a compro-
mise solution to the challenges of data-limited, multi-species fishery management outlined
above [138, 69, 120]. Like single-species models, hierarchical models produce stock-specific
management parameter estimates, allowing harvest decisions to be made on a stock-specific
basis. Uncertainty in species-specific estimates is reduced under data-limited conditions by
sharing information between species via shared, hierarchical prior distributions on model
parameters that are assumed to be similar among stocks (e.g., productivity for similar
species), rather than through data-pooling. Prior distributions draw parameter estimates
towards a hypothetical prior mean via parameter shrinkage. Shrinkage produces similar
benefits to data pooling, while also allowing parameter estimates to be based more on data
than strong a priori assumptions, which are common in data-limited scenarios [138, 120, 69].
The statistical benefits of parameter shrinkage are well documented for linear models, such
as Ricker stock-recruitment models [107, 118, 80], but there is little research into whether
shrinkage effects are beneficial for fishery stock assessment models, where parameters are
embedded in recursive, non-linear population dynamics, such as for iteroparous ground-
fish species. Further, it is unclear whether any resulting statistical benefit translates into
improved management outcomes when harvest decisions are based on the outputs of hier-
archical stock assessment models.

In this thesis, I investigate and compare the statistical and management performance
of both single- and hierarchical multi-species stock assessments, and the risks of basing
harvest decisions on those assessments, in a data-limited, multi-species fishery context.
Over three chapters, I develop a multi-species, spatially explicit harvest strategy based
on hierarchical multi-stock and multi-species stock assessment models (Figure 1.1(c)) and
biological reference points that incorporate technical interactions. Using simulation, I show
that multi-species harvest strategies produce superior outcomes to strategies based on single-
species models and reference points, can eliminate (on average) costly choke effects, and
either increase resource rents or yields, depending on the objectives, with acceptable levels
of conservation risk.

Simulation models for each chapter are based on the spatial structure and life history
of three right-eyed flounders (Pleuronectidae Spp.) in British Columbia, Canada - Dover
sole (Microstomus pacificus), English sole (Parophrys vetulus), and (southern) Rock sole
(Lepidopsetta bilineata) - which I refer to as the BC flatfish complex. Despite 60+ years
of commercial exploitation, the BC flatfish complex has low statistical power data, char-
acterised by short, noisy fishery independent series and longer, noisier fishery dependent
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series. Given the low power data, stock assessments for BC flatfish complex species are
infrequent, with no model based stock assessment for Dover sole ever having been com-
pleted [40], around 8-10 years between stock assessments for English sole [42, 135], and
even longer between published stock assessments for Rock sole [61], which include both
fully age-structured stock assessment models and simpler delay difference models.

For the simulations in this research, I split the BC flatfish complex data into three spatial
stock areas. Areas are labeled, from north to south, Hecate Strait/Haida Gwaii (HSHG),
Queen Charlotte Sound (QCS), and West Coast of Vancouver Island (WCVI). Each area
aggregates multiple Pacific Fishery Management Authority major statistical areas, specifi-
cally 5CDE (HSHG), 5AB (QCS), and 3CD (WCVI) (Figure 1.2), and are roughly the same
as the management unit boundaries used by Fisheries and Oceans, Canada, for setting catch
limits for all three flatfish species [45]. There are two mismatches between the stock struc-
ture I assume and the real management boundaries for BC flatfish complex flatfish. First,
for Rock sole, area 5E (west coast of Haida Gwaii) is considered an unmanaged separate
stock with insufficient data for assessment and minimal removals (and therefore no catch
limits) [61], and for English sole, the WCVI and QCS areas are managed as a single stock
[45], presumably because of the low catch levels in those areas and the lack of biological
data establishing any finer stock structure through phenotypic variation [12].

Despite the mismatch between the stock structure I assume and the management of the
BC flatfish complex in practice, there is supporting evidence for my assumption. Tagging
studies show very little inter-area movement of all three species [41, 44, 43, 73, 56, 137,
146, 46], with the majority of tagged fish (68% - 99%) found within 15 miles of the location
of their release, despite several years at liberty. A notable exception is around 1.4% of
Dover sole tagged in Hecate Strait (5D) recaptured off the north coast of Haida Gwaii (5E)
during winter rockfish fishing, which is a known winter spawning ground for Dover sole [43].
Further, while it was very rare (i.e., < 1%), English sole appear to be most prone to larger
migrations, with fish tagged in northern Hecate Strait (5D) found as far south as Washington
state (area 3B) and one fish tagged in area 5B was found as far south as northern California
(area 1C) [46]. While the results of the tagging studies may be biased by the proximity of
tagging locations to areas of high fishing intensity for BC flatfish complex species, there
is also further supporting evidence for the assumed stock structure. Phenotypic differences
exist at the assumed scale for Dover sole, for which length and age data exist in all three
management areas, which when fit to produce distinct von Bertalanffy growth models with
asymptotic lengths L∞ for males ranging between 45 cm and 49 cm, while female fishes have
a smaller range between 53 cm and 54 cm1. Similarly, von Bertalanffy asymptotic length L∞

parameters for male Rock sole differ by around 4cm between the HSHG and QCS areas (no

1Unpublished data, GFBIO database hosted by Fisheries and Oceans, Canada, at the Pacific Biological
Station in Nanaimo, BC
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Figure 1.2: British Columbia PFMA boundaries and bathymetric contour lines

biological data exists for QCS English sole, or WCVI English or Rock soles). Additionally,
there are deep gullies that run through areas 5A and 5B (QCS) from coastal inlets to
the continental slope, which likely inhibit migration of flatfish between each of the areas
(Figure 1.2). Finally, choosing to aggregate are 5E Rock sole with the 5CD Hecate Strait
population is probably of no consequence, because the evidence points to Rock sole having
finer resolution stock structure than both my assumption and the current management unit
boundaries [73, 56].

In Chapter 2, I investigate strengthening the links between low-power data and stock
status estimates via hierarchical multi-stock surplus production assessment models. Highly
uncertain fishery data weakens feedback links between stock status and catch limits. Those
weakened feedbacks lead to sub-optimal fishery management when status estimates are
highly uncertain, or missing, given low statistical power data [16]. To improve estimation in
the presence of low power data, hierarchical models are defined with shrinkage priors for sur-

5



vey catchability and/or stock productivity. Single-stock and hierarchical multi-stock models
are fit to simulated data for a multi-stock Dover sole complex in a simulation/evaluation
study, demonstrating links among data quality, parameter shrinkage, and model bias and
precision for hierarchical multi-stock stock assessment models. The benefits of shrinkage are
evaluated by comparing bias and precision in estimates from single-stock models to bias and
precision in hierarchical multi-stock assessment models estimates, while varying data quality
in high and low statistical power scenarios. Finally, hierarchical multi-stock and single-stock
models are fit to real catch and index data for BC Dover sole complex, which has never had
a model based stock assessment [70]. Results show that estimates from multi-stock models
are more robust to simulated low statistical power scenarios. Furthermore, when fit to real
Dover sole data, hierarchical multi-stock models are selected over single-stock models when
ranked according to Akaike’s Information Criterion.

In Chapter 3, I use closed-loop simulation to understand how parameter shrinkage affects
the fishery management outcomes, by testing harvest strategies for BC flatfish complex
stocks based on surplus production stock assessment models. Under hierarchical models,
gains in precision and reductions in bias for stocks with low power data can come at the cost
of increased bias and reduced precision for stocks with higher power data [119]. Therefore,
it it is unclear if the improvements in information feedbacks for low power stocks offset the
degrading of feedbacks for high power stocks, leading to a net benefit in fishery outcomes.
On the other hand precise or unbiased models are not guaranteed to produce acceptable
fishery management outcomes, due to irreducible error in all statistical models [134, 81]. To
understand the management performance of hierarchical models, I use biomass estimates
from five surplus production models, including hierarchical multi-stock and single-stock
models, to set catch limits for the BC flatfish complex under high, medium, and low data
quantity scenarios. Management performance is estimated via comparison to decisions by
an omniscient manager [144, 86], showing that hierarchical multi-species stock assessments
produce superior conservation and yield performance across all scenarios.

Finally, in Chapter 4, I compare conservation and economic risks of single-species harvest
strategies (ignoring technical interactions) against multi-species harvest strategies (incor-
porating technical interactions). Choke effects caused by ignoring technical interactions can
limit the resource rent (profit) available to harvesters by limiting revenue when fishing
grounds are closed. A bio-economic model for the BC flatfish complex fishery is extended
from the operating model in Chapter 3, with realistic fishing costs and revenues [5]. Harvest
strategies based on multi-species maximum sustainable yield (MSY ) and maximum eco-
nomic yield (MEY ) reference points, which incorporate technical interactions, are compared
to single-species MSY strategies via economic and conservation performance. Multi-species
MEY harvest strategies are shown to consistently out-perform single- and multi-species
MSY based strategies in both conservation and economic outcomes.
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1.1 Statement of interdisciplinarity

This research brings together the natural and social sciences, specifically fisheries sci-
ence/management and economics. Chapter 4 quantifies economic and conservation risks
of applying single- and multi-species harvest strategies for the BC flatfish complex multi-
species fishery. To define harvest strategies maximising resource rent (MEY ) and estimate
economic risks, I defined a bio-economic model that integrates realistic economic models of
demand and costs of fishing with a multi-species population dynamics and fishery model.

1.2 Contributions

A PhD thesis is not a solitary achievement. I am the first author of all chapters, having
conducted all analyses and written all first drafts, and as such the thesis is written in
the first person singular. However, Chapters 2 - 4 are edited from manuscripts that are
either already published in the primary literature (Chapters 2 and 3), or are intended
to be (Chapter 4), and all three chapters have benefited from discussions, editing, and
comments from co-authors Sean Cox (Chapters 2 - 4) and Duncan Knowler (Chapter 4).
While Chapters 1 and 5 are not intended to be peer-reviewed primary research and have
no formal co-authors, they also benefited from discussions and review by colleagues and
committee members, especially by my senior supervisor Sean Cox.
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Chapter 2

Evaluating the role of data quality
when sharing information in
hierarchical multi-stock assessment
models, with an application to
Dover sole

This chapter is published in the Canadian Journal of Fisheries and Aquatic Sciences (2018),
co-authored with Sean P. Cox under the same title [70].

2.1 Introduction

Fisheries stock assessment modeling uses catch and abundance monitoring data to estimate
the status and productivity of exploited fish stocks [57]. Despite improvements in catch mon-
itoring and increasing prevalence and quality of fishery-independent surveys of abundance,
many fisheries remain difficult to assess because the data lack sufficient statistical power
to estimate key quantities necessary for management [106]. Low power data may arise, for
example, because time-series are short relative to the productivity cycles of exploited fish
stocks, historical fishing patterns may be weak or uninformative, and monitoring data may
simply be too noisy to extract biomass and productivity signals [79]. Where these situations
occur, stocks are often deemed data-limited [77, 16].

An emerging approach to fisheries stock assessment is to use a hierarchical approach
to assess data-limited stocks simultaneously with data-rich stocks. Data-limited stocks can
“borrow information” from data-rich stocks, providing a compromise between data-intensive
single-stock assessments and problematic data-pooling approaches [69, 68, 120]. The hier-
archical multi-stock approach, which shares information between data-rich and data-poor
stocks, treats multiple stocks of the same species as replicates that, to varying degrees,
share environments, life history characteristics, ecological processes, and fishery interac-
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tions [107, 118, 80]. Information present in the observations for data-rich replicates is shared
with more data-poor replicates via hierarchical prior distributions on parameters of interest
[120, 138]. Sharing information in this way could improve scientific defensibility of assess-
ments for data-limited stocks, because stock status and productivity estimates are informed
by data rather than strong a priori assumptions on population dynamics parameters.

Information-sharing properties of hierarchical models are realized as the shared hier-
archical priors induce shrinkage of estimated parameters towards the overall prior mean
[13, 51]. Although shrinkage can reduce bias in the presence of high uncertainty (e.g. very
data-limited stocks), it may also increase bias for data-rich replicates by pulling estimated
parameters closer to the group mean. Shrinkage properties are well understood for hierarchi-
cal linear models [67, 124], including those applied in fisheries. For example, when estimating
productivity of Pacific salmon stocks, hierarchical Ricker stock-recruitment models are more
successful at explaining variation in stock productivity when stocks are grouped at scales
consistent with climatic variation [107, 94]. It is unclear, however, whether the benefits
observed for linear models extend to iteroparous groundfish stocks, for which productiv-
ity parameters are deeply embedded within non-linear population dynamics and statistical
models.

Parameter shrinkage has been observed in stock assessments for data-limited groundfish
and shark species when grouped with data-moderate species [69, 68, 120], but it is unknown
whether such shrinkage in reality increases or decreases bias in parameter estimates. Simu-
lation tests of the hierarchical multi-stock approach to age-structured assessments revealed
that bias reductions in one species often induce greater bias for others in the assessment
group, indicating that shrinkage could imply unwanted trade-offs [119].

In this chapter, I use a simulation approach to investigate relationships between hi-
erarchical model structure, bias, and precision for hierarchical multi-stock Schaefer stock
assessment models. For the hierarchical multi-stock models, shared prior distributions are
applied to survey catchability and optimal harvest rate (productivity) and then evaluated
to find the combinations of shared priors that produce the most reliable estimates of key
management parameters when fit to simulated data from high and low data quality multi-
stock complexes. The best performing single and multi-stock models were then applied to
real data for a Dover sole complex in British Columbia, Canada.

2.2 Methods

A multi-stock complex representing the Dover sole (Microstomus Pacificus) fishery in British
Columbia, Canada is simulated. Simulated Dover sole observations are generated in data
quality scenarios ranging from low to high statistical power. Under each scenario, bias and
precision metrics are determined for key management parameters under both single-stock
and hierarchical multi-stock Schaefer models. In the hierarchical multi-stock assessment
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models, shared evolutionary history and a common scientific survey influence the definition
of shared prior distributions. For example, stocks that share evolutionary history may have
similar productivity at low stock sizes [69, 68], and a common trawl survey may induce
correlations in catchability (trawl efficiency) observation errors.

2.2.1 Study system

British Columbia’s Dover sole complex is divided into three distinct but connected stocks
(Figure 2.1), distributed along the BC coast from the northern tip of Haida Gwaii, south
through Hecate Strait into Queen Charlotte Sound, and on the west coast of Vancouver
Island. Although the Dover sole fishery has operated since 1954, prior to 1970 it was very
limited, increasing to present levels by the late 1980’s (Figure 2.2).

Despite a long history of exploitation, Dover sole stocks have never been evaluated
using model-based assessments. No observational data exists for the Queen Charlotte Sound
(QCS) and west coast of Vancouver Island (WCVI) stocks prior to 2003, precluding a model
based assessment before that time [39]. The Hecate Strait and Haida Gwaii (HSHG) stock
was surveyed from 1984 - 2003 (Figure 2.2, Survey 1), but data was only used to perform
catch curve analyses for total mortality rate estimates [39]. During 1984 - 2003, a fine-mesh
trawl survey was used for the Vancouver Island stock and a portion of the Hecate Strait
stock, but the survey was not designed for groundfish and produced stock indices that were
highly variable. Since 2003, a newer bottom trawl survey has operated coast-wide, which
samples all three stocks (Figure 2.2, Survey 2), but no assessment has been performed in
that time.

Dover sole may be suitable for a hierarchical multi-stock assessment for 3 main reasons.
First, the Hecate Strait stock has longer series of informative data than the other stocks,
potentially providing information for the other two stocks. Second, modeling a single-species
makes it likely that stock productivities and responses to the environment are similar.
Lastly, all stocks are observed by Survey 2, making it likely that the observation model
parameters for each stock are similar for that survey. By applying the hierarchical multi-
stock approach, the similarities between stocks may be exploited to the benefit of the whole
complex, extending model based stock assessments for Dover sole for the first time.

2.2.2 Simulation Framework

The simulation framework is composed of an operating model that simulates biological
dynamics, catch, and observational data, and an assessment model that performs both
single-stock and hierarchical multi-stock assessments of the simulated data. Both operating
and assessment models use a process-error Schaefer formulation for biomass dynamics, where
the biomass in each year deviates from the expected value using a log-normal process error
term. Matching the operating model and assessment model enabled me to focus on the effects
of hierarchical estimation and shrinkage without confounding among hierarchical priors and
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the model structure. The operating model is specified in the R statistical software package,
and the assessment models were written in the Template Model Builder (TMB) package
[123, 76].

The simulation approach is described below in 3 main sections (i) the operating model,
(ii) assessment models, and (iii) simulation experiments. The next section describes the
operating model structure, including process errors, and how catch and survey observations
were generated. Assessment models are then outlined, with details of the shared hierarchical
prior distributions given in Appendix 2.7.A Finally, I present the experimental design and
performance metrics for the simulations.

Operating model

Biomass dynamics are simulated for each stock s in the assessment complex on an annual
time step t, using the process-error Schaefer model [111]

Bs,t+1 = (Bs,t + rsBs,t (1 − Bs,t/Bs,0) − Cs,t) eεs,t , (2.1)

where Bs,t is the biomass of stock s at time t, rs is the intrinsic rate of increase, Bs,0 is the
unfished equilibrium biomass, and εs,t is the process error deviation for stock s at time t.
Schaefer model process error deviations εs,t are decomposed via the sum of a shared (across
stocks) mean year-effect ε̄t, and a correlated (among stocks) stock-specific effect ζs,t, which
is the s component of the vector ζ·,t, that is,

εs,t = ε̄t + ζs,t,

ε̄t ∼ N(0, κ),

ζ·,t ∼ N(�0, Σ).

The covariance matrix Σ is specified as a diagonal decomposition Σ = DMD, where D is
a diagonal matrix of stock-specific standard deviations σs, and M is the matrix of stock
correlations. For simplicity, all stocks are simulated with identical pair-wise covariances,
i.e., for a 3 stock complex

M =

⎛⎜⎜⎝
1 0.5 0.5

0.5 1 0.5
0.5 0.5 1

⎞⎟⎟⎠ ,

and all stocks experience the same magnitude of stock-specific process errors where σs = σ,
implying

D =

⎛⎜⎜⎝
σ 0 0
0 σ 0
0 0 σ

⎞⎟⎟⎠ .
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The operating model values of κ and σ are chosen to give a total process error variance of
σ2 + κ2 = 0.01, or roughly a 10% total relative standard error (Table 2.1).

Fishery history is simulated for 34 from 1984 (t = 1) to 2017 (t = 34). Each stock is
initalized in 1984 at a pre-determined depletion level ds,1 relative to unfished biomass, i.e.,
Bs,1 = ds,1 ·Bs,0. Unless otherwise stated, ds,1 = 1, which is varied as an experimental factor
(Table 2.2). Because the simulated populations were a single-species, multi-stock complex,
the same base biological parameters Bs,0 (kilo-tonnes), and rs are simulated for all stocks
s (Table 2.1). While identical parameters may not faithfully represent the true Dover sole
complex, they help to focus the results on the effects of shrinkage in parameter estimates,
rather than differences in biological parameters. This choice also simplifies reporting and
interpretation of the results, reducing the results to a smaller set of representative stocks
through symmetry, rather than analysing every stock in the complex.

Fishery catch and fishery independent biomass indices are sampled from each stock each
year. Catch is assumed to be perfectly implemented as Cs,t = Us,tBs,t, where Us,t is the
harvest rate applied in a pulse fishing event following each year’s production, and fully
observed (i.e., no under-reporting). Harvest rates are simulated in three temporal phases
and scaled to optimal fishing mortality as Us,t = Umult

t ·Us,MSY , where Umult
t is the piecewise

linear function of t:

Umult
t =

⎧⎪⎪⎨⎪⎪⎩
Ui + (t − 1) · Ud−0.2

td−1 1 ≤ t ≤ td,

Ud + (t − td) · Um−Ud
tm−td

td ≤ t ≤ tm,

Um tm ≤ t ≤ T ;
(2.2)

where Ui, Ud and Um are the initial, development, and managed phase harvest rates, re-
spectively, td is the last time step of the development phase, and tm is the beginning of
the final managed phase (Figure 2.3). In the base operating model, I used values Ui = 0.2,
Ud = 4 and Um = 1 for harvest rate multipliers, with td = 5 (1988), and tm = 15 (1998)
for phase timing, to simulate a high initial development phase followed by a reduction in
pressure, allowing the stock to recover. This formulation was designed to create more and
less informative catch histories, depending on the parameter values [129].

Survey indices of biomass are simulated for each stock s and survey o via the observation
model

Io,s,t = qo,sBs,te
δo,s,t ,

where qo,s is stock-specific catchability coefficient for survey o. Observation errors are drawn
from the distribution

δo,s,t ∼ N(0, τo),

where τo is the survey observation error log scale standard deviation for survey o. Within
each survey, stock-specific catchabilities qo,s are randomly drawn from a log-normal dis-
tribution with a mean survey catchability coefficient q̄o and between-stock log-standard
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deviation ιq,o via
qo,s ∼ log N(q̄o, ιq,o).

It is not always true that catchability will be similar between stocks. Indeed, it is only
possible to model catchability as a hierarchical process between stocks here because biomass
indices are swept area estimates. To see this, note that the general formula for catchability
is q = ca/A, where c is gear efficency, a is the average area fished by the gear during the
survey, and A is the total area of the surveyed stock’s habitat [4]. Because the geographic
boundaries of stocks may differ, it will usually be the case that A �= A′ between 2 distinct
stocks s and s′, even if the average surveyed area a and gear efficiency c are the same. For
a trawl survey, it is advantageous that the area swept by the fishing gear is often known
exactly, with a = t · v · w, where t is the standard tow duration, v is the tow velocity and w

is the door-width of the trawl net. Therefore, the total of randomly sampled survey catches
Ct = qEtBt from a total effort of Et = nt tows can be transformed into biomass estimates
when scaled by the reciprocal of the proportion of area swept, e.g. B′

t = A
ntaCt = cBt.

Then the effect of stock area is scaled out of the index, and catchability is reduced to gear
efficency c, or the response of individual fish to the survey gear. A major assumption of this
chapter is that individual response to the survey gear is similar within the same species.
This argument is then extended to swept area biomass estimates calculated from a stratified
survey, like the trawl survey used for Dover Sole.

Biomass indices are simulated from two surveys operating over different periods to em-
ulate the current Dover sole complex history (Figure 2.2). The first (o = 1) represented
Survey 1, which operated from 1984 to 2003 (t = 1, . . . , 20), with observation model param-
eters τ1 = 0.2 for the observation errors, and a mean survey catchability of q̄1 = 0.5 with
a standard deviation of ιq,1 = 0.1. For survey 2 (o = 2), which operates from 2003 to 2017
(t = 20, . . . , 34), an observation error standard deviation of τ2 = 0.4 is used, and a mean
catchability of q̄2 = 0.6 with a standard deviation of ιq,2 = 0.1.

Assessment model

Stock-specific biological and management parameters arre estimated using multi-stock and
single-stock versions of a state-space Schaefer stock assessment model. To minimize the
effect of assessment model mis-specification, the deterministic biomass dynamics in the
assessment models and the operating models were defined to be the same, Equation (2.1).
Details of the assessment model prior distributions are not presented in this section. Instead,
the equations for each multi-level prior in the hierarchical multi-stock assessment model are
given in Table 2.3, and the details of all prior distributions are given in Appendix 2.7.A.

Hierarchical multi-stock assessment models For the full hierarchical multi-stock
model, shared prior distributions are defined for conditional maximum likelihood estimates
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of stock-specific catchability q̂o,s within each survey, and optimal harvest rate Us,MSY , which
is a surrogate for stock productivity (Table 2.3). In total, 4 configurations are defined, in-
cluding a “null” multi-stock model. Each multi-stock model configuration is defined by
whether each of the hierarchical priors is estimated along with the leading model parame-
ters. When a hierarchical prior is “off”, shared priors are bypassed and the model used the
fixed hyperprior mean and standard deviation instead (Table 2.3, Single level priors). Full
details of the single and multi-level priors are in supplemental material.

Single-stock assessment model The single-stock assessment model is defined as a spe-
cial case of the multi-stock null model. Prior distributions on catchability and productivity
use the single level priors (Table 2.3, q.4 and U.4).

Optimization Assessment models integrate the objective function over random effects
using the Laplace approximation, obtaining a marginalized likelihood [76]. The marginal-
ized likelihood was then maximized via the nlminb() function in R to produce parameter
estimates and corresponding asymptotic standard errors [123]. An assessment model was
considered to be converged when the optimisation algorithm report convergence, which was
characterized by gradient components of the TMB model all having magnitude less than
0.001, and a positive definite Hessian matrix. Standard errors of derived parameters are
estimated from the Hessian matrix using the δ-method. Random effects were process errors
ζs,t for all model configurations, and stock-specific catchability parameters log qos when the
shared catchability prior was estimated.

2.2.3 Simulation experiments

An experimental design approach is used to investigate performance of the four hierarchical
multi-stock assessment model configurations under different levels of statistical power in
the simulated data. Multiple scenarios are defined to determine whether (and possibly to
what extent) hierarchical multi-stock assessment methods can provide better estimates of
key management parameters, compared to single-stock approaches, when fit to data with
low statistical power.

Experimental factors are selected to increase and decrease the statistical power, or qual-
ity, of the simulated assessment data. The choice of factors determining high- and low-
information scenarios was guided by previous studies of assessment models, as well as my
own experience with production model behaviour [57, 79, 24]. Combinations of experimen-
tal factors were chosen according to a space-filling experimental design (Table B.1) [74].
Space filling designs improve the efficiency of large simulation experiments by reducing the
number of individual runs, while still producing acceptable estimates of factor effects.

High and low statistical power scenarios were generated by varying 5 experimental fac-
tors: (1) historical fishing intensity; (2) the number S of stocks in the complex; (3) the
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number L of low information stocks in the complex; (4) the initial year of stock assessment
T1 for the L low information stocks; and (5) the initial stock depletion levels ds,1 for the L

low information stocks (Table 2.2).
Two levels of historical fishing intensity were defined, varying Ui, Ud and Um in Equation

(2.2). Levels are chosen to produce one-way and two-way trip dynamics when the simulated
biomass is initialised at unfished equilibrium in 1984. One way trips are produced by fishing
at a constant rate of Us,MSY for the whole historical period (top row, Figure 2.3), while
the two-way trips are produced by the base operating model settings (bottom row, Figure
2.3). The constant harvest rate scenarios have two significant disadvantages: first, it is
impossible, in general, to estimate the optimal harvest rate without overfishing [60, Ch 1],
which does not occur in these scenarios; second, when stocks are initialized at fished levels
it was difficult to determine the stock size and initial biomass.

Complex sizes S test the intuitive notion that grouping more stocks together increases
the benefit of shrinkage. The sensitivity of this notion to relative differences in the number
of stocks is tested via the factor L, which determines how many of the S stocks are “low
information”. Low information stocks have short time series and fished initialisation at a pre-
determined depletion ds level, which together reduced or removed contrast in biomass time
series and lower observational data quality. By beginning assessments of low information
stocks when Survey 2 was initiated, and simulating Survey 2 as a shorter and noisier series
of observations, I subject low information stocks to non-equilibrium starting conditions as
well as poor quality survey data, a situation that is common for data-limited fisheries. When
L > 0, initial biomass Bs,T1 was estimated for the low information stocks in addition to
unfished biomass, optimal harvest rate and catchability.

The single-stock and each hierarchical multi-stock assessment model configurations are
fit to simulated data under each combination of experimental factors. The distributions
the single-level and multi-level hyperpriors (Table 2.3, q.2, q.4, U.2, and U.4) are given
random mean values mq and mU in each simulation replicate, chosen from a log-normal
distribution centred at the true mean value (across stocks, and possibly surveys) with a
25% coefficient of variation, testing the robustness of the assessment model to uncertainty
in the prior distribution. The same initial seed value R is used across all experimental
treatments so that variability in assessment error distributions is predominantly affected
by the factor levels and model configurations, rather than random variation in the process
and observation errors. Random variation is not completely avoidable, though, as some
assessment models fail to converge under some combinations of treatment and random seed
values. In these cases, the optimisation was restarted with jittered initial parameter values
up to 20 times, after which the simulation moved on to a different random seed value. The
total number of replicates for each experiment and prior configuration are shown in Table
2.6 (Appendix 2.7.B).
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Performance metrics

Performance of both the single-stock and multi-stock assessment models was measured
by their ability to estimate current biomass B̂s,2017, MSY level biomass B̂s,MSY , equilib-
rium optimal harvest rate Ûs,MSY , and relative terminal biomass B̂s,2017/B̂s,0. I also found
catchability estimates q̂o,s to be important in the analysis of these models, so I calculated
performance metrics for catchability as well.

It is important to understand the effect of shrinkage on the bias and precision of es-
timates of the key parameters θ above, because such shrinkage may result in misleading
harvest advice. For example, shrinkage may simultaneously increase both bias and precision
for a given parameter (e.g. MSY ), leading to confidence intervals that may not contain the
true parameter value. Therefore, I used four performance metrics to represent these effects:
(1) median relative errors (MREs); (2) ratios of median absolute relative errors (MAREs);
(3) confidence interval coverage probability (IC); and (4) the predictive quantile. All met-
rics are defined in detail below. While MREs only indicate model bias, all other metrics
are affected by both the bias and precision of the estimator, and can be better interpreted
when the bias is known.

For MRE and MARE metrics, relative errors RE(θ̂i,s) of the model estimate θ̂i,s were
calculated for each replicate i and stock s, i.e.

RE(θ̂i,s) = 100 ·
(

θi,s − θ̂i,s

θi,s

)
.

Estimator bias and precision were quantified by computing the median relative error MRE(θs) =
med(RE(θ̂·,s)) and median absolute relative error MARE(θs) = med(|RE(θ̂·,s)|) of relative
error distributions RE(θ̂·,s) over all replicates i. I chose to use MAREs because they are in-
dependent of scale and less sensitive to outliers than root mean square errors. Values closer
to zero indicate better performance for both metrics, with lower MRE values indicating
lower bias, and lower MARE values indicating lower bias, higher precision, or both.

In the simulation experiments, assesment models were compared via ratios of single-
stock to multi-stock MARE statistics for each stock s and parameter θ, i.e.,

Δ(θs) =
MAREss(θs)
MAREms(θs)

− 1, (2.3)

where ss and ms represent the MARE values for the single- and multi-stock hierarchical
assessment model estimates, respectively. Using this definition, Δ(θs) > 0 occured when
the multi-stock assessment model had a lower MARE value, indicating that multi-stock
estimates had higher precision, lower bias, or both. Estimation performance for an assess-
ment complex as a whole was indicated by an aggregate MARE ratio Δ(θs) for each stock’s
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parameter θs, i.e.,

Δ(θ) =
∑

s MAREss(θs)∑
s MAREms(θs)

− 1,

which allowed us to compare estimation performance of single and multi-stock assessment
models over the whole assessment complex.

Interval coverage probability was calculated across reps i within each combination of
experimental factors and model configuration. I calculated the realized interval coverage
probability under an assumption of normality on the log scale, because all quantities of
interest are constrained to be positive, and chose the nominal coverage probability as 50%,
with a corresponding z-score of 0.67. These two choices defined our interval coverage prob-
ability metric as

IC50(log θs) =
1

100
∑

i

I(log θ ∈ ( ˆlog θi,s − 0.67ŝe(log θ)i,s, ˆlog θi,s + 0.67ŝe(log θ)i,s)),

where I is the indicator function, ˆlog θi is the model estimate of log θ in replicate i, and
ŝe(log θ)i is the model standard error of log θ in replicate i. For a 50% interval coverage,
realized rates IC50%(log θs) closer to the nominal rate 0.5 are better. The confidence interval
is considered conservative when realized coverage rates are above the nominal rate, which
could indicate either decreased bias of the parameter estimate or high uncertainty (larger
standard errors). On the other hand, the confidence interval is considered permissive when
realized rates are below the nominal rate, indicating that the uncertainty may be under-
represented by the parameter estimate and its standard error.

Finally, for each parameter the distribution of predictive quantiles was calculated over
replicates i, defined as

Q(log θi,s) = P ( ˆlog θi,s < log θi,s) =
∫ x=log θi,s

x=−∞
f(x | ˆlog θi,s, ŝe(log θ)i,s)dx,

where f(x|m, s) is the normal probability density function with mean m and standard devi-
ation s. The resulting distribution of quantiles is best interpreted graphically, and indicates
how well the model is estimating parameter uncertainty. Well performing estimators will
have a near-uniform distribution of Q values, because true values should be distributed
randomly across the full domain of the parameter’s sampling distribution. Estimators that
under-represent uncertainty by produce standard errors that are too small and will, there-
fore, have excess density near Q = 0 and Q = 1 (i.e a

⋃
-shaped graphical distribution),

indicating that true values have larger z-scores in the sampling distribution. Models that
over-represent uncertainty have standard errors that are too large and will collect density
near Q = .5 (i.e. a

⋂
-shaped graphical distribution), indiciating lower z-scores of true values

in the sampling distribution.
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An experimental design approach was used for simulation models to analyse the effects
of experimental factors and assessment model configurations on the MARE and Δ perfor-
mance metrics [74]. This method attmpts to simplify the complex response surfaces via a
generalized linear meta-model of the response surface to simulation model inputs (i.e. factor
levels and assessment model prior configurations) [89]. Meta-models are defined in Appendix
2.7.C.

2.2.4 Assessment for British Columbia Dover sole

All 8 multi-stock assessment model configurations and the single-stock assessment model
were fit to the Dover sole data for the three stocks in Figure 2.2. All stocks were initialised
in a fished state, beginning in 1984 for the HS stock, and 2003 for both QCS and WCVI
stocks.

For Bs,MSY and Bs,init, a prior with mean mB,s = 20 and standard deviation sB,s =
20 was applied, keeping the relative standard deviation at 100%. For the process error
variances, two alternative hypotheses were defined on the strength of environmental effects
on population dynamics, modeled as β parameters of the inverse-gamma prior distributions
on process error variance terms when using ασ = 3. The first hypothesis was βσ = 0.16,
placing the prior mode at around 0.04, favouring process errors with a larger standard
deviation around σ = 0.2. The second was to use βσ = 0.01, reducing the prior mode to
0.0025, favouring process errors with a small standard deviation around σ = 0.05.

For each model fit, Akaike’s information criterion was calcualted, corrected for the sam-
ple size (number of years of survey data) for each stock (AICc) [11]. Selected models were
the group of multi-stock configurations that performed the best under both hypotheses
according to their AICc values, and estimates of optimal harvest rate Us,MSY , terminal
biomass Bs,T , optimal biomass Bs,MSY , relative biomass Bs,T /Bs,0, and current fishing
mortality relative to the optimal harvest rate Us,T /Us,MSY , as well as standard errors for
all estimates. The sum of single-stock AICc values was used to compare to the complex
aggregate AICc score for comparing single-stock and multi-stock model fits. While this may
be a slight deviation in use of the AIC, I believe it is useful and satisfies the restrictions of
the AICc, i.e., the collection of single-stock models is fit to the same data as the multi-stock
models, and the process of adding AICc values is analogous to adding single-stock model
log-likelihood values within a joint likelihood.

2.3 Results

Experimental results are presented for stock s = 1, a low information stock if L > 0 in the
information scenarios, and identical to the remaining stocks otherwise. First, meta-model
effects on MARE ratios Δ(θs) and complex aggregate Δ(θ) are used to interpret model
configuration effects, and the remaining metrics help to interpret factor effects.
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2.3.1 Single-stock versus multi-stock assessments of the base operating
model

As expected, shrinkage effects from hierarchical multi-stock assessment models often im-
proved precision of key management parameter relative errors from multi-stock models com-
pared to single-stock models, when fit to data from the base operating model (Figure 2.4).
Although this pattern extended across most model configurations and variables, the effect
was most noticeable for optimal harvest rate UMSY and optimal biomass BMSY , and weak-
est for absolute BT and relative BT /B0 terminal biomass. Also, the effects of hierarchical
priors were most noticeable for parameters that were subject to those priors, i.e. catchability
had larger increases in precision under a model configurations that estimated a shared prior
on catchability (Figure 2.4, q1, q2 under the q AM configuration).

Estimator bias was less sensitive to hierarchical multi-stock configurations, with some-
times very subtle effects. For example, optimal harvest rate UMSY , optimal biomass BMSY ,
and survey 1 catchability q1 estimates were all relatively unbiased under the single-stock
model, and all multi-stock model configurations had a negligible effect on the bias (Figure
2.4). In contrast, survey 2 catchability q2, and absolute and relative terminal biomass BT

and BT /B0 were biased under the single-stock model, so were themselves very sensitive. As
with precision, the bias of catchability q2 was most reduced by the q and q/UMSY configu-
rations, and these improvements translated directly into reductions in absolute bias of the
terminal biomass estimates BT and BT /B0.

The other performance metrics indicated that the q and q/UMSY configurations per-
formed similarly under the base operating model. For the management parameters most
useful in setting harvest advice, productivity UMSY and current biomass BT , BT /B0, the
q/UMSY configuration either improved all metrics, or kept metrics within a tolerable level of
the ideal (Figure 2.5), e.g. interval coverage fell for UMSY , but remained within 10% of the
nominal level. Similarly, predictive quantile Q(θ) distributions were slightly more uniform
under the q/UMSY configuration than the single-stock model, indicating an improvement in
estimator precision and bias, however the difference between q and q/UMSY configurations
was subtle.

Increased precision in catchability and biomass parameters under hierarchical multi-
stock models was not always a benefit. Under a single simulation replicate, 95% confidence
intervals of biomass estimates from joint models were generally more precise than single-
stock estimates; however, increased precision occasionally created estimates that were over-
precise, leaving true biomass values outside confidence intervals (Figure 2.6, Stock 2, q and
Q/UMSY models). Furthermore, hierarchical estimation appeared to falsely detect an in-
creasing trend in biomass, where the single-stock model was more conservative (Figure 2.5,
Stock 2), but corrected the same behaviour in the single-stock model for a different stock
in the same complex (Figure 2.5, Stock 1).
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2.3.2 Simulation Experiment Results

Model configuration effects

When comparing MARE values through the Δ metric, multi-stock model configurations
that estimated the shared prior on survey catchability, denoted q and q/UMSY , stood out
as the most beneficial for parameters of the low data quality stocks (stock s = 1). Both of
these configurations increased Δ values, or had effects that were within 1 standard error
of zero (Table 2.4, Stock 1 Δ values), indicating that multi-stock model configurations
produced MARE values at most equal to those produced by single-stock models.

As under the base operating model, according to the Δ metric the best performing hier-
archical multi-stock model for providing harvest advice was q/UMSY . Closer inspection of
βq and βUMSY

values indicated that estimation of the mean optimal harvest rate reduced the
larger benefit to catchability in both surveys q1,1, q2,1 and optimal biomass B1,MSY (Table
2.4, βq and βq,UMSY

). On the other hand, while the UMSY prior had no effect on terminal
biomass (Δ(BT )), the effects on relative biomass Δ(BT /B0) were nearly tripled over the
reference level β0. The Δ values for optimal biomass BMSY and catchability parameters
were lower, but these parameters are not particularly critical for providing harvest advice.

The q and q/UMSY configurations stood out at the complex level also, with higher meta-
model coefficients than the UMSY configuration (Table 2.4, Complex Aggregate Δ Values).
Under the aggregate MARE ratio Δ, it was more difficult to separate the two best models
as the meta-model coefficients for both q and q/UMSY were closer together, e.g. Δ(BT ),
and there was a reduction in Δ(UMSY ) under the q/UMSY configuration. Unlike the stock-
specific Δ values, the prior configuration had an effect on the Δ(UMSY ) response in the
aggregate, where the q/UMSY configuration produced the biggest reduction Δ(UMSY ). On
the other hand, the largest increase over the null model reference level was also produced
by the q/UMSY configuration for the Δ(BT /B0) response, indicating a tradeoff between
estimates of stock status and productivity.

The UMSY configuration tended to perform the worst according to the Δ metric. I
expected to see a benefit to productivity parameter estimates but I were surprised to find
there was no benefit to a low data quality stock. Moreover, meta-model coefficients for Δ
and Δ response variables were consistently smaller than the other configurations, and often
negative or insignificant.

Factor effects

As expected, the effects of shrinkage were most beneficial under low-information scenarios,
according to the Δ metrics. When the biomass was initialized in a fished state, Δ and Δ
values increased (Table 2.4, βds,1 < 0). Similarly, there were significant increases in Δ and
Δ values for all parameters when the assessments were initialized at the beginning of survey
2 (Table 2.4, βT1 > 0). These improvements under low information conditions are largely
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driven by a stabilising effect of shrinkage. That is, single-stock models produced relatively
larger MARE values as data data quality was reduced. Under the same conditions, the
hierarchical multi-stock models were restricted from increasing MARE values as fast by
shrinkage (Table 2.4).

I found that the q and q/UMSY configurations were sensitive to data quality and the
choice of performance measure. For example, under a 1-way trip fishing history with 4
identical stocks (Figure 2.7), the q configuration eliminatedd bias in UMSY and improved
interval coverage from 62% to 56%, correcting an under-precise estimator. In contrast, the
q/UMSY configuration was over-precise, indicated by an interval coverage of 33% and the
quantile distribution becoming slightly

⋃
-shaped, and also increased bias in UMSY estimates

(Figure 2.7, UMSY ).
On the other hand, the q/UMSY configuration appeared to perform better under a 2-way

trip fishing history, a short time series, and fished initialisation. The q/UMSY configuration
reduced bias for relative biomass Bt/B0 and almost eliminated bias for UMSY (Figure
2.8, UMSY ). Interval coverage also improved under the q/UMSY configuration for terminal
biomass estimates BT and BT /B0, coming closer to the nominal rate of 50%. Although the
UMSY interval coverage fell to 36% under the q/UMSY configuration, indicating an over-
precise estimator, I viewed this as favourable compared to the q configuration, where UMSY

was under-precise by a similar amount, yet remained positively biased.
The effect of complex size S and the number of low information stocks L interacted

in unexpected ways. According to the selected meta-model, the size of the complex S and
the number of low information stocks L appeared to have little effect on response values.
Indeed, all βS and βL effects on Δ and Δ values were at most 0.09 in magnitude, if they
were included at all. These weak effects indicated that the linear meta-model is probably
too simple for these factors (Figure 2.9). Increasing the number of low-information stocks
L was always an improvement for Δ values when moving from L = 0 to L = 1. This
was was expected given that the Δ values were calculated for stock s = 1 (a data poor
stock if L > 0), and I expected that multi-stock models and single-stock models would have
similar estimates when fit to complexes of data-rich stocks. Beyond L = 1 any improvements
in MARE values were dependent on the size of the complex. Generally, it appeared that
keeping the number of low information stocks under half of the complex size, i.e. L < S/2,
preserved the most benefit in terms of precision, though this pattern reversed for L = 3 and
S = 4. Complex aggregate Δ values were comparatively flatter in response to the levels of
L. I didn’t produce response surfaces for other factor combinations as these factors all had
2 levels each, meaning that a linear model should capture the average behaviour.

2.3.3 Assessments of British Columbia Dover sole

Multi-stock models defined by shared catchability q and shared catchability and optimal
harvest rate configurations q/UMSY performed best for the British Columbia Dover sole
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complex based on AICc values. These same configurations also performed best in in the
simulation experiments. The UMSY configuration and the null model both had AICc scores
more than 500 points higher than the best performing multi-stock configuration. The se-
lected multi-stock models gave AICc scores between 100 and 200 units below the total
single-stock model scores under both hypotheses (Table 2.5, AICc), indicating that the in-
crease in estimated parameters was justified. All models had lower AICc values under the
assumption of low process error variance.

Hierarchical multi-stock models reduced parameter uncertainties when compared to
single-stock models. Multi-stock models with shared priors produced lower cofficients of
variation, defined as CV =

√
ese2 − 1, for estimates of optimal biomass and productivity

parameters, reducing coefficients of variation below 100% in some cases (single-stock vs
multi-stock models in Table 2.4). Similar reductions in uncertainty are visible in recon-
structions of stock biomass time series (Figure 2.10).

Assessments of the Dover sole complex were qualitatively similar between model config-
urations and hypotheses. The major differences between assessment model configurations
were the level of uncertainty in parameter estimates, and the scale of each individual stock’s
biomass, but the trends over time were the same (Figure 2.10). The Hecate Strait (HS)
stock showed increasing biomass since 1984, with more or less process variation depend-
ing on the configuration and variance hypothesis (Figure S5). The Queen Charlotte Sound
stock showed an initial depletion with increased landings between 2003 and 2006, followed
by some growth that has continued until present day. Finally, the West Coast of Vancouver
Island (WCVI) stock showed a flat biomass trend following initial depletion from 2003 to
2006. The flat trend in the WCVI stock may indicate that fishing was balancing annual
production.

The multi-stock assessment model configuration q/UMSY generally estimated all stocks
as smaller and more productive than other assessments (Table 2.5). This was most noticable
for the QCS stock biomass estimates by multi-stock models, where the single-stock model
considered the optimal biomass to be close to 18 kt, with a terminal relative biomass between
7% and 13%, in contrast to the selected multi-stock configurations, where optimal biomass
was between 3 kt and 6 kt, with a current relative biomass between 95% and 110%. Under the
single-stock model configuration, the biomass scales corresponded to expected catchability
values of q2,HS = 0.10, q2,QCS = 0.74 and q2,W CV I = 0.16. I considered this distribution
of catchability values between stocks of the same species unlikely, given that the biomass
indices are relative biomass values and catchability corresponded to trawl efficiency. It was
more likely that the single-stock assessment reduced the biomass parameter estimates for
the QCS stock because of the fished initialisation in 2003. Starting in this state removed
any depletion signal from the earlier catch history, and allowing the model to explain the
stock indices catch with a smaller biomass.

22



No selected multi-stock model indicated that Dover sole stocks were overfished or expe-
riencing overfishing, however, the uncertainty in relative terminal biomass and harvest rate
was often very high. That is, current relative biomass estimates were always at least 60%
of unfished, but their coefficients of variation were in some cases above 50% of the mean
estimate (Table 2.5). Similarly, although relative harvest rate estimates were all at most
70% of the optimal harvest rate (Table 2.5), their coefficients of variation were at least 65%,
and sometimes greater than 100%, of the mean estimate for each stock under some model
configurations, most often under the high variance assumption.

The q/UMSY hierarchical multi-stock model configuration had the best fit to the data,
which is not surprising given that the Dover sole complex closely matches the scenario
shown in Figure 2.8, with a fished initialisation and 2 stocks having short time-series of ob-
servations. Under those simulation experiments, the q/UMSY configuration was considered
over-precise, but essentially unbiased, for UMSY estimates. In contrast, for assessments of
Dover sole data with low process error variance, the precision seems be lower under the
q/UMSY configuration, indicated by larger coefficients of variation (Table 2.5).

2.4 Discussion

The simulation study results indicate that, as expected, shrinkage effects in hierarchical
multi-stock assessment models are most beneficial when some data sets have low statis-
tical power. Furthermore, both configurations that estimated a shared catchability prior
performed best for estimating key management parameters. On the other hand, shrinkage
does not always improve stock assessment performance relative to a single-stock approach.
In particular, the benefits of joint estimation depend on several factors, including the in-
formation content of the data, the choices for hierarchical model priors, and the particular
management parameters of interest.

Model configurations that shared prior distributions on survey catchability (i.e., the con-
figurations q and q/UMSY ) stood out as the best options for improving parameter estimates
for stocks with low data quality. This result may occur because catchability is a linear pa-
rameter within the assessment, while optimal harvest rate parameters are embedded within
non-linear popoulation dynamics. Although this hypothesis does not explain how different
configurations increase or reduce bias and precision, it may provide a template to guide
expectations and generate hypotheses when testing other hierarchical model behaviour.

I found that simply adding a joint likelihood can have positive effects, which was sur-
prising because there should be no mathematical difference between optimising a set of
single-stock models independently vs binding them in a joint model by simply adding their
negative log likelihoods together. This result may indicate a stabilising effect from the joint
likelihood, where simply including data-rich species without shared priors improves the
numerical performance of minimisation algorithm.
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There was mixed evidence that increasing the size of the assessment complex produced
better results under hierarchical multi-stock models. For instance, in the lower information
scenarios, the effect of the complex size depended on the number of low-information stocks
present in the system. The most benefit for the first stock s = 1 was realized when moving
from no low information stocks (L = 0) to one low information stock (L = 1). This is
counter-intuitive, as decreasing information should reduce precision, but represents the sta-
bility induced by the shrinkage from the multi-stock models. Looking at response surfaces
averaged over all factor levels and configurations, I found that complexes of size S = 7
provided the most stable benefit (in terms of MARE values) for different numbers of low
information stocks L; however, I weren’t testing for an optimal size, which would require a
new design with a finer resolution on L and S factors.

Some of our results may be caused by a discrepancy between the underlying assumption
of normality for parameter distributions used in the Laplace approximation to the integrated
likelihood and the true parameter distribution [76]. Despite the integrated likelihood, the
approximation by a normal distribution means that there is potential for bias caused by
disagreement between the modes of the assumed normal distribution and true parameter
distribution [136].

Although I investigated a single-species, multi-stock complex, where stocks represented
biologically identical management units within the Dover sole fishery, the hierarchical multi-
stock approach could be extended to a multi-species approach by simulating stocks with
different biological parameters Bs,0 and rs. I suspect that differences in unfished biomass
Bs,0 would not have a strong effect on overall performance. In a Schaefer model context, the
unfished biomass parameter determines the absolute scale at which the dynamics operate,
but has little effect on the dynamics themselves. Density dependence in annual production
is driven by this parameter, but that effect is independent of absolute biomass and relies,
instead, on the relative biomass Bt/B0. In contrast, differences among intrinsic growth rates
may improve estimates in assessment models that estimate shared productivity priors. More
productive stocks would grow faster when fishing pressure is reduced, reducing uncertainty
in productivity estimates for those stocks. Stocks with more precise estimates may then
have a dominating effect on the hierarchical prior, improving hierarchical assessments but
potentially biasing estimates of weaker stock productivities [124].

Multi-species extensions to the framework in this chapter may also provide deeper
insights. For example, introducing age-structured population dynamics [48], or a delay-
difference formulation [128], would differentiate multiple species further than a simple Schae-
fer model by allowing for different maturation delays, growth rates, and recruitment dynam-
ics to affect stock production. If biological data were unavailable for informing life-history
parameter estimates under more realistic population dynamics, meta-analyses of Beverton-
Holt life history invariants within family groups could provide informative prior distributions
[97]. Indeed, recent meta-analyses have shown that publically available data-bases of life his-
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tory parameters can be useful for this type of application [139]. Similar meta-analyses of the
same data-bases, comparing species that are evolutionarily related, improves the utility of
life history invariants by estimating different ratios within taxa, improving their utility as
informative priors and potentially providing inverse-gamma priors on hierarchical variance
terms in the form of evolutionary covariance estimates [140].

Several simplifying assumptions were made about population dynamics for simplicity in
design and interpretation. In addition to assuming that biological parameters are the same
for stocks within the complex, I assumed fishing pressure was identical among stocks, and the
magnitude of species-specific effects was identical. The choice of identical biology removed
a “stock-effect” on management parameter estimates, as discussed above for productivity.
With different biological parameters, the ability to identify hierarchical estimator effects
may be reduced due to confounding with stock effects. Next, subjecting stocks to identical
fishing pressure simplifed the generation of assessment data. Simplifying the simulations
in this way may have increased the correlation between stocks, improving performance of
the hierarchical multi-stock estimators relative to more realistic situations. For example, it
would be more realistic to link fishing mortality to fishing effort through a stock-specific
fishery catchability.

Other simplifying assumptions were made related to process errors in the assessment
model. Identical standard deviations were assumed, which matched the simulated dynamics,
and both correlation in ζ,t process errors and the shared year effect ε̄t were not estimated,
despite simulating these effects. Correlation was ignored to increase stability in simulation
trials, as estimating the correlation matrices often produced nonsensical results. It may
be possible to improve correlation estimates by applying an inverse Wishart prior for the
full estimated covariance matrix, but this was not inside the scope of this chapter. Shared
year effects were also not estimated, as it became clear that it was confounded with the
individual process errors, and there was no benefit to partitioning the variance across an
extra process error term. Adding another data stream, such as an environmental index [80],
or forcing the year effects to resemble a periodic or trend-zero behaviour [143], may improve
these estimates in other studies.

I did not conduct sensitivity analyses of the hyperpriors. Intuitively, I expect that more
precise inverse-gamma hyperpriors on estimated variance parameters would increase the
shrinkage effect, and thereby clustering stock-specific estimates closer to a biased mean
value. Instead of focusing on the behaviour induced by hyperprior settings, I chose instead
to focus on the behaviour induced by defining the shared priors, and left the hyperpriors
on prior means sufficiently vague to emulate the true prior knowledge about the Dover sole
complex, and on prior variances sufficiently informative to encourage a shrinkage effect.

Fitting the hierarchical multi-stock surplus production models assessment to Dover sole
data showed that shrinkage effects carried over to a real system. Shrinkage effects reduced
uncertainty when data had low statistical power, and provided more realistic estimates of
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catchability parameters than single-stock models, especially for the Queen Charlotte Sound
stock. While the resulting estimates were sometimes quite uncertain, and a full assessment
would require more scrutiny or a different model structure than is provided here, my results
indicate that all three Dover sole stocks are likely in a healthy state given recent rates of
exploitation.

The results confirm that hierarchical multi-stock production models are a feasible data-
limited approach to stock assessment in multi-stock fisheries. Under low statistical power
conditions, hierarchical multi-stock assessment modeling is preferable to data-pooling ap-
proaches for at least two reasons. First, hierarchical multi-stock models are able to produce
stock-specific estimates that allow management decisions to be made at a higher spatial
resolution and based on data rather than strong a priori assumptions or management pa-
rameter values averaged over stocks. Despite the potential for bias under low-power condi-
tions, stock-specific estimates of key management parameters can provide meaningful and
important feedback in the fishery management system. Second, using a hierarchical multi-
stock method ensures that an assessment framework is readily available for more and better
data, making it much easier to update model estimates later when more data is available.
Moreover, the type of additional data to be collected could be prioritized by examining
the standard errors for observation model components of the hierarchical multi-stock as-
sessment models, where higher uncertainty may indicate a better return on investments in
improved monitoring.

The feasibility of hierarchical multi-stock surplus production models relies on catch
and effort data being available, but I consider hierarchical multi-stock production models
as an important bridge between catch-only methods and more data-intensive methods.
For instance, some catch only methods require restrictive a priori assumptions, such as
an estimate of relative biomass as a model input [77, 37]. More recently, a multi-species
assessment method was derived that removes the need for relative biomass estimates, but
requires restrictive assumptions about fishery-dependent catchability and that all species are
initially in an unfished state [14]. Our approach avoids all of these assumptions. For instance,
(i) joint model estimates of relative biomass were stable in practice, and in simulations
despite absence of a current relative biomass estimate (or assumption); (ii) hierarchical
multi-stock models have better precision when initialized in fished states; and (iii) fishery
catchability assumptions are not required. Thus, while the data needs are higher for our
approach, the potential applications are broader in scope.

On the other hand, hierarchical multi-stock models should be scrutinized closely via
standard assessment performance measures (e.g., retrospective analysis) before application
to real management systems. In particular, I found that shrinkage can have unexpected
non-linear side-effects. Closed-loop simulations would be needed to determine the long-term
implications of these types of errors on multi-stock harvest management systems [113].
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2.5 Tables

Table 2.1: Operating model parameters and their values

Description Symbol Value

Unfished Biomass Bs,o 40kt
Intrinsic Rate of Growth rs 0.16
Shared Process Error SD κ 0.071
Stock-specific Process Error SD σs 0.071
Simulation Historical Period (Tinit, . . . , T ) (1984, . . . , 2016)
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Table 2.2: Experimental factors and their levels

Description Levels Notes

Fishing History 1-way, 2-way trips Low/High contrast in
biomass

Complex Size, S 4,7,10
Low data quality stocks, L 0,1,2,3
Initial Assessment Year 1984, 2003 Short or long series of

observations (t = 1 or t = 20
of T = 34 years)

Initial Relative Depletion 0.4, 0.7, 1.0 Fished or unfished
initialisation
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Table 2.3: Multi- and single level priors used in the assessment model.

No. Distribution

Survey Catchability
Multi-level prior

q.1 q̂o,s ∼ log N(log ˆ̄qo, ι̂o)
q.2 ˆ̄qo ∼ N(mq, sq)
q.3 ι̂2

o ∼ IG(αq, βq)
Single level prior

q.4 q̂o,s ∼ N(mq, sq)
Optimal Harvest Rate
Multi-level prior

U.1 Ûs,MSY ∼ log N(log ˆ̄UMSY , σ̂U )
U.2 ˆ̄UMSY ∼ N(mU , sU )
U.3 σ̂2

U ∼ IG(αU , βU )
Single level prior

U.4 Ûs,MSY ∼ N(mU , sU )
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Table 2.4: (Previous page.) Meta-model coefficients for multi-stock assessment model prior
configurations (columns 3-5) and experimental factors (cols 6-10). Response variables are
Δ(θs) = MAREMS(θs)

MARESS(θs) − 1 values for stock s = 1 (rows 1-6), complex aggregate Δ(θ) =∑
s

MAREMS(θs)∑
s

MARESS(θs) − 1 values (rows 7-12), single stock assessment MARE values for stock 1
(rows 13-18), and multi-stock model MARE values for stock 1 (rows 19 - 24). The intercept
(col 2) is the average value of the response across all factors, and represents the null model
configuration in rows 1-12 and 19-24. Coefficients of multi-stock model prior configurations
independently give the average contribution of that configuration to the response value,
while coefficients for experimental factors are calculated based on rescaling factors to the
interval [−1, 1]. This means the contribution of each factor to the response is equal to its
coefficient at the maximum factor value, and the negative value of its coefficient at the
minimum factor value. Response values are found by summing across the rows, taking only
one prior configuration coefficient, and scaling factor coefficients as necessary.
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2.6 Figures

Figure 2.1: Mininum trawlable biomass Btrawl estimates for Dover Sole on the BC coast,
aggregated to a 10km square grid. Estimates are produced by scaling average trawl survey
(kg/m2) density values in each grid cell by the cell’s area in m2. Locations that do not show
a coloured grid cell do not have any survey blocks from which to calculate relative biomass.
Survey density data is taken from the GFBio data base maintained at the Pacific Biological
Station of Fisheries and Oceans, Canada.

33



Figure 2.2: Time series of coastwide catch since 1954 (vertical bars) and relative biomass
since 1984 (data points) for the three Dover Sole stocks: Haida Gwaii (HG), Queen Charlotte
Sound (QCS) and West Coast of Vancouver Island (WCVI). The catch data are taken from
the GFcatch, PacHarvTrawl and GFFOS data bases and trawl survey data were obtained
from the GFBIO data base. All data bases are maintained at the Pacific Biological Station
of Fisheries and Oceans, Canada.
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Figure 2.4: Relative error distributions for stock s = 1 leading and derived parameters
estimated by the single stock (dashed lines and triangular points) and 4 multi-stock assess-
ment models (solid lines and circular points) fit to data from the base operating model.
Points indicate median relative errors and the grey lines the central 95% of the relative er-
ror distribution. From the top, parameters are optimal exploitation rate (UMSY ), terminal
biomass (BT ), optimal equilibrium biomass (BMSY ), terminal biomass relative to unfished
(BT /B0), and catchability from surveys 1 (q1) and 2 (q2). Assessment model (AM) con-
figurations indicate the single stock model, or the parameters that had hierarchical prior
distribution hyperparameters estimated in the multi-stock assessment model (e.g, q/UMSY

indicates that shared priors on both catchability and productivity were estimated).
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2.7 Appendices

2.A Assessment Model Structure

In what follows, x̂ denotes the estimate of a derived or leading model parameter x.

Biomass dynamics

The effect of assessment model mis-specification was minimized by matching the deter-
ministic components of the biomass dynamics in the assessment models and the operating
model (Eq. 1). In all assessment model configurations the leading biological parameters were
Bs,MSY = Bs,0/2 and Us,MSY = rs/2. Biomass time series in the assessment models were
initialized at time T1, either at unfished levels Bs,T1 = Bs,0, or at a separately estimated
non-equilibrium value B̂s,T1 when T1 > 1984 or the initial simulated biomass was below
unfished levels. Biomass parameters were penalized by normal prior distributions centered
at or near their corresponding true values, i.e.,

B̂s,MSY ∼ N(Bs,MSY , Bs,MSY ),

B̂s,T1 ∼ N(Bs,MSY /2, Bs,MSY /2),

which allows estimates to vary within a realistic range by giving each prior a relative stan-
dard deviation of 100%.

When jointly modeled, stock-specific optimal harvest rates Us,MSY values are assumed
to share a log-normal distribution with estimated hyperparameters (U.1, Table 3). The
estimated prior mean ˆUMSY followed a normal hyperprior (U.2, Table 3) where mU was
randomly drawn from a log normal distribution with a mean of 0.08 and a standard deviation
corresponding to a 20% coefficient of variation. The hyperprior standard deviation sU = 0.08
was chosen to give a roughly 100% CV in the hyperprior for the prior mean and allow the
stock-specific values affect the estimate of ˆUMSY more than the hyperprior. I chose a normal
prior as this is the least informative while remaining continuous across the whole domain
of the parameter space.

The estimated prior variance followed an inverse gamma distribution (U.3, Table 3)
with αU = 1 and βU = 0.34, to induce a log-normal coefficient of variation of 20% in the
shared UMSY prior. I chose this prior structure recognizing the shared biology of dover sole
stocks implies productivities of similar magnitude (Myers et al. 1999). When I modeled the
optimal harvest rates separately we assumed optimal harvest rate parameters followed the
hyperprior directly (U.4, Table 3) with the same mU and sU values.

Observation models

Similar to the biomass dynamics, observational model structure matched between the op-
erating and assessment models (Equation 3). A shared species-level prior distribution was
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defined for stock-specific catchabilities qo,s, with between stock variance ι2
q,o. Informative

priors were also defined for survey observation error variances τ2
o , with hyperparameters

chosen so that the prior modes were equal to the simulated values for each survey.
When the hierarchical prior on catchability parameters was estimated, the model struc-

ture for the prior matched the simulated catchability model for each survey. Estimates of
stock-specific catchability q̂o,s were drawn from a shared log-normal distribution with es-
timated hyperparameters ˆ̄qo and ι̂2

q,o (q.1, Table 3). The estimated prior mean followed a
normal hyperprior where mq was drawn randomly as with the UMSY prior, with an average
of 0.55 (the average of the two surveys) and 20% CV, while vq = 0.55 for a 100% hyperprior
CV (q.2, Table 3), for similar reasoning as the UMSY priors.

The prior variance followed an inverse gamma distribution (q.3, Table 3). Inverse gamma
hyperparameters αq = 1 and βq = 0.34 were chosen induce a ι̂2

q,o value that corresponds to a
20% CV, inducing a shrinkage effect. This prior structure reflects an assumption that dover
Sole stocks have a similar availability to survey gear based on similar habitat preferences.
Like the productivity prior, when catchability was estimated without a shared prior, I by-
passed the mid-level prior, penalizing stock-specific catchability using the normal hyperprior
with the same mq and vq values to signify no change in prior information (q.4, Table 3).
I chose a normal hyperprior because it is less informative than a log-normal distribution,
and the mean mq = .6 and variance vq = 0.36 are chosen to produce a relative standard
deviation of 100%, allowing q̄o and qo,s to vary in a realistic range, but informative enough
to induce a shrinkage effect.

Observation errors for each survey were assumed to be drawn from a single log-normal
distribution across stocks, with estimated log-standard deviation τ̂o. To improve convergence
in repeated simulation trials, I assumed the estimated log-variance τ̂2

o followed an inverse
gamma prior distribution

τ̂2
o ∼ IG(ατo , βτo). (2.4)

Like the process error variance priors, the hyperparameter βτo was chosen to place the mode
of the inverse gamma distribution at the simulated values of τ2

o when ατo = 0.1.

2.B Experimental Design
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Table 2.B.1: The space filling experimental design used for simulation experiments, with
levels of fishing history U , initial year of assessment T1, complex size S, initial depletion
d1,1, and number of stocks with low power data L (columns 1-5). The second set of columns
shows the total number of simulation replicates required to get a set of 100 convergent
simulations for statistically significant results under each assessment model configuration
(columns 6-9).

Experimental Factor Levels Prior Configuration

U T1 S d1,1 L None q UMSY q/UMSY

(0.2,4,1) 1984 4 0.4 0 100 100 100 100
(1,1,1) 2003 7 0.4 0 102 102 102 102
(1,1,1) 1984 10 0.4 0 102 101 101 101

(0.2,4,1) 2003 10 0.4 0 100 100 100 100
(1,1,1) 1984 4 0.7 0 104 103 103 102

(0.2,4,1) 2003 4 0.7 0 100 100 100 100
(1,1,1) 2003 10 0.7 0 102 101 101 101
(1,1,1) 2003 4 1.0 0 104 103 103 103

(0.2,4,1) 1984 7 1.0 0 100 100 100 100
(1,1,1) 2003 4 0.4 1 104 103 102 102

(0.2,4,1) 1984 7 0.4 1 100 100 100 100
(1,1,1) 1984 7 0.7 1 104 102 101 102

(0.2,4,1) 2003 7 0.7 1 100 100 100 100
(0.2,4,1) 1984 10 0.7 1 100 100 100 100
(0.2,4,1) 1984 4 1.0 1 100 100 100 100

(1,1,1) 2003 7 1.0 1 104 102 102 102
(1,1,1) 1984 10 1.0 1 103 101 101 101

(0.2,4,1) 2003 10 1.0 1 100 100 100 100
(1,1,1) 1984 4 0.4 2 102 101 102 102

(0.2,4,1) 2003 4 0.4 2 101 100 100 100

(1,1,1) 2003 10 0.4 2 103 101 101 101
(1,1,1) 2003 4 0.7 2 102 102 101 102

(0.2,4,1) 1984 7 0.7 2 100 100 100 100
(1,1,1) 1984 7 1.0 2 102 102 102 101

(0.2,4,1) 2003 7 1.0 2 100 101 100 100

(0.2,4,1) 1984 10 1.0 2 100 100 100 100
(1,1,1) 1984 7 0.4 3 102 101 101 101

(0.2,4,1) 2003 7 0.4 3 100 101 100 100
(0.2,4,1) 1984 10 0.4 3 100 100 100 100
(0.2,4,1) 1984 4 0.7 3 100 100 100 100

(1,1,1) 2003 7 0.7 3 102 101 101 101
(1,1,1) 1984 10 0.7 3 103 101 101 101

(0.2,4,1) 2003 10 0.7 3 100 100 100 100
(1,1,1) 1984 4 1.0 3 104 103 102 102

(0.2,4,1) 2003 4 1.0 3 100 100 100 100
(1,1,1) 2003 10 1.0 3 102 101 101 101
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2.C Meta-models for performance metrics

Performance metrics were modeled as responses to experimental factors and assessment
model prior configurations using generalised linear “meta-models”. Meta-modeling is a part
of a formal approach to simulation experimentation, where outputs of a complex simulation
model are viewed as responses to simpler functions of simulation model inputs [74]. The
parameters of the meta-model are then used to facilitate interpretation of the results of
complex simulation experiments. Generalised linear meta-models are used as they are robust
to heterogeneous variance of response variable residuals [89], which were common outputs
of the experimental treatment.

For performance metrics y ∈ {Δ(θs), Δ(θ), MAREss(θs), MAREms(θs)} the coefficients
β of a generalised linear model

y = β0 + βconfig +
∑

i

βixi

were estimated for each experiment, where the β0 is the intercept, βconfig is the effect of
the multi-stock assessment model prior configuration, and the coefficients βi are the factor
effects for factor levels xi. Numerical explanatory variables, such as the year of initialisation
and initial depletion, were scaled to [−1, 1] to allow direct comparison of numeric effects with
qualitative factor effects. To reduce the number of experimental treatments, I sampled factor
levels using a space filling design (Kleijnen 2008). To reduce qualitative factors, I fit the
historical fishing intensity and initial year of assessment as continuous variables even though
they may not have continuous, or even approximately linear responses. Our reasoning for
this is that both factors have 2 levels, and so a linear effect will capture the difference
between the level effects sufficiently. For the historical fishing intensity, I regressed on the
highest multiple of Us,MSY in the history, that is, Ud = 1 for one-way trips, and Ud = 2 for
two way trips.

The intercept term β0 represents the average response value at the reference levels of
qualitative factors in the model. The only qualitative factor is the choice of multi-stock
model configuration, so the intercept of the Δ(θs) models is β0 = βNone, representing the
“null” multi-stock assessment configuration. When there are no qualitative factors in the
meta-model, such as in the MAREss(θ1) models, β0 is simply the average response value
over all factors.
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Chapter 3

Hierarchical surplus production
stock assessment models improve
management performance in
multi-species, spatially-replicated
fisheries.

This chapter is published in Fisheries Research (2021), co-authored with Sean P. Cox under
the same title [71].

3.1 Introduction

Managers of multi-species fisheries aim to balance harvest of multiple interacting target
and non-target species that vary in abundance and productivity. Among-species variation
in productivity implies variation in single-species optimal harvest rates, and, therefore,
differential responses to exploitation. Single-species optimal harvest rates (e.g., the harvest
rate associated with maximum sustainable yield) typically ignore both multi-species trophic
interactions that influence species’ demographic rates [53, 20], and technical interactions
that make it virtually impossible to simultaneously achieve the optimal harvest rates for all
species [108].

Technical interactions among species that co-occur in non-selective fishing gear are a
defining characteristic of multi-species fisheries [108, 118] and, therefore, play a central role
in multi-species fisheries management outcomes for individual species [100, 72]. Catch limits
set for individual species without considering technical interactions subsequently lead to
sub-optimal fishery outcomes [100, 115, 114]. For example, under-utilization of catch limits
could occur when technically interacting quota species are caught at different rates (i.e.,
catchability) by a common gear, leading to a choke constraint in which one species quota is
filled before the others [6]. Choke constraints are considered negative outcomes for multi-
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species fishery performance, because they reduce harvester profitability as increasingly rare
quota for choke species may limit access to fishing grounds, as well as driving quota costs
above the landed value of the choke species [93].

Setting catch limits for individual species in any fishery usually requires an estimate of
species abundance, which continues to be a central challenge of fisheries stock assessment
[60, 121, 87], especially when species data are of low statistical power, such as short noisy
time series of observations, or uninformative catch series [70]. Where such low power data
exists, data pooling is sometimes used to extend stock assessments to complexes of similar,
interacting stocks of fish [3]. Examples include pooling data for a single species across
multiple spatial strata when finer scale data are unavailable or when fish are believed to
move between areas at a sufficiently high rate [7, 117], and pooling data for multiple species
of the same taxonomic group within an area when data are insufficient for individual species
or during development of new fisheries [31]. Data-pooled estimates of productivity represent
means across the species complex, implying that resulting catch limits will tend to overfish
unproductive species and underfish productive ones [50].

In multi-species and/or multi-area contexts, hierarchical stock assessment models, which
treat each area/species combination as a discrete yet exchangeable replicate, may represent a
compromise between single-species and data-pooling approaches. For this chapter, I define a
hierarchical stock assessment model as a model fit to multiple replicates (e.g. areas/species)
simultaneously, using hierarchical hyper-priors on selected parameters to share information
between replicates [138]. Hierarchical priors induce shrinkage effects in which parameter
values are drawn towards an estimated overall mean value, thus improving model conver-
gence for replicates with low statistical power data while still estimating replicate-specific
parameters based on that data. Hierarchical methods based on data and hyper-priors stand
in contrast to data-pooled methods that estimate a mean value only, or single-stock meth-
ods that usually rely on strong a priori assumptions about replicate specific parameters,
forcing parameters to be identical among replicates, or using strongly informative priors,
all of which will almost certainly increase assessment bias [69, 68, 120].

Although hierarchical stock assessments are expected to produce better estimates of
species biomass and productivity than single-species methods in data-limited contexts, it
remains unclear whether such improved statistical performance translates into better man-
agement outcomes [70]. Aside from some related simulations determining the benefits of
manually sharing information gained when actively adaptively managing spatially repli-
cated groundfish stocks [21], to my knowledge there are no evaluations of the management
performance of hierarchical stock assessment models. Further, low assessment model bias
and/or high precision, which are often unattainable outside of simulations, aren’t necessary
conditions for superior management performance, because biases can, in practice, sometimes
compensate for each other (e.g., negative correlation in stock size and productivity), or be
offset for by other parts of the management system, such as a reduction in harvest rate.
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A modern fisheries management oriented paradigm is more concerned with the expected
performance of a fisheries management system - made up of data, assessments, and har-
vest rules - despite the inherent, and at some point irreducible, uncertainties in the system
[30, 134, 81].

In this chapter, I ask whether hierarchical stock assessment models improve management
performance in a simulated multi-species, spatially replicated fishery. The simulated fishery
is modeled on a spatially heterogeneous complex of Dover sole (Microstomus pacificus),
English sole (Parophrys vetulus), and southern Rock sole (Lepidopsetta bilineata) off the
coast of British Columbia, Canada, which is fished in three spatial management areas.
Closed-loop feedback simulation is used to estimate fishery outcomes when catch limits are
set based on biomass estimates from single-species, data-pooling, and hierarchical state-
space surplus production models under high, moderate, and low data quantity scenarios.
Assessment models are either fit to species-specific data as single-species or hierarchical
multi-species models, or fit to data pooled spatially across management units, pooled across
species within a spatial management unit, or totally aggregated across both species and
spatial management units. Management performance under each assessment approach is
measured by the risk of overfishing, and by cumulative absolute loss in catch, defined as
the deviation from optimal catch trajectories. Optimal trajectories are generated by an
omniscient manager, who sets annual effort to maximize total multi-species/multi-stock
complex yield with perfect knowledge of all future recruitments [144, 86].

3.2 Methods

3.2.1 British Columbia’s flatfish fishery

The multi-species complex of right-eyed flounders (Plueronectidae) in British Columbia
(BC) is a technically interacting group of flatfishes managed over the BC coast (Figure 3.1).
Although there are several right-eyed flounders in BC waters, I focus on the three species,
indexed by s, Dover sole (s = 1), English sole (s = 2), and southern Rock sole (s = 3),
which I hereafter refer to as Rock sole. Taken together, these species comprise a multi-stock
complex (BC flatfish complex), which are part of the BC multi-species groundfish fishery.

The BC flatfish complex is managed in three spatially distinct stock areas, indexed by
p (Figure 3.1) [45]. From north to south, the first stock area - Hecate Strait/Haida Gwaii
(HSHG, p = 1) - extends from Dixon Entrance and north of Haida Gwaii, south through
Hecate Strait. The second stock area - Queen Charlotte Sound (QCS, p = 2) - extends from
the southern tip of Haida Gwaii to the northern tip of Vancouver Island. Finally, the third
area - West Coast of Vancouver Island (WCVI, p = 3) - extends from the northern tip of
Vancouver Island south to Juan de Fuca Strait. These areas are aggregates of PFMA major
statistical areas, and are primarily delineated by management breaks, although there are
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oceanographic features that may separate each of the stocks as defined here (e.g., gullies in
the QCS area, and strong currents at the northern tip of Vancouver Island).

Each species/area combination has commercial trawl catch for the entire history (1956 -
2016), two commercial catch rate series, and at least one survey biomass index time series for
each species (Figure 3.2), for a total of four distinct fleets indexed by f . The two commercial
fishery catch-per-unit-effort (CPUE) series span 1976 - 2016, split between a Historical
trawl fishery (1976 - 1995, f = 1) and a Modern trawl fishery (1996 - 2016, f = 2), with
the split corresponding to pre- and post-implementation of an at-sea-observer programme,
respectively. The fishery independent trawl survey biomass indices are the biennial Hecate
Strait Assemblage survey in the HSHG area (1984 - 2002, f = 3), and the Multi-species
Synoptic Trawl Survey, which operates every year but alternates between areas, effectively
making it a biennial survey in all three areas (2003 - 2016, f = 4).

3.2.2 Closed-loop feedback simulation framework

Closed-loop simulation is often used to evaluate proposed feedback management systems.
In fisheries, closed-loop simulation evaluates fishery management system components, such
as stock assessment models or harvest decision rules, by simulating repeated applications of
these components, while propagating realistic errors in monitoring data, stock assessment
model outputs, and harvest advice [30, 27, 28]. At the end of the simulation, pre-defined per-
formance metrics are used to determine the relative performance of the system components
being tested.

The closed-loop simulation framework for the BC flatfish fishery includes a stochastic
operating model, representing stock and fishery dynamics and generating observations with
uncertainty, and an assessment model component that estimates stock biomass from simu-
lated observations and fishery catches. The operating model simulates population dynamics
of a spatially stratified, multi-species flatfish complex in response to exploitation by a multi-
species trawl fishery in each of the three stock areas. Although total fishing effort is not
restricted for the BC flatfish fishery, effort in each individual area is allocated such that no
species-/area-specific catch exceeds the species-/area-specific total allowable catch (TAC),
but fishing effort is allowed to increase until at least one species-/area-specific TAC is fully
caught.

The simulation projected population dynamics for each species in each area (total nine
stocks) forward in time for 32 years, or two Dover sole generations [130, longest generation
time], with annual simulated assessments, harvest decisions, and catch removed from the
population during 2017 - 2048. The following five steps summarise the closed-loop simulation
procedure for each projection year t:

1. Update stochastic population dynamics and generate new realized catch Cs,p,t(Ep,t)
in each area from effort (eq 3.1);
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2. Generate new observation data Is,p,f,t (eqs 3.4-3.7)

3. Apply an assessment model (defined below) to estimate the spawning biomass for the
upcoming year B̂s,p,t+1 and an optimal harvest rate ÛMSY,s,p (eq 3.3);

4. Scale the estimated optimal harvest rate to an estimated multi-species optimal har-
vest rate, and use it with the biomass forecast to generate a total allowable catch
TACs,p,t+1, allocated among species/areas if using a pooled method (eqs 3.8 - 3.13);

5. Allocate effort Ep,t+1 to fully realise at least one TAC from step 4 in each stock area
(eq 3.2).

Operating Model

The operating model (OM) is a multi-species, multi-stock age- and sex-structured popula-
tion dynamics model (Appendix 3.7.A). Population life-history parameters for the operating
model are estimated by fitting a hierarchical age- and sex-structured model to data from
the real BC flatfish complex.

Fishing mortality for individual stocks is scaled to commercial trawl effort via species-
specific catchability parameters, i.e.,

Fs,p,f,t = qF
s,p,f · Ep,f,t, (3.1)

where Fs,p,f,t is the fishing mortality rate applied to species s in stock-area p by fleet f

in year t, and qF
s,p is the commercial catchability coefficient scaling trawl effort Ep,t in

area p to fishing mortality (Table 3.1). The relationship in equation 3.1 implies a multi-
species maximum yield MSYMS,p within each area, from which the model equilibria are
derived, including effort EMSY,MS,p, species yield MSYMS,s,p, the biomass BMSY,SS,s,p at
which multi-species maximum yield is achieved, and the optimal harvest rate UMSY,MS,s,p =
MSYMS,s,p/BMSY,MS,s,p that produces multi-species maximum yield, all of which are given
in Table 3.1 [108]. The single-species optima, which are also in Table 3.1, are derived in the
usual way by maximising single-species yield MSYSS,s,p, produced at the optimal biomass
BMSY,SS,s,p by applying the optimal harvest rate UMSY,SS,s,p = MSYSS,s,p/BMSY,SS,s,p.

For simulated fishing in the projection time period, the fully realised TAC depends
on choke effects determined by relative catchabilities, and absolute biomass levels of each
species within an area. To simulate the choke effects, the fishing effort allocated to each
area is the maximum amount required to fully utilize the TAC of at least one species, but
never exceed the TAC of any one of the three species, i.e.,

Ep,t+1 = max{E | Cs,p,t+1(E) ≤ TACs,p,t+1∀s}, (3.2)
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where Cs,p,t+1(E) is the catch of species s when effort E is applied in area p in year t + 1
(the method for determining TACs is explained below). I use maximum effort instead of an
explicit effort dynamics model because the former captures choke effects present in the real
fishery system, while reflecting the output controlled BC groundfish fishery, for which there
is no explicit limit on the total amount of fishing effort expended by license holders.

Surplus production stock assessment models

At each time step t, simulated annual assessments are used to estimate the expected future
spawning biomass estimate B̂t+1 via a state-space Schaefer production model [126, 111],
modified to better approximate the biomass-yield relationship underlying the age-/sex-
structured operating model [105, 148]. I extend the hierarchical state-space model from
Chapter 2 to fit to data from the multi-species, spatially stratified BC flatfish complex,
as well as fit to single-stock data from individual or data-pooled stocks, via the biomass
equation

Bs,p,t+1 =

⎡⎣Bs,p,t + UMSY,s,p · ms,p

ms,p − 1
· Bs,p,t ·

⎛⎝1 − 1
ms,p

·
(

Bs,p,t

BMSY,s,p

)ms,p−1
⎞⎠ − Cs,p,t

⎤⎦ eζs,p,t ,

(3.3)
where the management parameters MSYs,p (optimal single-species yield) and UMSY,s,p (op-
timal single-species harvest rate) are the leading model parameters, BMSY,s,p = MSYs,p/UMSY,s,p

is the biomass at which MSYs,p is acheived under the optimal harvest rate, ms,p is the Pella-
Tomlinson parameter controlling skew in the biomass/yield relationship (derived from op-
erating model yield curves), and ζs,p,t are annual process error deviations.

In total, I define the following five potential assessment model configurations (Figure
3.3):

1. Total Pooling (1 management unit);

2. Species Pooling (3 management units, independent parameters);

3. Spatial Pooling (3 species, independent parameters);

4. Single-species (9 management units, independent parameters);

5. Hierarchical Multi-species (9 management units, hierarchical priors);

where the number of management units is shown in parentheses (i.e., delete subscripts in eq.
7 for species or stock-area as appropriate, e.g., Spatial Pooling models have no p subscript).

Prior distributions on optimal yield MSYs,p, optimal harvest rate UMSY,s,p, catchability
qs,p,f , and process error deviations ζs,p,t are defined for each assessment model, with unbiased
prior means based on the true operating model values (Table 3.C.2, Appendix 3.7.C). While
unbiased prior distributions are not possible to define in practice, my research question is
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focused on the management performance when using estimates of biomass and productivity
from each of the five AMs to set TACs. While priors certainly affect those estimates, there
is considerable variation in how an analyst might choose prior mean values for biological
parameters, and those choices become more uncertain as data are reduced. For example, an
analyst might choose a prior mean of average catch over an agreed historical period as the
MSY prior mean, and choose either a conservatively low value based on a review of stock
assessments for similar species, or if it is available, the ratio of catch to an index of biomass
in the same historical period to inform a prior mean UMSY value. In cases where time-series
of data are short, there may be no appropriate period for formulating such priors, while
noisy data (e.g., commercial CPUE) lack sufficient statistical power to draw parameter
estimates away from biased mean values, especially when priors may be informative in the
presence of data limitations. I based our unbiased priors on the OM to keep priors as similar
as possible among AMs, thereby avoiding variation in performance caused by different prior
choices.

Data generation for assessment models

Time series of catch, commercial CPUE, and relative biomass indices are simulated in the
historical and projection periods for fitting assessment models. While it is more usual to
use the actual historical data in most closed loop simulations, given that pooled data must
be simulated for all time periods, simulating all data series in the history and projections
removes any effect of simulated and real data on performance of pooled and non-pooled
AMs. The Historical fishery CPUE and Hecate Strait Assemblage survey are simulated
only for the periods shown in Figure 3.2, but the Modern fishery CPUE and Synoptic
trawl survey biomass index are also simulated in the projection period. All biomass indices
are simulated with log-normal observation errors, with precision based on the conditioning
assessment (Table 3.A.1).

Biomass indices for individual stocks are all simulated as relative biomass with obser-
vation error

Īs,p,f,t = qs,p,f · Bs,p,f,t, (3.4)

where Īs,p,f,t is the index without observation error, qs,p,f is the catchability coefficient for
species s and stock-area p, and Bs,p,f,t is the biomass of species s in stock-area p vulner-
able to fleet f in year t. For the Assemblage and Synoptic fishery independent surveys
(f = 3, 4), the catchability coefficients qs,p,f are trawl efficiency estimates from the con-
ditioning assessment. For commercial CPUE, catchability coefficients are estimated in the
conditioning assessment by assuming that catch rates are an unbiased relative index. While
the assumption that catch rates are an unbiased relative index likely increases the infor-
mation contained in the simulated CPUE indices over real CPUE data, the larger CVs
estimated by the conditioning assessment retain realistic variation. Moreover, simulating
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commercial data as relative biomass reduces differences in the variability and bias of the
data simulated in the OM history and data simulated in the projection.

The method for generating pooled catch and biomass index data is analogous to the
unpooled data, combined via summation. Catch data is summed without any scaling, and
biomass indices without observation error are summed after scaling by catchability (trawl
efficiency in the surveys), i.e.,

Īpooled
s,f,t =

∑
p

1(Is,p,f,t > 0) · qs,p,f · Bs,p,f,t (3.5)

Īpooled
p,f,t =

∑
s

1(Is,p,f,t > 0) · qs,p,f · Bs,p,f,t (3.6)

Īpooled
f,t =

∑
s,p

1(Is,p,f,t > 0) · qs,p,f · Bs,p,f,t (3.7)

where f = 1, .., 4, Īpooled
s,f,t is the spatially pooled index for species s, Īpooled

p,f,t is a species pooled
index for area p, Īpooled

f,t is the totally aggregated index (all without error), and 1(Is,p,f,t > 0)
is the indicator function that takes value 1 when survey f in area p took samples in year t,
and 0 otherwise.

Target harvest rates and total allowable catch

Simulated harvest decision rules apply a constant target harvest rate to generate TACs from
one-year ahead biomass forecasts obtained from each assessment model, i.e.,

TAC ′
s,p,t+1 = Ûs,p,t · B̂s,p,t+1, (3.8)

where Ûs,p,t is the estimated target harvest rate for species s in stock-area p, and B̂s,p,t+1 is
the year t + 1 biomass forecast from the assessment model applied in year t. The estimated
target harvest Ûs,p,t is defined to incorporate realistic assessment errors in productivity
estimates while simultaneously targeting maximum multi-species yield MSYMS,s,p. To avoid
incorporating technical interactions directly into the AM dynamics, the target harvest rate
scales the AM estimate of ÛMSY,s,p from equation 3.3 by the ratio of multi-species and
single-species optimal harvest rates from the operating model, i.e.,

Ûs,p,t = ÛMSY,s,p · UMSY,MS,s,p

UMSY,SS,s,p
(3.9)

where UMSY,MS,s,p, UMSY,SS,s,p are the optimal harvest rates maximising multi-species and
single-species yield, respectively, taken from the operating model (Table 3.1), and ÛMSY,s,p

is the assesment model estimate of the single-species optimal harvest rate applied at time
t.
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Inter-annual increases in TAC are limited to 20% for all individual stocks, i.e.,

TACs,p,t+1 = min{TAC ′
s,p,t+1, 1.2 · TACs,p,t}, (3.10)

where TAC ′
s,p,t+1 is the proposed TAC determined above, and TACs,p,t is the previous

year’s TAC. The constraint on inter-annual TAC changes reflects the constraint on inter-
annual changes in fishing effort in the objective function used for the omniscient manager
solutions described below, which are meant to simulate gradual investment in additional
fishing effort.

Pooled TACs are set analogously to the stock-specific case above, with pooled target
harvest rates applied to biomass projections from pooled assessments. For a spatially pooled
assessment of species s, we define the operating model spatially pooled optimal harvest rates
as

UMSY,MS,s =
∑

p MSYMS,s,p∑
p BMSY,MS,s,p

, (3.11)

UMSY,SS,s =
∑

p MSYSS,s,p∑
p BMSY,SS,s,p

, (3.12)

where the notation is as defined above, with species pooled and totally pooled rates defined
analogously. For setting TACs under pooled assessments, the harvest rate scalar from single-
to multi-species UMSY in equation 3.9 uses the ratio of pooled UMSY,MS and UMSY,SS values,
as defined in equations 3.11 and 3.12. Assessment model estimates of pooled optimal harvest
rates were then scaled by the ratio of the pooled operating model optimal harvest rates.

Pooled TACs are split within an area or across spatial strata proportional to Synoptic
trawl survey indices for the individual stocks. For example, if the TAC for area p is set by
a species pooled assessment, then the proposed TAC for species s is defined as

TAC ′
s,p,t+1 =

Is,p,t∗∑
s′ Is′,p,t∗

TACp,t+1, (3.13)

where Īs,p,t∗ is the most recent individual biomass index from the Synoptic survey for species
s in area p. The most recent index is used because the synoptic survey alternates between
areas each year, so not all individual indices are present in a given year.

3.2.3 Simulation experiments and performance

A total of 15 simulation experiments are conducted, comprising five assessment models and
three data quality scenarios. Simulations are integrated over stochastic errors by running a
total of 200 random replicates of each combination, where each simulation is initialized with
the same set of random seeds to eliminate random effects among combinations of assess-
ments and data scenarios. Assessment convergence is defined as a positive definite Hessian

55



matrix and a maximum gradient component less than 10−3 in absolute value. Replicates
are considered significant when assessments converge in 95% of time steps, chosen to reflect
the fact that fitting models becomes more difficult as data quality is deliberately reduced,
and a simulated assessment can not always be tuned like a real assessment performed by a
real-life analyst. Results are then calculated based on the first 100 random seed values that
produced significant replicates for all species and stocks considered. The operating model
projections are run for two Dover sole generations [130, 32 years], as that species has the
longest generation time.

Operating model population dynamics are identical among replicates for each stock
during the historical period (1956 - 2016), except for the last few years near the end,
where the operating model simulates recruitment process errors that were not estimated
in the conditioning assessment. Simulated log-normal observation and process errors in the
projection are randomly drawn with the same standard deviations as the errors used in the
historical period, and bias corrected so that asymptotic medians match the expected values,
i.e., for the two fishery independent surveys (f = 3, 4), the species/area specific biomass
indices are simulated as

Is,p,f,t = Īs,p,f,t · exp(τs,p,f · δs,p,f,t − 0.5τ2
s,p,f ) (3.14)

where Īs,p,f,t is the index without error defined above, τs,p,f is the log-normal observation
error standard deviation, δs,p,f,t is the annual standard normal observation error residual,
and subscripts s, p, f, t are for species, stock, fleet and year, respectively. Recruitments
are simulated as in Section 3.A. Error is added to survey biomass indices for pooled data
independently of the error added to individual indices, i.e.,

Is,f,t = Īs,f,t · exp(τs,f · δs,f,t − 0.5τ2
s,f ) (3.15)

Ip,f,t = Īp,f,t · exp(τp,f · δp,f,t − 0.5τ2
p,f ) (3.16)

If,t = Īf,t · exp(τf · δf,t − 0.5τ2
f ) (3.17)

where τs,f , τp,f , τf are averaged over the components of the pooled index.

Operating model data quantity scenarios

The three data quantity scenarios transition from high to low by successively removing the
earlier CPUE index series from the full set, i.e.,

1. High-data: Historical CPUE (1956 - 1996), Modern CPUE (1996 onwards), Assem-
blage survey (1984 - 2002, biennial, HSHG only), Synoptic survey (2003 onwards,
biennial);

2. Moderate-Data: Modern CPUE, Assemblage survey, Synoptic survey;
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3. Low-Data: Assemblage survey, Synoptic survey.

To improve convergence, the Hierarchical Multi-stock and Single-species assessment
models are initialised later under the Mod and Low data scenarios, with the starting
year of the assessments set to the first year with index data, which was 1984 in HSHG
for both scenario, and 1997 or 2003 for other areas under the Mod and Low scenarios,
respectively.

Performance evaluation

Omniscient manager simulations Assessment model performance is measured against
a simulated omniscient fishery manager aware of all the future consequences of harvest
decisions and, therefore, able to adapt the management to meet specific quantitative ob-
jectives under any process error conditions [144]. Omniscient manager solutions are used
rather than equilibrium based metrics [113] because most stocks are in a healthy state in
2016 (i.e. above single-species BMSY , Table 3.2) and, therefore, the time-path of fishery
development was important [144].

The omniscient manager is an optimisation of future fishing effort by area (Appendix
3.B), with the objective function

O =
[∑

s,p

− log(C̄s,p,·)
]

+Pdiff

(∑
p

Ep,·

)
+Pinit

(∑
p

Ep,2017

)
+Poverfished (Bs,p,·) , (3.18)

where − log C̄s,p,· is the negative log of total future catch for species s in area p over the pro-
jection period (equivalent to maximising catch). Penalty functions P (eq. 3.20) are applied
for annual changes in total effort across all three areas being above 20% (Pdiff ) to match
the TAC smoother in stochastic experiments, differences greater than 10% between the last
year of historical effort and the first year 2017 of simulated effort (Pinit), and a penality
when biomass drops below a lower threshold of 40% of single species BMSY,SS in more than
5% of time-steps (Poverfished). The threshold of 0.4BMSY,SS is commonly suggested as a
limit reference point for Canadian fisheries [34], below which the stock could experience
irreparable harm and recruitment could become impaired.

An omniscient manager solution is obtained for each stochastic trajectory in the stochcas-
tic management simulations. Each replicate is run for 80 years to produce several years free
of end effects, such as transient dynamics at the beginning of the projection, or reduced
penalties for overfishing at the end of the projection.
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Cumulative catch loss For each stochastic trajectory, the cumulative absolute loss in
catch is calculated as [144]:

Li,s,p =
T2∑

t=T1

|Ci,s,p,t,sim − Ci,s,p,t,omni|, (3.19)

where the Ci,s,p,t,· values are commercial trawl catch for replicate i, species s, and stock p

from stochastic simulations (sim) or the omniscient manager simulation (omni) simulation,
with Ci,s,p,t,sim − Ci,s,p,t,omni defined simply as catch loss, which is positive when catch is
higher than the omniscient manager’s, and negative when lower. When repeated over all
significant random seed values, the loss functions generate a distribution of cumulative ab-
solute catch loss, which are used to determine each assessment model’s relative performance
under the three data scenarios. Cumulative absolute catch loss is calculated for the ten year
period T1 = 2028 to T2 = 2037, chosen in the middle of the projection period because
dynamics in the earlier period were dominated by the smoothers on effort and catch for the
omniscient manager and TACs, respectively.

A paired analysis is used to rank AM configurations across species, stocks and replicates.
Within each replicate i, each AM’s cumulative absolute catch loss determines the relative
rank of each AM under a species/stock/OM scenario combination, where lower loss ranks
higher. Any replicates with less than 95% convergence rates for any AM on any management
units are excluded from the aggregate rankings, and any species/stock combinations that
fail to reach 100 replicates meeting the convergence criteria for all AMs are also excluded,
to reduce variability in ranking distributions caused by varying sample sizes and random
seeds. Rankings are then pooled across remaining species and stocks within an OM/AM
combination, from which the modal rank and average rank are calculated.

Biomass and overfishing risk Biomass risk is measured by the probability of stock
biomass being below both 80% and 40% of single-species operating model BMSY,SS,s,p. The
threshold of 80% of BMSY,SS is generally considered to be the level where a fish stock
transitions from an optimally fished state to an overfished state [58], while 40% of BMSY is
commonly suggested as a limit reference point for Canadian fisheries, below which a stock
may be considered critically overfished as recruitment may become impaired and rebuilding
may be required [34]. For both biomass levels, the probability is calculated as

P (Bs,p,t < λBMSY,SS,s,p) =
1

3200

100∑
i=1

2047∑
t=2016

�(Bi,s,p,t < λBMSY,SS,s,p)

where i, s, p, t are replicates meeting the 95% convergence criteria, species, stocks and time
steps, respectively, λ = 0.4, 0.8, and � is the indicator function that takes value 1 when
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its argument is true, and zero otherwise. Overfishing risk is similarly calculated as the
probability of fishing mortality exceeding single-species operating model FMSY,SS,s,p.

3.2.4 Sensitivity analyses

Parameter prior distributions are a key feature of most contemporary stock assessment
models, even in data-rich contexts. Moreover, prior distributions are a defining feature
of hierachical multi-species stock assessment models. Therefore, I focus most sensitivity
analyses on fixed prior standard deviations for AM leading parameters MSY and UMSY , and
the hierarchical shrinkage prior SDs τq and σUMSY

(Table 3.4). Sensitivity of performance
to future increases in fishery independent survey precision is also tested, where the Synoptic
survey observation error variance is reduced with a linear ramp-down over the first 5 years
of the projection period to simulate a gradual increase in survey effort.

3.3 Results

3.3.1 Omniscient Manager Performance

As expected, the omniscient manager was able to achieve the theoretical multi-species opti-
mal yield in the presence of technical interactions during the middle of the projection period
(Figure 3.4, blue closed circle). Median biomass, catch, and fishing mortality reach the equi-
librium after a transition period of about 20 years. During the transitionary period, effort
is slowly ramped up in each area from the end of the historical period, stabilising around
area-specific EMSY after about 12 years (Figure 3.5, blue closed circles). As is common
when maximising catch over a finite time horizon, a reduction in biomass and an increase
in effort was observed towards the end of the 80 year projection period, where penalties
from lower biomasses and overfishing the stock relative to the multi-species optimal harvest
rate are lower than the catch increases; however, the omniscient manager avoids a complete
crash of the complex thanks to the penalty on avoiding the critically overfished state at
40% of single-species BMSY,SS .

Each area had similar relationships between single-species and multi-species optimal
biomass levels, with one species overfished, one underfished, and one close to optimally
fished, relative to single-species reference points. In HSHG and QCS, the overfished stocks
were both Rock sole, fished down to 74% (HSHG) and 81% of BMSY,SS to increase fishery
access to Dover and English soles in those areas (Table 3.1). In WCVI, English sole was
slightly overfished relative to single-species at 91% of BMSY,SS , but this would be of little
concern in a real fishery if the absolute size were not so small. Despite the tendency of the
omniscient manager toward overfishing at least one species in each area, very few optimal
solutions risked severe overfishing below 40% of BMSY (Table 3.3), indicating that lost yield
from more intense overfishing relative to single-species optimal levels is not compensated by
increased harvest from other species, which are sometimes larger populations with higher
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TACs. The probability of being critically overfished in the period 2028 - 2037 was 1% for
English and Rock sole stocks, and 0% for all Dover sole stocks.

Although DER stocks begin the simulations in an overall healthy state, the omniscient
manager reduced fishing effort to 0 in all areas early in the projection period in some repli-
cates (Figure 3.5, 2016-2020). In these cases, anticipatory feedback control by the omniscient
manager reduced fishing effort to avoid low spawning stock biomasses, thus ensuring higher
production in later time steps where recruitments were lower than average for sustained
periods.

3.3.2 Assessment model performance

Rankings by catch loss

Due to low convergence rates for HSHG and QCS Rock sole and WCVI Dover sole in the
High scenario, and WCVI Rock sole under the Mod scenario (Figure D.1, Appendix 3.7.D),
results from those management units are excluded from catch loss rankings.

Hierarchical Multi-species assessment models ranked highest under all data quantity
scenarios (Table 3.4). Under the Low data quantity scenario, the Hierarchical model had the
lowest cumulative absolute catch loss in over 40% of replicate/stock/species combinations
(Figure 3.6), ranking highest by average and modal rank in the aggregate. When split across
individual species/areas, the modal rank for the hierarchical AM remained at 1, but there
was more variability in the ranking distributions in the HSHG area (e.g. Dover sole), leading
to a drop in average rank (Figure D.1, Appendix 3.7.D). As data quantity increased for the
Mod scenario, the modal rank and average rank of the hierarchical model remained the
highest out of all AMs in the aggregate, ranking 1st in just under 40% of cases (Figure 3.6),
while the variability in rankings in the HSHG area increased (Figure D.1, Appendix 3.7.D),
pushing the average rank a littler lower than under the Low scenario. Results under the
High scenario were similar to the Mod scenario, where the Hierarchical model was ranked
first in about 40% of cases, and a slightly higher average rank than the Mod scenario, driven
largely by a reduction in catch loss for WCVI English sole (Figure D.1).

When ordered by average rank, Species Pooling AMs came second after the hierarchical
AMs under all data quantity scenarios (Table 3.4). Total and Spatial Pooling methods
performed similarly under the High scenario, with only a small difference between average
ranks, but quite different rank distributions, where Spatial pooling catch loss rankings were
almost uniformly distributed, but Total pooling ranks had a clear mode in 4th place (Figure
3.6, High scenario), which was reflected in individual stock rank distributions (Figure D.1,
Appendix 3.7.D). The Total Pooling AM’s 4th place rank was observed in around 40% of
cases in the aggregate (Figure 3.6), and was also the modal rank for most individual stock
distributions (Figure D.1). As data were removed for the Mod data quantity scenario, the
Spatial Pooling AM dropped from 3rd to 4th place, driven largely by increased catch loss
in the QCS area. The Single-species method had the worst rank under all data quantity
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scenarios, with a consistent modal rank of 5th across all scenarios (Figure 3.6), and most
consistently inferior performance observed under the High data quantity scenario, where
the average rank was 4.63 (Table 3.4).

Choke effects both increased and reduced catch loss, depending on the assessment errors.
On the one hand, there were several cases where AM underestimates of biomass and/or
productivity produced TACs that produced a realised harvest rate much lower than the
target associated with maximum multi-species yield. This behaviour was most prominent
under Single-species AMs for the Low and Mod scenario, where the fished initialisation led
the AMs to estimate a larger and less productive stock in equilibrium, estimating a steep
early decline in biomass followed by apparent equilibration to a low biomass state where
catch balances production (Figure 3.7), producing very low TACs despite the large positive
error in unfished biomass. Low TACs of more catchable species constrained the TACs of
the remaining species, increasing catch loss across the whole complex (Figure 3.8). On the
other hand, when TACs pushed harvest rates very close to the target level, choke effects
could reduce catch loss by constraining TACs that were too high compared to the target,
protecting against overfishing relative to the multi-species harvest rate. These “protective”
choke effects were observed under the pooling AMs and the hierarchical AM, and occured
even when there were large assessment errors. For example, under the hierarchical AM in
the Mod scenario, AMs perceived a larger and less productive stock than the OM, similar to
the Single-species AM, but shrinkage priors on productivity parameters were able to reduce
the magnitude of the error in UMSY so that, despite having some of the largest errors in
biomass forecasts and the BMSY , the AM did not perceive a stock that quickly declined
from its high initial biomass (Table 3.7, Appendix 3.7.E). Biomass estimates were then
positively biased with respect to the operating model biomass, which were compensated by
the negatively biased productivity estimates, producing more appropriately scaled TACs
for all stocks, with choke effects occasionally protecting against overfishing. More optimal
TACs then reduced catch loss overall, with median catch loss close to zero for the 2028 -
2037 period (Figure 3.10).

Biomass and overfishing risk

There was little chance of any stock being in an overfished state under any data scenario
and AM combination (Table 3.4). No AM pushed stocks into a critically overfished state
where Bs,p,t < 0.4BMSY,SS,s,p under the High and Mod data scenarios, while under the Low
scenario a small probability of being critically overfished was observed under the Species
Pooling (max 1%) and Spatial Pooling (max 6%) AMs. As expected, there were higher
probabilities of being overfished (Bs,p,t < 0.8BMSY,SS,s,p) under all scenarios, with the
highest observed at 22% under the Spatial Pooling AM and Low scenario. The Single-
species AM rarely pushed any stock into an over-fished state under any data scenario, as
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biomass was usually underestimated for at least one species in each area, producing a choke
constraint and higher catch loss as discussed above.

As expected, there was a higher risk of overfishing relative to single-species optimal
fishing mortality rates FMSY,SS,s,p when attempting to maximise multi-species catch. Under
the High and Mod scenario, Spatial Pooling and Single-species AMs were the only AMs
with positive probabilities across the entire BC flatfish complex, with Spatial Pooling AMs
overfishing more often. Unsurprisingly, overfishing was observed under all AMs for the
Low scenario, reflecting the greater difficulty in estimating species productivity with low
power data. Similar to the other scenarios and biomass risk above, the Spatial Pooling
AM exceeded FMSY,SS more often (max 50%), while the Single-species AM was the most
conservative given that it often underestimated biomass and caused choke constraints (max
1%). Hierarchical AMs were moderate compared to the other AMs, falling in the middle of
the pack and exceeding FMSY,SS in 14% of years on average (max 29%).

Catch-Biomass trade-offs

Distributions of catch and biomass relative to MSYSS and BMSY,SS , respectively, were
produced for the time period 2028 ≤ t ≤ 2037 for each assessment model and Scenario
combination. The medians of those relative catch and biomass distributions were visually
compared to each other and to the central 95% of the omniscient manager’s trajectories over
the same time period (Figure 3.11) in order to understand the biomass and catch trade-offs
between different model choices.

The Hierarchical Multi-species assessment model median catch between 2028 and 2037
came closest (i.e., smaller Euclidean distance) to the omniscient manager median catch
under the Low data quantity scenario outside the HSHG area, and for HSHG Dover sole
(Figure 3.11, compare points to the horizontal segment in black crosshair). For HSHG
English and Rock soles, while the Hierarchical model tended to take a little more catch
than the omniscient manager under the Low scenario, a large biomass surplus relative to
the omniscient manager was present, indicating that realised harvest rates from TACs set
by the hierarchical AM were smaller than those set by the omniscient manager.

Although the range of biomass-catch trade-offs were quite broad for each stock, the ma-
jority of Scenario/AM combinations lie inside the central 95% distributions of the omniscient
manager (Figure 3.11, black crosshairs). Notable exceptions to this were the Single-species
models for all species/areas under the High scenario and in HSHG under the Low scenario
for Dover and English, the Hierarchical models in QCS and WCVI under the High sce-
nario, and the Total Pooling method for WCVI Rock sole under the High data quantity
scenario. As described above, the Single-species methods tended to under-estimate biomass
and productivity under the Low scenario, so the tendency of the Single-species median
biomass-catch to be towards the lower right corner of the range is expected. For the Single-
species and Hierarchical methods under the High scenario, the reason is a combination of
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large negative assessment errors in some or all years for choke species, and the 20% limit on
increases in catch, producing a low-catch/high-biomass dynamic. Finally, the Total Pooling
outlier in WCVI Rock Sole is caused by a persistent small negative assessment error, and an
underallocation of the pooled TAC to WCVI Rock thanks to the differing Synoptic survey
catchabilities. The Total Pooling method was also outside the central 95% of the omnisceint
manager in HSHG under the High scenario, but only marginally so.

Catch-biomass trade-offs were approximately collinear under both High and Low data
quantity scenarios for all stocks. All spawning stock biomasses were well above both the
single-species and multi-species optimal levels at the beginning of the projection period (e.g.,
Table 3.1, Stock Status), meaning that the catch limits set by all methods were depleting
a standing stock and benefited from its surplus production. Under these conditions, an
increase in catch almost linearly caused a decrease in biomass as the compensatory effect
of density dependence was minimal.

During the 2027 - 2036 period, median catch and biomass under the omniscient manager
were higher than the optimal levels for both the multi-species and single-species maximum
yield (green diamond crosshair and blue circle, respectively, Figure 3.11). As discussed
above, this is because the transitionary period from fishery development to equilibrium
dynamics is takes about 20 years under the omniscient manager. While catch is higher than
MSY during the development period, this is not necessarily overfishing as the biomass is also
higher than BMSY ; however, there was overfishing relative to single-species FMSY occured
for all stocks under the omniscient manager, and, as expected, with higher probability for
all stocks where BMSY,MS ≤ BMSY,SS (Table 3.3).

3.3.3 Sensitivity of results to prior standard deviations

Average model sensitivities were summarised by fitting linear regressions to the distributions
of median cumulative absolute catch loss (Figure 3.12). To remove the effect of absolute
catch scales on the regressions, median loss distributions were standardised across assess-
ment models, stratified by species, stock-area, and data scenario. Regressions with positive
slopes had increasing catch loss with increasing uncertainty, and negative or zero slopes
indicated a decrease or no change in catch loss with increasing prior uncertainty. Linear
model slope parameter p-values for each AM were also calculated to determine if an effect
was significant or not, where I define significance as p < 0.1.

While all AMs except the Total Pooling AM were slightly sensitive to MSY prior CVs
under the high scenario, there was no change in the relative rankings of the AMs (Figure
3.12, first column). Under the Low scenario, only the Single-species and Species Pooling
AMs were sensitive to MSY CVs, with catch loss dropping about a standard deviation as
CVs decreased from 1.0 to 0.1 for both AMs, with Species Pooling AMs moving from fourth
to second lowest mean catch loss, but the relative ranking of all other AMs remained the
same.
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Hierarchical and Single-species AMs were sensitive to the UMSY prior standard deviation
under both scenarios, and the Species Pooling AM was also sensitive under the Low scenario
(Figure 3.12, second column, p > 0.05). However, under the High scenario, no sensitivity led
to a change in ranking for any AMs over the range of UMSY prior standard deviations tested,
as most AMs showed a catch loss change of less than 0.5 standard deviations, except for the
Single-species AM, which was again an outlier. Under the Low scenario, the Total Pooling
and Single-species AMs remained at the bottom of the rankings, despite a decrease off
around 1.5 standard deviations for the Single-species AM. At the same time, Spatial Pooling,
Species Pooling, and Hierarchical AMs catch losses under the Low scenario appeared to
converge as prior standard deviations increased from 0.1 to 1.0.

Interestingly, the Hierarchical Multi-species assessment models reacted differently to
changing catchability and UMSY hierarchical shrinkage priors under the High and Low sce-
narios (Figure 3.12, third column). As σUMSY

and τq increased from 0.1 to 0.5, average
catch loss increased by about 1 standard deviation under the High scenario (p < 0.01),
mostly driven by assessment errors in the QCS and WCVI areas, leading to a widening
range of catch trajectories as hierarchical prior standard deviations increased. Under the
Low scenario, median absolute catch-loss dropped by about 1 standard devation, indicating
that TACs were closer to the omniscient manager as hyper-prior SDs increased. The im-
proved performance with increasing hyper-prior uncertainty was caused by a combination of
subtle effects, with some assessments becoming more biased, and others less biased, which
occasionally switched the choke species in an area. The combination of raised and lowered
catch limits and technical interactions produced beneficial choke effects, reducing catch loss
overall.

Finally, there was low sensitivity to the reduction in Synoptic survey standard errors
(Figure 3.12, fourth column). Under the High scenario, the all but the Spatial Pooling
AM had significant improvements of around 0.3-0.5 standard deviations with decreasing
standard error (p < 0.05), while the Spatial pooling had a non-significant change (p = 0.18).
Under the Low scenario, only the Species Pooling AM catch loss improved significantly,
dropping around 0.25 standard deviations with decreasing Synoptic survey standard error
(p < 0.01), and switching places with the Hierarchical AM for the lowest average catch loss.
For both scenarios, the decreases in catch loss appear to be caused by a slight improvement
in pooled TAC allocation with increased survey precision, but choke constraints were still
present.

3.4 Discussion

In this chapter, I demonstrated that hierarchical stock assessment models may improve man-
agement performance in a spatially-replicated multi-species flatfish fishery. When available
data quantity was moderate or low (indicated here by time-series length), biomass and har-
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vest rate estimates from hierarchical stock assessment models resulted in catches that were
closer to an omniscient manager’s optimal reference series compared to catch limits derived
from single-stock and data-pooling assessment methods. Under high data quantity scenarios,
data-pooling methods outperformed hierarchical models, but the latter still outperformed
single-stock assessment methods. This suggests that hierarchical assessment methods could
be a better approach to making catch limit decisions than conventional single-species meth-
ods under typical fisheries data quality conditions, such as short or noisy time series of
fishery-independent observations or uninformative catch series.

Ranking performance according to catch loss highlighted a fundamental trade-off be-
tween multi-species and single-species fishery objectives. Management performance was
measured via comparison to an omniscient manager simulation with the objective of max-
imising complex yield, implying that the simulated BC flatfish complex management ob-
jectives were targeting the multi-species optima derived from technical interactions. While
targeting multi-species optima does increase complex yield overall, there are cases where
the fishing mortality rates exceed single-species FMSY , which is defined as overfishing in a
single-species context. An obvious question is, would the rankings continue to hold if catch
limits targeted individual stocks’ single-species UMSY ? Further, would the rankings change
if ranking of AM performance was based on the risk of overfishing, or being in an overfished
state, relative to single-species reference points? Targeting single-species harvest rates would
likely lead to higher instances of choke effects since technical interactions are being ignored.
Further, targeting single-species yields would probably not affect the rankings based on
AM performance, since the estimated optimal harvest for hierarchical models had compen-
satory biases in biomass and harvest rates which would hold for the single-species harvest
rates as well, while single-species and pooled models lacked those compensatory biases, and
pooled models had issues achieving target TACs given the allocation mode. If ranking by
the probability of overfishing or being in an overfished state, our results show that under
the High and Mod scenarios the Hierarchical model would still tie for first, but would fall
to third under the Low scenario, with the single-species model taking first place. However,
even at the highest probability of exceeding single-species FMSY under the hierarchical
AMs, there was no chance of pushing stocks into a critically overfished state, and at most
6% chance of pushing any BC flatfish complex stocks into an overfished state of less than
80% of BMSY,SS , which would be acceptable management performance in most fisheries.
Furthermore, choosing single-species AMs would forgo a large amount of catch, which may
align with the objectives of some stakeholders, but probably not harvesters themselves. This
highlights that measuring multi-species fisheries performance according to single-species ob-
jectives (i.e., reference points) may be overly conservative, and that while some overfishing
may be required to achieve multi-species yield objectives, that overfishing can be sustain-
able. While it is certainly possible to come up with a set of commercial catchabilities that
would produce critically overfished stocks while maximising complex yield, that was not
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the case for the DER complex simulated here, and it is unclear if such a mix would be a
realistic scenario.

The above results arise from models that are necessarily a simplification of the real
stock-management system. The harvest rules applied to DER complex species were relatively
simple and may require more detail or complexity for practical applications. All harvest rules
were constant target harvest rates, which do not include precautionary “ramping-down” of
catch towards a limit biomass level [34, 28]. Including a ramped harvest rule would reduce
the probability of stocks being critically overfished in some cases, probably at some further
cost of choke effects, but there was very little chance of critically overfishing any stock under
our simulations anyway. Second, catch limits for the simulated BC flatfish complex were set
based on estimated target harvest rates that were scaled by a priori known scalars derived
from multi-species yield curves, which may positively bias results towards lower catch loss
in general. Incorporating multi-species yield curve calculations to the assessment model
ouput into the harvest decision would be simple to do, but would require either a model
of increased complexity to link fishing effort to single-species yield, or an extra assumption
linking effort to surplus production model yield calculations, which would likely increase
assessment model errors. Finally, the TAC allocation model for data-pooled methods was
only one example from a large set of potential options. Understanding the relative risks of
data-pooling would require testing alternative allocation methods, which was beyond the
scope of this paper.

Replacing commercial fishery catch rates with relative biomass in the simulations in-
creased the statistical power of commercial index data and skewed results under the High
scenario. Under previous versions of the simulations where commercial indices were simu-
lated as catch rates, but without observation error, the Hierarchical method ranked lower
than the three Pooling AMs under the High scenario, but still higher than the Single-species
model. The change in performance is largely caused by learning or targeting behaviour of
harvesters in Historical (1956 - 1996) trawl fishery that caused indices to increase for some
BC flatfish complex stocks while estimated biomass was decreasing in the model, indicating
time-varying catchability for that fleet. Time-varying catchability was less of an issue for
Pooled AMs because data pooling is intended to increase sample size and reduce variability.
Replacing catch rates with relative biomass indices simulated with a constant catchabil-
ity reduced the advantage of data pooling under the High scenario, allowing Hierarchical
models to achieve the lowest catch loss under all three scenarios.

The only multi-species interactions considered were technical interactions, which al-
though an important part of exploited system dynamics, are not the entire story. Although
there is limited evidence for ecological interactions among BC flatfish complex species
[108, 142], what does exist may influence the multi-species yield relationship with fish-
ing effort or, as with technical interactions, inhibit the ability of the management system to
meet target catch levels. For example, individual survival or growth may change in response
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to varied fishing pressure due to unmodeled linkages [20]. Yet, including such ecological in-
teractions would imply a highly data rich scenario, which is counter to our focus on surplus
production models applied to multi-species fisheries. Furthermore, accounting for potential
ecological interactions would require multiple OMs to test performance against a range of
plausible hypotheses, since ecological uncertainties are much broader in complexity and
scope than technical interactions alone. Nevertheless, future work combining technical in-
teractions with minimum realistic models for ecological interactions could help determine
the extent to which assessment approaches affect these more complex multi-species fisheries
outcomes [110]. For example, while diet overlap between the three species is small off the
coast of Oregon, the major Rock sole prey was recently settled pleuronectiform fishes, which
may include Dover and English sole young and therefore shift the complex equilibrium as
fishing pressure is applied, reducing predation mortality for Dover and English sole young,
and reducing prey availability for Rock sole [142, 20].

The BC flatfish complex trawl fishery effort model was also a simplification of reality,
where effort was limited only by the TACs in each area. Limiting by TACs was intended
to reflect the management of the real BC groundfish fishery in which harvester decisions
drive TAC utilisation among target species [115, via increasing catchability], and non-target
or choke species [10, via decreasing catchability]. Changing catchability for targeting or
avoidance could be simulated as a random walk in the projections, with correlation and
variance based on the historical period, or perhaps simulated via some economic sub-model
that accounted for ex-vessel prices and variable fishing costs. These economic factors could
affect targeting and avoidance behaviour among species [115, 114], as well as effort allocation
among stock-areas [59, 145]; however, it is not clear that the median results above would
be significantly different given the potential magnitude of assessment model errors in data-
limited scenarios. Impacts of a detailed effort dynamics sub-model would probably be more
important in more extreme data-limited scenarios that relied solely on fishery CPUE as an
index of abundance, which I did not test here. In fact, it would be interesting to determine
whether the hierarchical information-sharing approach would exacerbate assessment model
errors in the (common) context where fishery CPUE is the main abundance index.

Our assessment models were all different versions of a state-space surplus production
model, and rankings of AMs may vary when other model configurations with more biological
realism are included. For example, the aggregate productivity parameter UMSY could be
separated into growth, natural mortality, and stock-recruit steepness by using a delay-
difference or age-structured model formulation [32, 128, 47], which may partially offset the
advantages of data-pooling and hierarchical assessment methods exhibited above. However,
in the contexts where biological data are missing or of low sample size, there would be
even greater reliance on strong a-priori assumptions for additional parameters in models of
higher complexity, which I predict would lead to similar results.

67



Despite the limitations above, this chapter’s results indicate that even in fisheries with
long time series of catch and effort data, hierarchical multi-species assessment models may
be preferable over typical single-species methods. The poor performance of the single-species
models in all scenarios highlights the difference between data-rich (i.e., a higher quantity
of data) and information-rich (i.e., data with higher statistical power) fisheries. The high
data quantity scenario differed from the moderate and low scenarios by the inclusion of
a historical series of fishery dependent CPUE, which was quite noisy and subject to the
effects of changing harvester behaviour like targeting (variable catchability), and therefore,
additional historical CPUE data had little effect on cumulative catch loss under the single-
species models. In contrast, the data-pooling procedures all ranked higher than single-
species and multi-species models under the data-rich scenario, as they were able to leverage
additional statistical power from the historical CPUE by effectively increasing the sample
size through data aggregation. The superior performance of the hierarchical model over
the single-species model under the high data scenario indicate that shared priors partially
compensate for low statistical power when setting TACs, but not as much as data-pooling.

Superior management performance of the hierarchical models was primarily caused by
compensatory (negatively correlated) biases in biomass and productivity. Biases in biomass
estimates were comparable between Single-species and Hierarchical models, but the hierar-
chical shrinkage prior structure defined for productivity parameters led to target harvest rate
estimates that, while biased, combined with biased biomass estimates to produce TACs that
were closer to the omniscient manager’s. Therefore, while improved performance relative to
single-species models under lower data quantity conditions is consistent with our previous
study, where statistical performance of hierarchical multi-stock assessments improved with
decreasing data quantity and quality [70], the improved management performance of Hier-
archical methods was due to a fundamentally different mechanism. This difference may be
explained by a different assessment model parameterisation, increased complex size, and a
different and simplified experimental design.

The benefits of parameter shrinkage induced by the hierarchical stock assessments re-
lies on the similar life histories of BC flatfish complex species. Similar life histories allow
joint distributions of productivity and catchability parameters to be more precise, drawing
estimates close to the prior mean when data have low statistical power. Using hierarchical
models to improve individual stock (replicate) parameter estimates assumes that those pa-
rameters are exchangeable, that is, any permutation of the replicates would leave the joint
probability distribution of those parameters unchanged [138, 51]. If, for example, a species
with a very different life history was included, such as a slow growing and late-maturing
rockfish from the Sebastes genus, then that species would have much lower productivity
(UMSY ) than any of the BC flatfish complex flatfish, and would likely have a much dif-
ferent survey trawl efficiency as well, depending on its preferred habitat. Such disparate
life histories and catchabilities would require a decrease in the precision of the joint distri-
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bution of the hierarchically modeled parameters to preserve exchangeability, and therefore
may reduce or completely eliminate the benefits of parameter shrinkage for any complex
containing species with disparate life histories.

Hierarchical and Single-species models were sensitive to changes in prior precision for
assessment model productivity parameters under the Low data quantity scenario. The Hi-
erarchical model went from lowest median catch loss (i.e., ranked first) to highest (ranked
last) as prior precision on the complex mean productivity was reduced, indicating that the
compensatory biases that gave hierarchical models the advantage under low data conditions
were dependent on this prior. Under the same scenario, the Single-species method improved
slightly as prior precision on the stock-specific productivity parameter was reduced, allowing
more compensatory bias into the harvest rate estimates. Similarly, under the same low-data
scenario, Hierarchical models achieved significantly lower catch loss as hierarchical shrink-
age prior precision was reduced. Lower catch loss under reduced hierarchical precision could
be attributed to higher variability in catchability and productivity estimates, allowing the
stock-specific estimates to achieve more optimal TACs despite the constrained complex or
species mean values.

The data-pooled methods performed better under the High scenario and were generally
insensitive to priors, indicating that the data were more influential than priors on the TACs
and allocation. This may be because data-pooled observation errors are biased low, being
simulated independently of the observation errors in the component indices, and using the
average standard deviation of the components. If aggregate indices pooled errors from each
component index, then the resulting observation error variance would be additive in the
components, especially if those errors were positively correlated, which may be the case
under a common survey or fishery.

One might expect that data-pooled methods would outperform other methods as fu-
ture precision in the Synoptic survey was increased, amplifying the pooling advantage, but
this was not the case. The lack of dominance by the pooled methods was caused by the
allocation model and, when pooled over space, the pooling method. The allocation model
allocated TAC in proportion to Synoptic survey index, which was biased away from absolute
stock size by the Synoptic trawl efficiency parameter, leading to under-allocation for some
species/areas and choke constraints. When data were pooled over areas, the alternating
biennial observations caused a sawtooth pattern as low and high biomass areas dominated
the pooled index, which inflated the observation errors independent of the survey precision.

I showed that choke effects are not a uniformly negative outcome for multi-species fish-
eries, and may indicate a mismatch between the target harvest rate and optimal complex
yield. The usual assumption is that choke species restrict access to fishing grounds, decreas-
ing profitability through lost yield of target species, and higher quota prices for choke species
[93]; however, we found that choke species sometimes prevented overfishing when TACs for
the non-choke species were set too high, allowing harvest strategies to meet multi-species
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objectives despite large assessment errors for individual species in the complex. In reality,
choke effects would likely be lessened by changing species catchability via harvester target-
ing and avoidance, creating a more complex relationship between effort and complex yield;
but, the existence of a choke species would still indicate a mismatch between an individual
species’ TAC and the optimal exploitation rate for meeting the management objectives for
the multi-species complex.

3.4.1 Conclusion

Hierarchical multi-species surplus production assessment models can outperform single-
species production models in meeting multi-species harvest objectives across high, moder-
ate, and low data quantity scenarios, while avoiding states of conservation concern with high
probability. While hierarchical model estimates of biomass used for setting TACs were often
more biased than those produced by other methods, negatively correlated bias in biomass
and productivity was better matched under hierarchical models than the other methods
as data quantity was reduced, translating into better management performance across the
multi-species flatfish fishery. I recommend that assessment and management of multi-species
fisheries include hierarchical models that acknowledge technical interactions when design-
ing harvest strategies and management procedures for data-limited, multi-species fisheries.
Otherwise, management procedures based on single-species approaches that rely heavily on
prior knowledge (inducing bias) and ignore technical interactions (making objectives impos-
sible to achieve) may give a misleading picture of the expected management performance
in multi-species, spatially heterogeneous fisheries.
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Table 3.2: Summary of sensitivity analyses, showing the total number of experiments, the
factor being varied, the levels of that factor, and the data scenarios and AMs included in
the analysis.

N Factor Levels Scenarios AMs

30 MSY prior CV 0.1, 0.5, 1.0 High, Low All
30 UMSY prior SD 0.1, 0.5, 1.0 High, Low All
6 Hierarchical prior SDs τq, σUMSY

0.1, 0.2, 0.5 High, Low Hierarchical only
30 Synoptic survey SD τ 0.1,0.5,1.0 High, Low All
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3.6 Figures

Figure 3.1: Boundaries for each of the BC flatfish complex stock areas on the BC coast,
showing, from north to south, Hecate Strait/Haida Gwaii (HSHG), Queen Charlotte Sound
(QCS), and West Coast of Vancouver Island (WCVI).
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Figure 3.3: Conceptual models of the five assessment model configurations. In each panel,
the nine grey boxes represent each BC flatfish complex population, as indicated by the
axis labels. Data are pooled for any population not separated by a black line, e.g., all nine
are pooled in the total pooling case. In the hierarchical model, the broken lines indicate
that data are separated, but information is shared between populations via the statistical
model’s hierarchical prior distributions.
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3.7 Appendices

3.A The operating model

The operating model was a standard age- and sex-structured operating model, with addi-
tional structure for multi-species and multi-stock population dynamics. BC flatfish complex
species and stocks were simulated assuming no ecological interactions or movement between
areas. The lack of movement may be unrealistic, especially for Dover Sole given their ex-
tent, but this is how the the BC flatfish complex stocks are currently managed in practice.
The lack of ecological interactions is more realistic for Dover and English soles, as although
both species are benthophagus, there is evidence that they belong to different feeding guilds
[108].

BC flatfish complex abundance Na,x,s,p,t for age a, sex x, species s and stock p at the
start of year t was given by

Na,x,s,p,t =

⎧⎪⎪⎨⎪⎪⎩
0.5Rs,p,t a = 1,

Na−1,x,s,p,t−1 · e−Za−1,x,s,p,t−1 1 < a < A,

Na−1,x,s,p,t−1 · e−Za−1,x,s,p,t−1 + Na,x,s,p,t−1 · e−Za,x,s,p,t−1 a = A(s),

where Rt is age-1 recruitment in year t, Za,x,s,p,t is the instantaneous total mortality rate,
and A(s) is the plus group age for species s.

Numbers-at-age were scaled to biomass-at-age by sex/species/area- specific weight-at-
age. Weight-at-age was an allometric function of length-at-age

wa,x,s,p = αx,s,p · Lβx,s,p
a,x,s,p

where αx,s,p scaled between cm and kg, βx,s,p determined the rate of allometric growth, and
La,x,s,p was the length in cm of a fish of age a, sex x, species s and stock p. Length-at-age
was given by the following Schnute formulation of the von-Bertalanffy growth curve [127, 49]

La = LA1 − (LA2 − LA1) ·
(

e−kA1 − e−ka)
e−kA1 − e−kA2

)

where A1 and A2 are well spaced reference ages, LA1 and LA2 are the mean lengths in cm
of fish at ages A1 and A2, and k is the growth coefficient. Note that in the growth model I
dropped the sex, species and stock subscripts for concision.

The maturity-at-age ogive was modelled as a logistic function

ma,s,p =

⎛⎜⎝1 + e
−

ln 19(a−amat
50,s,p)

amat
95,s,p

−amat
50,x,s,p

⎞⎟⎠
−1

,
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where ma,s,p was the proportion of age-a female fish of species s in stock p that were mature,
and amat

50,s,p and amat
95,s,p are the ages at which 50% and 95% of fish of age-a, species s and

stock p were mature.
Female spawning stock biomass was calculated as

Bs,p,t =
∑

a

Na,x′,s,p,tma,s,pwa,x′,s,p,

where x′ denotes female fish only. Spawning stock biomass was used to calculate expected
Beverton-Holt recruitment, which then had recruitment process errors applied

Rs,p,t+1 =
Rs,p,0 · 4hs,p · Bs,p,t

Bs,p,0 · (1 − hs,p) + (5hs,p − 1) · Bs,p,t
· eεs,p,t+1−0.5σ2

R,s,p ,

where Rs,p,0 is unfished equilibrium recruitment, Bs,p,t is the spawning stock biomass at
time t, Bs,p,0 is unfished spawning stock biomasss, hs,p is stock-recruit steepness (average
proportion of Rs,p,0 produced when Bs,p,t = .2Bs,p,0), and εs,p,t is the recruitment process
error with standard deviation σR,s,p.

The operating model was initialised in 1956 at unfished equilibrium for all species s and
areas p, with numbers-at-age in 1956 given by

Na,x,s,p,1956 =

⎧⎪⎪⎨⎪⎪⎩
0.5Rs,p,0 a = 1,

Na−1,x,s,p,1956 · e−Mx,s,p 1 < a < A,

Na−1,x,s,p,1956 · e−Mx,s,p

1−e−Mx,s,p a = A(s),

Fishery removals were assumed to be continuous throughout the year, with fishing
mortality-at-age

Fa,x,s,p,f,t = Sa,x,s,p,f · Fs,p,f,t,

where Fs,p,f,t is the fully selected fishing mortality rate for fleet f at time t, and Sa,x,s,p,f is
the selectivity-at-age a for sex x in species s and area p by fleet f . Selectivity-at -age was
modeled as a logistic function of length-at-age

Sa =
(

1 + exp
(

− ln 19(La − lsel
50 )

lsel
95 − lsel

50

))−1

,

where La is length-at-age, defined above, and lsel
50 and lsel

95 are the length-at-50% and length-
at-95% selectivity, respectively; stock, species and fleet subscripts are left off for concision.
Catch-at-age (in biomass units) was then found via the Baranov catch equation

Ca,x,s,p,f,t = (1 − e−Za,x,s,p,f,t) · Na,x,s,p,twa,x,s,p
Fa,x,s,p,f,t

Za,x,s,p,f,t
,
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where total mortality-at-age is defined as

Za,x,s,p,f,t = Mx,s,p + Sa,x,s,p,f · Fa,x,s,p,f,t.

Observation error standard deviations

Operating model observation error standard deviations were derived from estimates from
fitting a hierarchical age-structured model to DER complex data.

Table 3.A.1: Log-normal observation error standard deviations for all BC flatfish complex
biomass indices

Observation Error SD

Stock Historical Modern HS Ass. Syn

Dover sole
HSHG 0.549 0.548 0.527 0.349
QCS 0.530 0.534 0.355
WCVI 0.569 0.530 0.315

English sole
HSHG 0.521 0.551 0.491 0.360
QCS 0.507 0.586 0.403
WCVI 0.520 0.626 0.336

Rock sole
HSHG 0.509 0.571 0.524 0.324
QCS 0.512 0.620 0.360
WCVI 0.520 0.845 0.405
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3.B Omniscient Manager Optimisation

I defined penalty functions so that inside their respective desired regions the penalty was
zero, and otherwise the penalty grew as a cubic function of distance from the desired re-
gion. For example, a penalty designed to keep a measurement x above a the desired region
boundary ε is of the form

P(x, ε) =
{

0 x ≥ ε,

|x − ε|3 x < epsilon.
(3.20)

This form has a several advantages over simple linear penalties, or a logarithmic bar-
rier penalty [133]. First, the cubic softens the boundary threshold ε, effectively allowing
a crossover if doing so favours another portion of the objective function. Second, unlike
lower degree polynomials, cubic functions remain closer to the x-axis when |x − ε| < 1.
Third, zero penalty within the desirable region stops the objective function from favouring
regions far from the boundaries of penalty functions. In contrast, a logarithmic function
would favour overly conservative effort series to keep biomass far from a lower depletion
boundary. Finally, the cubic penalty function and its first two derivatives are continuous at
every point x, allowing for fast derivative-based optimisation methods.

I used a cubic spline of effort in each area to reduce the number of free parameters
in the optimisation. For each area, 9 knot points were distributed across the full 40 year
projection, making them spaced by 5 years. I padded the omniscient manager simulations
by an extra eight years over the stochastic simulations to avoid any possible end effects of
the spline entering the performance metric calculations. Effort splines were constrained to
be between 0 and 120 times the operating model EMSY,p, by replacing any value outside
that range with the closest value inside the range (i.e. negative values by zero, large values
by 120EMSYp).
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3.C Assessment model priors

Each AM included prior distributions on leading biological parameters MSY and UMSY ,
process error deviations, and - in the case of the hierarchical AM - multi-level shrinkage
priors on Synoptic survey catchability qs,p,f=4 and UMSY . All prior means were unbiased,
being derived from the operating model values, which were aggregated depending on the
level of pooling the AM used. A summary of the priors is given in Table S.1.

All AM configurations had the same process error prior standard deviation of σs,p = 0.05
(Table S.1, 1.1). While this process error standard deviation was very precise compared to
the standard deviation of recruitment process errors (σR = .4), we found it was necessary
to stop the AMs producing wildly variably biomass estimates that were overfit to the ob-
servation errors in the index data. This is because longer-lived groundfish species with slow
demographic rates tend to have much lower variance in spawning biomass than recruitment,
as each new fish has to pass through several years of survival, growth, and maturity to join
the spawning biomass, all of which dampen recruitment variability.

Single-stock model

The single-stock model used operating model single-species reference points for prior mean
MSY and UMSY values, i.e.

mMSYs,p = MSYSS,s,p,

mlog UMSY,s,p
= log(MSYSS,s,p/BMSY,SS,s,p)

where BMSY,SS,s,p is the biomass at which single-species yield is maximised. The MSY

parameter had a normal prior distribution with a 20% coefficient of variation (CV) (Table
S.1, 1.2), and the UMSY parameter had a log-normal prior with a log-standard deviation of
SUMSY

= 0.3 (Table S.1, 1.3).
Catchability/survey trawl efficiency prior means differed by fleet. Operating model

catchability for the historical commercial CPUE series was time-varying, as there were
significant targeting effects to account for when fitting the OM. To avoid the need for a
time-varying catchability in the AM, I estimated the conditional maximum likelihood esti-
mate of catchability for the historical fleet from the operating model, i.e.

ˆlog qs,p,f=1 =
1

|Ts,p,f=1|
∑

t∈Ts,p,f=1

(log Is,p,f=1,t − log Bs,p,f=1,t),

where Ts,p,f=1 is set of time steps where the Historical trawl fishery CPUE observations
exist for species s in stock area p, Bs,p,f=1,t is the biomass selected by the Historical trawl
fishery, and Is,p,f=1,t is the Historical commercial CPUE index value. Then the prior mean
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value was set to

mlog qs,p,f=1 = ˆlog qs,p,f=1.

For the remaining indices, the unbiased prior mean value was

mlog qs,p,f
= log q∗

s,p,f ,

where f > 1 is any of the remaining fleets, and q∗
s,p,f is the operating model estimate of

catchability for the modern fishery CPUE, and survey trawl efficiency for the Assemblage
and Synoptic surveys. Prior standard deviations indicated vague prior knowledge for the
commercial indices (sqs,p,f

= 0.5, f = 1, 2), and more informative prior knowledge for the
fishery-independent survey biomass indices (sqs,p,f

= 0.2, f = 3, 4) (Table S.1, 1.4 - 1.7).

Hierarchical Multi-stock model

The hierarchical model had the same prior distribution as the Single-stock model for the
species/area specific MSY parameters, with an unbiased prior mean based on the operating
model value, and a 20% coefficient of variation (Table S.1, 1.8).

The UMSY multi-level shrinkage prior had two levels, where individual stock log pro-
ductivities log UMSY,s,p (Table S.1, 1.9) were shrunk towards estimated species log-mean
values log UMSY,s (Table S.1, 1.10), which in turn were shrunk towards a single BC flatfish
complex log-mean value log UMSY (Table S.1, 1.11). Both levels of shrinkage priors assumed
the same prior standard deviation of σUMSY

= 0.1. Finally, the BC flatfish complex mean
log UMSY value had a fixed hyper-prior mean set to the average optimal harvest rate from
the operating model

mlog UMSY
= log

( ∑
s,p MSYSS,s,p∑

s,p BMSY,SS,s,p

)
,

with a hyper-prior standard deviation of sUMSY
= 0.3, as in the Single-stock model.

The Synoptic survey had a single-level log-normal shrinkage prior for catchability, where
individual stock log-catchability log qs,p,f=4 was shrunk towards a species log-mean value
log qs,f=4 with a fixed prior standard deviation of τq = 0.4 (Table S.1, 1.12). The species
log-mean value had an unbiased log-normal hyperprior mean equal to the OM estimate
log q∗

s,f=4, which was estimated as part of the OM’s shrinkage prior on Synoptic survey
catchability, and a hyper-prior standard deviation of sq,f=4 = 0.2, again matching the
Single-stock model (Table S.1, 1.13).

Data-pooled Models

Data-pooled models had the same prior structure to the Single-stock model, but the prior
means were aggregated according to the pooling method. Aggregated MSY prior means
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were found by simple summation across the pooled species, areas, or both, i.e.,

mMSYs =
∑

p

MSYs,p,

mMSYp =
∑

s

MSYs,p,

mMSY =
∑
s,p

MSYs,p,

for spatial pooled (Table S.1, 1.14), species pooled (Table S.1, 1.17), and totally pooled
configurations ((Table S.1, 1.20), with prior CVs of 20%. Similarly, log-normal prior mean
log UMSY values were given by

mlog UMSY,s
= log(

∑
p

MSYs,p/
∑

p

BMSY,s,p),

mlog UMSY,p
= log(

∑
s

MSYs,p/
∑

s

BMSY,s,p),

mlog UMSY
= log(

∑
s,p

MSYs,p/
∑
s,p

BMSY,s,p),

for spatial-pooled (Table S.1, 1.15), species-pooled (Table S.1, 1.18), and totally pooled
configurations (Table S.1, 1.21), respectively. Prior standard deviations were the same as
the Single-stock model, with sMSY = 0.2 and sUMSY

= 0.3.
Prior mean values for both commercial CPUE series and the Synoptic survey biomass

indices were derived by taking an equal-weighted mean across the pooled strata, i.e.,

mqs,f
=

1
3

∑
p

mqs,p,f
,

mqp,f
=

1
3

∑
s

mqs,p,f
,

mqf
=

1
9

∑
s,p

mqs,p,f
,

for spatial pooled (Table S.1, 1.16), species pooled (Table S.1, 1.19), and totally pooled
configurations (Table S.1, 1.22), respectively, where f �= 3, and mqs,p,f

is the same mean
value used in the Single-stock and Hierarchical multi-stock cases. Because pooled indices
were unequally contributed to by each stock, the prior standard deviations for catchability
were increased over the Single-stock model to allow for more variability. For all pooled
methods, sq·,·,f=1 = 10.0 for the historical fishery CPUE, sq·,·,f = 1 for the modern fishery
CPUE (f = 2) and the Assemblage survey biomass index (f = 3), and sq·,·,f=4 = 0.5 for the
Synoptic survey index (example catchability standard deviations above are shown for the
Total Pooling method, with no species or stock subscript).
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Table 3.C.2: Prior distributions used for each assessment method.

Eq. No. Prior

All AMs
(1.1) ζs,p,t ∼ N(0, 0.05)

Single-species AM
(1.2) MSYs,p ∼ N(mMSYs,p , 0.2 · mMSYs,p)
(1.3) log UMSY,s,p ∼ N(mlog UMSY

, 0.3)
(1.4) log qs,p,1 ∼ N(mlog qs,p,1 , 1)
(1.5) log qs,p,2 ∼ N(mlog qs,p,2 , 1)
(1.6) log qs,p,3 ∼ N(mlog qs,p,3 , .5)
(1.7) log qs,p,4 ∼ N(mlog qs,p,4 , .25)

Hierarchical multi-species AM
(1.8) MSYs,p ∼ N(mMSYs,p , 0.2 · mMSYs.p)
(1.9) log UMSY,s,p ∼ N(log UMSY,s, 0.1)
(1.10) log UMSY,s ∼ N(log UMSY , 0.1)
(1.11) log UMSY ∼ N(mlog UMSY

, 0.3)
(1.12) log qs,p,4 ∼ N(log qs,4, τq)
(1.13) log qs,4 ∼ N(mlog q∗

s,f
, sf )

Spatial Pooled AM
(1.14) MSYs ∼ N(mMSYs , 0.2 · mMSYs)
(1.15) log UMSY,s ∼ N(mlog UMSY,s

, 0.3)
(1.16) log qs,f ∼ N(mlog qs,f

, sqs,f
)

Species Pooled AM
(1.17) MSYp ∼ N(mMSYp , 0.2 · mMSYp)
(1.18) log UMSY,p ∼ N(mlog UMSY,p

, 0.3)
(1.19) log qp,f ∼ N(mlog qp,f

, sqp,f
)

Totally Pooled AM
(1.20) MSY ∼ N(mMSY , 0.2 · mMSY )
(1.21) log UMSY ∼ N(mlog UMSY

, 0.3)
(1.22) log qf ∼ N(mlog qf

, sqf
)
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3.E Assessment model MAREs

I calculated median absolute relative errors (MAREs) in biomass forecasts B̂s,p,t+1 and
single-species reference points BMSY , MSY , and UMSY . Medians of absolute relative errors
were taken across replicates and projection time steps for each AM/Scenario combination.
For data-pooled AMs, operating model true values were found by summing over BMSY and
MSY for the appropriate species/areas, and taking the ratio of pooled MSY and BMSY

for pooled UMSY estimates. In order to present only one MARE value per Scenario/AM
combination, the mean MAREs were calculated over species and areas as appropriate.

Table 3.E.3: Median Absolute Relative Errors (MAREs) for each AM’s estimates of fore-
cast biomass Bt+1, and single-species production model equilibria optimal biomass BMSY ,
optimal harvest rate UMSY , and optimal yield MSY , under the different data scenarios.
For AMs that estimate parameters for more than one management unit, the MAREs are
averaged over species/areas. AMs are ordered within a scenario by the accuracy of MSY
estimates.

Model Accuracy

AM MARE(B̂t+1) MARE(BMSY ) MARE(UMSY ) MARE(MSY )

High
Total Pooling 0.09 0.04 0.06 0.05
Spatial Pooling 0.85 0.54 0.28 0.08
Hierarchical Multi-species 0.37 0.36 0.30 0.09
Species Pooling 0.57 0.41 0.22 0.09
Single-species 0.44 0.38 0.38 0.27

Mod
Total Pooling 0.11 0.04 0.04 0.03
Spatial Pooling 0.96 0.54 0.25 0.11
Hierarchical Multi-species 1.34 0.52 0.39 0.12
Species Pooling 0.76 0.48 0.22 0.15
Single-species 1.41 0.45 0.50 0.24

Low
Total Pooling 0.16 0.06 0.04 0.04
Hierarchical Multi-species 1.62 0.72 0.40 0.05
Spatial Pooling 1.07 0.58 0.26 0.12
Species Pooling 0.96 0.61 0.28 0.16
Single-species 1.54 0.48 0.83 0.26
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Chapter 4

A bio-economic modelling
approach to estimating risks from
multi-species and single-species
harvest strategies for a spatially
heterogeneous, technically
interacting, flatfish fishery.

4.1 Introduction

Most fisheries management policy frameworks continue to be single-species oriented, de-
spite the overwhelming prevalence of technical interactions in which multiple fish species
are caught in non-selective fishing gear [131, 85, 108, 95, 6]. In multi-species fisheries,
technical interactions affect fishery reference points and management targets derived from
both maximum sustainable yield (MSY ) and maximum economic yield (MEY ) paradigms
[88, 95, 108, 20, 63, 103, 55]. Thus, policies ignoring technical interactions are, by design,
likely to produce sub-optimal outcomes in multi-species fisheries [100].

Reference points based on MSY aim to maximize equilibrium biological yield from a
fish stock [78], while MEY reference points seek to maximize resource rent from a fish-
ery [36, 63]. The main difference between MSY and MEY is that the latter aims for
higher catch per unit of effort (catch rates) via higher target biomass and lower harvest
rates on the most valuable species/stocks [63]. From a single-species perspective, greater
resource rents obtained under an MEY paradigm increase economic welfare and improve
conservation outcomes through higher standing stock biomass. However, despite these ad-
vantages, fishery policies targeting MEY are uncommon, perhaps because most fisheries
involve multiple species where MEY would imply difficult trade-offs among multiple species
and multiple stocks [36]. Specifically, trade-offs that likely require that some (e.g., low value)
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species/stocks remain chronically overfished for the benefit of the overall multi-species fish-
ery [36]. The challenge for multi-species fisheries managers, then, is finding approaches to
assessing and managing these trade-offs without causing unacceptable conservation risks to
any individual species and/or stocks.

In general, MSY and MEY reference points estimate fishery equilibrium states assum-
ing a single, homogeneous unit-stock [12]. In reality, most fish populations are, to varying
degrees, a collection of semi-isolated sub-stocks with unique productivities, biomass densi-
ties, and carrying-capacities. Ignoring such spatial heterogeneity in productivity and biomass
density when estimating reference points will produce spatially averaged equilibria. Harvest
strategies based on such spatially averaged reference points tend to over-harvest roughly
half of all sub-stocks, and under-harvest the rest [8, 54].

In spatially heterogeneous fisheries, fishing activity is presumably attracted to higher
density patches to take advantage of higher catch rates and therefore, reduced search costs
[52]. If catch limits are based on spatially averaged reference points but fishing is con-
centrated on one particalar sub-stock, then that sub-stock will tend to be over-harvested
relative to its stock-specific reference points. This mismatch between the scale of population
dynamics (i.e., spatial heterogeneity) and the scale of control given by the harvest strategy is
further complicated in multi-species fisheries, where local-scale productivities and densities
differ among species occupying the same area.

Even where biological reference points such as MSY or MEY are matched to the spa-
tial scale of population dynamics, technical interactions further complicate the implementa-
tion of those reference points within harvest strategies. Within multi-species fisheries, each
species has somewhat unique availability to fishing gear (catchability), meaning that fishing
pressure felt by each species differs for a given amount of fishing activity. Furthermore,
unless the fishing activity (effort) is strictly controlled in space or time, the applied fishing
pressure is rarely scaled to individual species productivities. Often, multi-species spatial
heterogeneity attracts (or repels) fishing activity in ways that are unrelated to each indi-
vidual stock’s reference points. For example, harvesters may be drawn to a fishing ground
to target one species, or to avoid another species, while at the same time attempting to
maximise catch rates and lower fishing costs [52].

The trade-offs associated with ignoring technical interactions are unclear for spatially
heterogeneous, multi-species fisheries. The attractiveness of each area to harvesters is in-
trinsically linked to the mix of species in each area, via the expected resource rent from that
mix. Resource rent from a fishery captures the difference between the costs and revenues
of fishing [63]. Some fishing costs are variable, such as fuel and crew share, while other
costs, such as on capital and/or debt service, are fixed. Revenues depend primarily on the
relationship between the size of the landed catch (quantity supplied) and the unit price, as
captured by the demand curve. Quantity demanded in the market is determined by con-
sumer preferences and societal factors such as household income, the price of substitutes
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(e.g., similar species or other proteins), and the quantity supplied by competitors, which are
captured in demand curves through price elasticities [66, 17, 5]. Thus, demand dynamics
often operate at broader spatial scales than the spatial heterogeneity of a fish stock, so that
catches from each stock will affect the price differently, implying different optimal harvest
rates for each stock. Therefore, while conservative harvest strategies that ignore technical
interactions may produce acceptable conservation performance, they are likely to create
sub-optimal distributions of fishing effort with lower resource rents.

In this chapter, I investigate conservation and economic trade-offs arising when multi-
species vs single-species harvest strategies are applied to a spatially heterogeneous, multi-
species fishery. Harvest strategies are defined based on both single- and multi-species MSY

and MEY reference points applied to a complex of three right-eyed flounders (Pleuronec-
tidae Spp.) comrising Dover sole (Microstomus pacificus), English sole (Parophrys vetulus),
and (Southern) Rock sole (Lepidopsetta bilineata). This three species complex is simulated
in three spatially heterogeneous areas, where they are fished by a common trawl fishery
off the coast of British Columbia (BC), Canada. Simulated fishing effort in each area has
realistic constraints caused by technical interactions among the three species [6, 104]. Those
same technical interactions are incorporated into multi-species MSY and MEY reference
points, which, along with single species MSY reference points, are estimated analytically
via equilibrium analysis [9, 95, 108, 63]. Multi-species MSY and MEY reference points
are compared to long-run average simulated efforts derived from an 80-year projection with
recruitment process variability, where either the catch or net-present-value (NPV) of the
fishery was maximised. I show that, after accounting for own-price elasticity of demand and
spatial heterogeneity in population dynamics - two realistic features of actual fisheries -
MEY harvest strategies consistently produce better conservation and economic outcomes
than either single-species or multi-species MSY policies. While MEY harvest stratgies have
their shortcomings [36], it is surprising that MEY -based strategies are not more common in
contemporary fisheries management, especially given their prominence in ecosystem based
fisheries policy [91].

4.2 Methods

The following sections introduce the multi-species fishery system, then describe a bio-
economic simulation model of the fishery, and describe multi-species MSY and MEY ref-
erence points derived via yield-per-recruit analysis and stochastic optimisation. Finally, we
present a closed loop simulation approach, which I use to compare management performance
among the harvest strategies in the presence of uncertainty.
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4.2.1 Study system

BC’s multi-species complex of right-eyed flounders is a technically interacting, spatially het-
erogeneous group of flatfishes managed across the whole BC coast. Although there are sev-
eral right-eyed flounders in BC waters, I focused here on Dover sole, English sole, and Rock
sole because these species together comprise a multi-stock complex (BC flatfish complex)
managed in three spatially heterogeneous stock areas (Figure 4.1), Hecate Strait/Haida
Gwaii (HSHG, management areas 5CDE), Queen Charlotte Sound (QCS, areas 5AB), and
West Coast of Vancouver Island (WCVI, 3CD), as described in Johnson and Cox [71].

The BC flatfish complex is primarily fished by trawl vessels managed under an individual
transferable quota system, with negligible levels of catch by other gear types1. Catch is
supplied to local BC markets (48% of all seafood), as well as exported interprovincially (9%
of all seafood) and internationally (43% of all seafood)2. International exports of Soles are
primarily to the US (10%) and China (87%)3.

A demand analysis shows that the BC flatfish complex species may be inferior goods
(Appendix 4.7.A). An inferior good is one where demand decreases with increasing income,
as people with more disposable income buy higher quality substitutes. This makes sense
for BC flatfish complex species, as flatfish are inexpensive and most substitutes are priced
higher. Potential substitutes were not formally included in demand analyses, but include
Sablefish (Anoplopma fimbria), Salmon (Onchorynchus Spp.), and Halibut (Hippoglossus
stenolepis), which are all higher priced and considered more popular protein sources.

4.2.2 Bio-economic simulation model

The bio-economic simulation model for the BC flatfish complex comprises a biological op-
erating model representing the population dynamics of the BC flatfish complex, and an
economic model representing the fishing costs and revenues resulting from trawl fishing
effort dynamically allocated in time and space.

Biological operating model

The BC flatfish complex is modeled as nine biologically independent populations, three
species in each of three areas, with no movement among areas and no ecological interactions

1Unpublished catch data, hosted at the Pacific Biological Station of Fisheries and Oceans, Canada, in
Nanaimo, BC

2BC Fisheries and Aquaculture Sector, 2016 Edition; https://www2.gov.bc.ca/assets/
gov/farming-natural-resources-and-industry/agriculture-and-seafood/statistics/
industry-and-sector-profiles/sector-reports/british_columbias_fisheries_and_aquaculture_
sector_2016_edition.pdf

32018 British Columbia Agrifood and Seafood International Export Highlights; https://www2.gov.
bc.ca/assets/gov/farming-natural-resources-and-industry/agriculture-and-seafood/statistics/
market-analysis-and-trade-statistics/2018_bc_agrifood_and_seafood_export_highlights.pdf
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within an area. Biological independence is somewhat realistic, given the presence of deep
gullies in the QCS area that pose barriers to flatfish migration between areas, along with
evidence of limited ecological interactions [108, 142, 71, 20].

The biological operating model is an age- and sex-structured, multi-species, multi-stock
(area) population dynamics model [71]. For the remainder of the chapter, species are in-
dexed by s, and areas by p. Population dynamics of each stock is driven by a compensatory
Beverton-Holt stock-recruitment model, where the stock is defined as mature female spawn-
ing biomass, with unfished biomass B0 producing unfished recruitment R0, and stock-recruit
steepness h, which is the fraction of R0 expected when biomass is 20% of unfished (Table
4.1) [82]. Each species in the BC flatfish complex has a unique maturity-at-age schedule.
Natural mortality is stock- and sex-specific, but constant over age and time (Mm, Mf , Ta-
ble 4.1). Fishing mortality-at-age is the product of the proportion of individual fish of each
age susceptible to the fishing gear (selectivity), trawl catchability qF

s,p for each population,
and the trawl effort Ep in each area. The population dynamics and fishery parameters are
estimated by fitting the model to fishery dependent and independent catch, catch-per-unit-
of-effort (CPUE or catch rates), biomass indices, catch-at-age, and catch-at-length data
sampled from the real BC flatfish complex over the 1956-2016 period. For model equations,
see section 3.A.

Economic sub-model

The economic sub-model determines the resource rent from the BC flatfish complex fishery
at each annual time step. Resource rent is defined as revenues to license holders minus
variable costs resulting from the expenditure of fishing effort to each area, i.e.,

π( �E|{ �Bs,p}s=1,..,S, p=1,...,P ) =
3∑

p=1

⎛⎝(1 − ψ)
∑

s

vs

⎛⎝ 3∑
p′=1

Cs,p′(Ep′ , Bs,p)

⎞⎠ · Cs,p(Ep, Bs,p)

⎞⎠
− cp · Ep, (4.1)

where π is the resource rent for the whole BC flatfish complex fishery, �E = 〈Ep|p = 1, 2, 3〉
is a vector of trawl effort allocated to each area p, each �Bs,p is a vector of biomass-at-age
for species s and area p, ψ is the assumed crew share of revenue, vs(

∑
p Cs,p) is the inverse

demand curve relating the unit price to the quantity landed Cs,p, and cp is the fuel cost-
per-unit-effort of fishing in area p (or p′ for the inner summation). The catch Cs,p(Ep, �Bs,p)
is calculated from the Baranov catch equation given effort Ep and biomass-at-age �Bs,p [71],
i.e.,

Cs,p(Ep, �Bs,p) =
As∑

a=1

Sela,x,s,pqF
s,pEp

Za,x,s,p
Ba,s,pe−Za,x,s,p , (4.2)

where As is the plus-group age for species s, Sela,x,s,p is selectivity-at-age, and Za,x,s,p is
total mortality-at-age, with age indexed by a and sex indexed by x.
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The inverse demand curves (Figure 4.2) are fit to BC flatfish complex catches, ex-vessel
prices, and BC household income data (Appendix 4.7.A). While the BC flatfish complex
species are sold outside of BC, household income in all markets is highly correlated. There-
fore, while the exact income elasticity estimates will differ for each market, the sign of the
elasticity would still be negative, implying that the BC flatfish complex species are inferior
goods. Area-specific fuel costs per trawl hour were derived from the average cost of fuel to
catch one kilotonne of groundfish catch in 2009 [99], adjusted to 2016 prices (Table 4.2).
The fuel cost per kilotonne was then converted to cost per unit of fishing effort in each area
by scaling by the ratio of catch to fishing effort from each area in 2009, i.e.,

cp = .193 ·
∑

s Cs,p,2009
Ep,2009

.

Fishing costs included only variable costs such as fuel and crew share, and excluded all
fixed costs (e.g., repairs and debt service). Fixed costs were ignored, since they are difficult
to assign to individual species or multi-species complexes. As a result, the above definition
of resource rent provides an upper bound for economic yield.

4.2.3 Multi-species MSY and MEY reference points

Optimal yield and reference points via equilibrium analysis

Equilibrium yield reference points establish an equilibrium relationship between fishing
effort, biomass-per-recruit, and average annual yield (i.e., a yield curve). Yield curves are
computed via standard equations for both single-species and multi-species fisheries with
technical interactions [132, 95, 108]. Any derivation starts from the assumption that, at
equilibrium, recruitment balances mortality and leads to replacement of the spawning stock
[122]. At unfished, the replacement assumption gives

B0,s,p =
As−1∑
a=1

R0,s,pe−(a−1)Ms,p · wa,s,p · ma,s + R0,s,p
e−(As−1)Ms,p

1 − e−Ms,p
· wAs,s,p · mAs,s

where wa,s,p is weight-at-age for species s and stock p, and ma,s is the proportion mature-
at-age a, and other parameters are given in Table 4.1. By factoring out R0,s,p the spawning-
stock biomass-per-recruit is derived as

φs,p,0 =
B0,s,p

R0,s,p
=

As−1∑
a=1

e−(a−1)Ms,p · wa,s,p · ma,s +
e−(As−1)Ms,p

1 − e−Ms,p
· wAs,s,p · mAs,s,

This expression can be extended to a general φs,p,E , where E is any constant fishing effort,
to produce a fished equilibrium spawning-stock biomass-per-recruit. First, it is algebraically
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simpler to define survivorship-at-age for a given fishing effort E as

Sa,s,p,E =

⎧⎪⎨⎪⎩
e−

∑a

a′=1 Zs,p a < As

e
−

∑a

a′=1 Zs,p

1−e
−

∑a

a′=1 Zs,p
a = As,

where Zs,p = Ms,p+saqs,p ·Ep, sa is selectivity at age, and qs,p is the commercial catchability
scalar transforming fishing effort to fishing mortality. Then, fished equilibrium spawning
stock biomass-per-recruit is

φs,p,E =
Bs,p,E

Rs,p,E
=

As∑
a=1

Sa,s,pwa,s,p · ma,s

Similarly, equilibrium yield-per-recruit at a fishing effort E can be calculated via the Bara-
nov equation as

Y PRs,p(E) =
As∑

a=1
Sa,s,p,E · wa,s,p · (1 − e−Za,s,p) · saqs,pE

Za,s,p
.

Converting φs,p,E and Y PRs,p(E) into equilibrium spawning biomass and yield, and thereby
establishing MSY and BMSY , requires the equilibrium recruitment Rs,p,E , which until now
has been unnecessary. For a Beverton-Holt stock recruitment function parameterised by
steepness and B0, equilibrium recruitment is

Rs,p,E =
Rs,p,0 · 4hs,p · Bs,p,E

Bs,p,0 · (1 − hs,p) + (5hs,p − 1) · Bs,p,E
,

within which spawning biomass can be substituted as Bs,p,E = Rs,p,E · φs,p,E giving

Rs,p,E =
Rs,p,04hs,pφs,p,E − Bs,p,0(1 − hs,p)

5hs,p − 1
.

For a given fishing effort E, equilibrium yield is then found by taking the product

Ys,p(E) = Rs,p,E · Y PRs,p(E)

and equilibrium spawning biomass as

Bs,p,E = Rs,p,E · phis,p,E .

Single-species MSYSS reference points (ignoring technical interactions) are found by max-
imising individual species s yield within each area p over fishing effort to derive the optimal
species-specific effort EMSY,SS,s,p that should be applied to each area, ignoring any by-
product/bycatch of other species (Table 4.1), and calculating the equilibrium yield and
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biomass at that effort [122]. Similarly, multi-species MSYMS reference points with techni-
cal interactions are derived by maximising the sum Yp(E) =

∑
s Ys,p(E) of individual species

yields to get maximum complex yield in area p [95, 96], producing EMSY,MS,p (Figure 4.3,
Table 4.3). The resource rent produced at MSYMS is found by substituting equilbrium
effort and biomass into (4.1) using the 2016 version of the inverse demand curves.

The method for deriving economic yield reference points for a multi-species fishery
with technical interactions depends on the relationship between unit price and landings.
In general, MEY is derived by substituting the equilibrium yield relationship for a given
effort into equation 4.1, which, similar to deriving rent for MSYMS reference points, is then
evaluated to give the equilibrium resource rent produced by a given fishing effort allocated
among areas [55, 63]. If demand is perfectly elastic (i.e., a constant price with respect to
landings), as is commonly assumed for internationally traded fish, then the surface may
be optimised individually for each area. If, instead, a finite own-price elasticity is assumed
(Appendix 4.7.A), then the unit price for each species changes with the quantity landed,
and spatial heterogeneity in species compositions implies spatial heterogeneity in rents.
The resulting relationship between rents and effort defines a surface over three dimensional
effort space (one for each area), and optimal effort and MEY reference points are found
via Newton-Raphson optimisation of the resource rent over the 3-dimensional effort vector
�E.

Area-specific equilibrium rent curves are produced via a grid search over fishing effort,
assuming the 2016 version of the inverse demand curves vs. Effort grids included 100 levels of
coastwide effort E =

∑
p Ep, equally spaced from 1,000 - 100,000 hours of trawling. At each

grid point, the allocation of total effort to each area is optimised assuming that some fishing
would occur in all areas, and that effort will be allocated to maximise rent. Under those
assumptions, the optimal allocation of effort to each area is determined via Newton-Raphson
optimisation of the allocation, numerically producing area-specific equilibrium curves.

Optimal yield and reference points via stochastic simulation

While the equilibrium methods above provide exact values for MSY reference points, they
will approximate MEY reference points when the relationship between catch and price
varies. When demand is dependent on a time-varying factor, such as household income
as it is here (Appendix 4.7.A), EMEY varies from year-to-year, as the unit-price varies,
changing the total rent [22]. To estimate the series of NPV maximising efforts for each area,
MEY reference points are estimated, and MSY reference points validated, by stochastic
simulation. The simulated BC flatfish complex is projected from 2016 conditions and fishing
effort is optimised under two alternative objective functions. The first maximises total multi-

105



species catch over an 80-year time horizon, i.e. estimate MSYMS

Cobj =
2096∑

t=2017

∑
s

∑
p

Cs,p,t,

to estimate MSYMS . The second objective function estimates MEY by maximising the net
present value (NPV) of the BC flatfish complex resource rent over the same time horizon,
i.e.,

πobj =
2096∑

t=2017
(1 + d)−(t−2016) ∑

p

[(∑
s

vs,tCs,p,t

)
− cpEp,t

]
,

where d is the annual discount rate (Table 4.2).
Simulations are repeated over 100 trials, where each trial involves a unique realization

of a stochastic future recruitment via the stochastic age-1 recruitment series

Rs,p,t = Rs,p,t · eσs,p·εs,p,t−0.5σ2
s,p ,

which deviates, by log-normal process deviations, the expected Beverton-Holt recruitment
at time t

Rs,p,t =
Rs,p,0 · 4hs,p · Bs,p,t

Bs,p,0 · (1 − hs,p) + (5hs,p − 1) · Bs,p,t
, (4.3)

where life-history parameters taken from Table 4.1, Bs,p,t the mature female spawning
biomass of species s in area p at time t, εs,p,t ∼ N(0, 1) is the standardised recruitment
process deviation, and σs,p is the recruitment process deviation standard error. Note that
recruitment process deviations are simulated for all stocks from earlier than 2017, because
historical recruitment could not be estimated reliably past 2014.

Equilibrium derivations of MSY and MEY reference points above are compared to
distributions of effort, yield, and rent produced by the optimisations. Stochastic optima
were defined as median values over the 2040 - 2060 period under the yield (Cobj) and NPV
πobj maximising objective functions, and denoted with an asterisk to differentiate from
the equilibrium derivation, e.g. optimal efforts were E∗

MSY,MS,p and E∗
MEY,p. Optima were

calculated over 2040 - 2060 to allow enough time for the effort to stabilise after any initial
transient period, while also avoiding end effects (e.g., high fishing mortality) caused by a
finite time horizon.

While total effort is unconstrained in the long-run, short-run (inter-annual) changes in
coastwide effort were constrained to +/-20% per year to reflect the potential for adding/subtracting
new licenses in the fishery, as well as the lag time required for a capital investment (e.g., in
new and larger vessels). While the effort is ultimately unbounded, the simulation treats the
fishery as a single firm so it is possible that fishery rents will not be dissipated, unlike an
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open access fishery. The optimisation takes the same approach as the omniscient manager
simulation in Johnson and Cox [71].

4.2.4 Harvest strategy performance

While optimal fishing efforts have theoretical value, it is difficult to control total fishing
mortality via fishing effort alone, since harvesters will continually adapt and improve harvest
efficiency [18]. Instead, most contemporary fisheries employ output control quota systems
involving a total allowable catch (TAC), set by taking the product of a target harvest rate
and a biomass estimate. This approach does not require controlling the total amount of
effort (e.g. number of fishing vessels, sets, or trawl hours) via regulation. For example, an
MSY based harvest strategy will use MSY reference points for optimal effort EMSY or
fishing mortality FMSY to estimate an optimal harvest rate UMSY . Then, catch limits are
derived from applying that harvest rate to estimates of biomass. Given the uncertainty in
estimates of biomass, the risks and tradeoffs in fishery outcomes from repeated application of
a harvest strategy are commonly tested in closed loop feedback simulation, or management
strategy evaluation [113].

The tradeoffs among harvest strategies based on MSYSS , MSYMS and MEY reference
points applied to the BC flatfish complex are identified via closed loop feedback simulations
over an 80-year time horizon. At each time step, TACs are set using a constant target
harvest rate based on the reference points being tested, i.e.

TACs,p,t = B̂s,p,t · Us,p,

where B̂s,p,t is a biomass forecast for species s in area p at time t, and Us,p is the harvest
rate derived from either MSYSS , MSYMS , or MEY reference points, or from maximising
long-run yield (MSY ∗

MS) or NPV (MEY ∗) when stochasticity is explicitly taken into ac-
count. Uncertainty in biomass forecasts B̂s,p,t is simulated via auto-correlated log-normal
assessment errors

B̂s,p,t = Bs,p,t · eδs,p,t

to approximate the observation uncertainty inherent in fish stock biomass estimates. Pa-
rameters for the δs,p,t distribution are derived from the distribution of estimation errors for
a hierarchical multi-species surplus production assessment model applied to the simulated
BC flatfish complex (Appendix 4.7.B) [71]. Once TACs are set, annual fishing effort is al-
lowed to increase until at least one species’ TAC in each area is fully utilised, after which
the area is closed to fishing [71]. Interannual differences in catch are limited to +/-20% for
each stock-area combination, reflecting the limit on interannual differences in fishing effort
used for the stochastic optimisation.

Fishery performance is measured by comparing the conservation and economic outcomes
among the alternative harvest strategies (i.e., differing via their target harvest rates). Con-
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servation performance is based on a comparison of spawning biomass distributions (over
all simulation replicates and projection years) to fractions of single-species BMSY,SS over
the period 2040 - 2060. Economic performance is measured as the NPV of the BC flat-
fish complex fishery over the whole 80-year time horizon under each harvest strategy. Risk
in economic outcomes was measured via percentile p∗ ∈ {0.05, 0.5, 0.95}, or Value-at-risk-
p∗ (V AR − p∗), which is a non-parametric definition of risk commonly used in economic
analyses [29, 92]

4.2.5 Sensitivity Analyses

Net present values and economic risks depend on the resource rents, which in turn depend
on prices for each species (via inverse demand curves) and discount rates applied in NPV
calculations. The sensitivity of stochastic optima under the rent objective (πobj) is tested
against demand and discount rate uncertainties in seven additional scenarios (Table 4.3).
Three scenarios test alternative demand assumptions, specifically a perfectly elastic demand
relationship, simulated by refitting demand curves with an infinite price elasticity of demand
(i.e., zero price flexibility, Appendix A), and a constant demand over time by setting the
growth in household income γ = 0. The remaining four scenarios test sensitivites to assumed
discount rates δ and growth rates γ of household income (Table 4.3). Alternative discount
rates to the 5% value used in the baseline simulation were alsot tested, and the alternative
rates of growth in household income considered were +/-1 standard deviation of the recent
mean rate of 3.9%4 (Table 4.3).

4.3 Results

4.3.1 Equilibrium multi-species MSY

Multi-species yield-curves and the harvest rates that maximise multi-species complex yield
reflect the spatial heterogeneity in species compositions and productivities (Figure 4.3). In
HSHG and QCS areas, the optimal effort EMSY,MS,p produces lower optimal harvest rates
for Dover sole and English sole when compared to UMSY,SS , while Rock sole UMSY,MS

harvest rates were 20% - 30% higher than Rock sole UMSY,SS (UMSY,MS/UMSY,SS , Table
4.4). In the WCVI area, English sole UMSY,MS harvest rate is 8% higher than English sole
UMSY,SS , while Dover sole UMSY,MS and UMSY,SS are practically identical. Despite large
differences in optimal harvest rates for some stocks, optimal yields MSYSS and MSYMS

are similar, as lower harvest rates are applied to larger equilibrium biomasses, and decreases
from MSYSS to MSYMS were at most 5% for any one stock. The total of MSYMS for the

4https://www2.gov.bc.ca/assets/gov/british-columbians-our-governments/
government-finances/financial-economic-review/financial-economic-review-2020.pdf
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BC flatfish complex fishery was 5.26 kt, which was only 110t, or 3%, lower than the sum of
single-species MSYSS yields.

Annual equilbrium rent from MSYMS also reflected spatial heterogeneity in the BC
flatfish complex. Total coast-wide annual rent is around CAD $278,000 yr−1 (2016 dollars)
across the three stock areas. The area with the highest rent is HSHG, with an average of
almost CAD $160,000 yr−1, attained at the lowest effort of the three areas (Table 4.4),
which is expected given that both catchability and total BC flatfish complex biomass is
highest in HSHG. Rent for QCS ($110,000 yr−1) is dominated by a roughly equal mix of
highly catchable Dover sole with lower own-price elasticity (i.e., more stable prices) and
the more valuable Rock sole, while the lowest rent ($80,000 yr−1) occured in WCVI area,
where catch is dominated by Dover sole, which has an upper bound on unit price from the
exogenous US catch.

4.3.2 Equilibrium multi-species MEY

Like multi-species MSY , equilibrium resource rent curves also reflected the spatial hetero-
geneity of the BC flatfish complex (Figure 4.4), with total coastwide equilibrium rent at
MEY of approximately CAD $1.36 million yr−1 (2016 dollars) (Table 4.4). Rent maximis-
ing fishing effort EMEY is estimated at slightly more than half of the effort level achieving
MSYMS for all areas. The difference in total equilibrium catch between MSYMS and MEY

is around 1.1 kt, with individual stock catches lower under MEY than MSYMS by an av-
erage of 27%.

Similar to the above, resource rent is highest in the HSHG area at the lowest effort,
reflecting the higher biomass of all species in that area (Table 4.4). While optimal effort
EMEY in QCS is about 20% higher than in WCVI, the resource rent is about 50% higher in
the WCVI area. As with the MSYMS case, higher WCVI rent is caused by higher ratios of
Dover sole biomass relative to English and Rock sole biomasses, higher catchability, and less
elastic demand for Dover sole, which largely compensate for higher fuel costs of fishing in
WCVI and lower price of Dover sole. In short, WCVI operates as an efficient, single-species
fishery for Dover sole.

The rent maximising allocation of fishing effort among areas is independent of the total
effort available, and instead depends mostly on catchability scalars within an area and to
a lesser extent on the unit price of each species. For any fixed level of coast-wide effort E,
the rent maximising allocation to each area is always 〈E1, E2, E3〉 = 〈0.25E, 0.42E, 0.33E〉
for HSHG, QCS, and WCVI, respectively (Table 4.5), which appears related to catchability
(Appendix 4.7.C).
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4.3.3 Validating reference points via spatial effort optimisation

Stochastic optimisations spatially allocate fishing effort to each area in each year, either
maximising catch to validate MSYMS reference points, or maximising NPV to estimate
MEY reference points that account for future changes in demand (Appendix 4.7.A).

As expected, stochasticity had no significant effect on MSY ∗
MS reference points. In-

sensitivity of MSYMS reference points to recruitment stochasticity is because the major
time-varying factor in projected BC flatfish complex dynamics is the unit price, which are
not included in the MSY ∗

MS objective function. Stochastic approximations E∗
MSY,MS are

within 1 decimal place EMSY,MS in QCS and WCVI, and slightly higher for HSHG, which
has a longer transitionary period before median dynamics settle close to the equilibria in
each area (Figure 4.5). Similarly, harvest rate distributions under the stochastic optimisation
centred almost exactly on UMSY,MS for all stocks (Figure 4.6), differing by approximately
0.5% of UMSY,MS (Table 4.5, U∗

MSY,MS/UMSY,MS).
Despite the insensitivity of the biological reference points to changes in demand, resource

rents from catch maximisation in the projections declined to less than zero (Table 4.6). Rents
declined due to BC flatfish complex species being inferior goods. Annual rents dropped by
CAD $1.3 million in the HSHG area, where the negative income elasticity was highest
(Appendix 4.7.A), by $220,000 in QCS, and $360,000 in WCVI. In all three areas, catch
maximisation in the presence of dropping demand made rents from fishing the BC flatfish
complex negative (Table 4.6).

Negative income elasticity had a strong effect the effort series maximising NPV in
stochastic simulations. As time goes on, household income increases at a rate of 3.9% per
year, so negative income elasticity reduces prices of all BC flatfish complex species. Given
the revenue reduction, the stochastic optimisation of the NPV for the BC flatfish complex
fishery reduces efforts in all three areas so that rents from fishing remain positive through
own-price elasticity. The largest effort reductions are in HSHG and WCVI, where Dover
sole stocks are the largest, and the smallest change is in the QCS area, where Dover sole
dominated the biomass but Rock sole was also a significant portion of the catch. Depen-
dence on Dover sole is based on the assumed US west coast catches of around 8 kt (Figure
4.2 top panel, vertical dashed line), which creates an upper bound on Dover sole near the
minimum price for any year, irrespective of the BC catch. In contrast, there is no exogenous
US west coast catch of Rock sole, allowing prices to rise more than Dover sole as efforts
decrease in other areas (Figure 4.2).

Harvest rates maximising NPV (i.e., U∗
MEY ) are 20% - 40% lower than the corre-

sponding UMEY values under the 2016 version of the inverse demand curves (Table 4.6,
U∗

MEY /UMSY,SS). Reduced harvest rates in the stochastic optimisation reflect the negative
income elasticity, creating conditions where effort (fishing costs) must be reduced so that
rents remain positive. Unit prices decline as the demand curves shift downward with increas-
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ing income (Appendix 4.7.A), which is usually explained as switching to more expensive
proteins as they become affordable [33]. The decline in fishing efforts occurs after an initial
development period, where effort increases to take advantage of higher initial prices before
household incomes drive demand down (Figure 4.5). Despite consistently lower median har-
vest rates, the simulated distributions U∗

MEY contain the corresponding equilibrium UMEY

analogues for both QCS and WCVI, where Dover sole is at least 50% of the catch (Figure
4.6). The reduction in market price also depresses annual rents expected during the 2040 -
2060 period, dropping these by 42% (WCVI) to 67% (HSHG) (Table 4.5).

4.3.4 Conservation and economic performance via closed-loop feedback
simulations

Conservation performance

None of the target harvest rates tested pose any conservation risk when applied in closed
loop simulations (Figure 4.7). For all harvest rates, there was less than a 5% chance of
pushing biomass below 40% of BMSY,SS (grey distributions, Figure 4.7), which is a com-
monly accepted limit reference point for biomass in Canadian fisheries [34]. Only a small
fraction of simulations show biomass below 80% of BMSY,SS , which is acceptable conserva-
tion performance in any Canadian fishery [34]. Further, there was no significant difference
between 2040 - 2060 biomass distributions for optimal harvest rates derived from equilib-
rium and stochastic analyses, i.e., UMSY,MS and U∗

MSY,MS , which came out slightly above
the equilibrium BMSY,MS and B∗

MSY,MS values, respectively given in Tables 4.3 and 4.4.
Target harvest rates for single-species (UMSY,SS), which ignore technical interactions,

tend to fully exploit the species with the highest catchability, i.e. Rock sole in HSHG and
QCS, and English sole in WCVI, making them the choke species under the single-species
harvest strategy (Figure 4.8). Thus, single-species harvest rates produced lower conservation
risks than the multi-species harvest rates, because access to other species was restricted
once the high-catchability species TAC was attained. Therefore, TACs of other species were
under-utilised and realised harvest rates were lower than their corresponding UMSY,SS . This
led to 2040 - 2060 biomass being higher than the implicit BMSY,SS target for the non-choke
species.

The UMEY and U∗
MEY harvest rates that maximise rent, and associated spawning

biomasses BMEY and B∗
MEY , are inherently more conservative compared to the UMSY,SS

and UMSY,MS . Therefore, conservation risk is negligible when maximising resource rent.
Furthermore, strategies based on stochastic optimisation (i.e., U∗

MEY ) are more conserva-
tive than strategies based on maximising 2016 resource rent via UMEY , given the negative
income elasticity (Figure 4.7).
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Economic performance

Relative health of the BC flatfish complex stocks at the beginning of the projection period
provide conditions under which catch maximisation gave an economic windfall in the short
term. While median BC flatfish complex fishery NPV under MSY -based harvest strategies
was lower than under MEY -based strategies (Table 4.7), there was a short transient period
during which annual rents climbed higher under UMSY,MS and UMSY,SS compared to either
UMEY or U∗

MEY harvest rates (Figure 4.9). After the initial peak, rents under the multi-
species and single-species MSY harvest policies declined quickly, becoming negative with
50% probability around 2034 in the HSHG and WCVI areas, and around 2040 in the QCS
area. Rents under U∗

MEY and UMEY followed a similar pattern, albeit with a lower peak
sooner in the projection, and a slower decline to become negative somewhere between 2070
and 2090 (Figure 4.9). Declines in rent match the reduction in fish prices as household
income increases (Figure 4.2), with faster declines in WCVI and HSHG, as before, due to
the proportionally smaller Rock sole biomass in those areas.

As expected, targeting UMEY and U∗
MEY produced the highest NPV of the fishery

(Table 4.7). The MSYSS-based harvest strategy had the second highest NPV, and the
MSYMS-based strategies the lowest. While higher NPV under single-species MSY strate-
gies is somewhat counter to conventional wisdom, as choke effects are commonly cited
as leading to economic hardship, it is a case-specific phenomenon caused by the current
healthy state of the BC flatfish complex, and the protective nature of the choke effects as
outlined above leading to lower realised harvest rates allowing the building of non-choke
species biomass above BMSY,SS . Such conditions lead to higher CPUE, which lowers fishing
costs and increases rent. However, like the multi-species harvest rates, rents under UMSY,SS

quickly fall after the initial windfall (Figure 4.9), with rents ultimately declining below zero
under both catch maximisation strategies. Rents under the MSYMS strategy declined more
slowly in HSHG, given the choke effects and higher CPUE (Figure 4.9).

The Value-at-risk-5% (i.e., V AR − 5%) gives the 5th percentile of the stochastic NPV
distribution over all 100 replicates; in other words, the VAR-5% gives an indication of the
worst expected economic performance of a harvest strategy, occuring with a probability
of 5%. For UMSY,MS and U∗

MSY,MS , financial risk was quite high, with a VAR-5% around
$570,000 (an average rent of $28,000 yr−1, when adjusted for the discount rate of 5%) under
UMSY,MS , and $140,000 ($7,000 yr−1) when targeting U∗

MSY,MS (Table 4.7). It is likely that
neither UMSY,SS nor UMSY,MS harvest strategies represent a viable fishery in the long term,
given that the rent calculations did not include several sources of fishing costs, and rents
decline after an initial short transient period (Figure 4.9). The UMSY,SS harvest rates had
lower risk, with a V AR − 5% of around $3 million ($150,000 yr−1; Table 4.7).

Variability, and therefore risk, in NPV was reduced overall under MEY based strategies.
Both UMEY and U∗

MEY have V AR − 5% at around $11 million ($550,000 yr−1; Table 4.7),
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which is higher than 95% of simulated NPVs under any MSY -based strategy. Further, the
central 90% of NPVs for the BC flatfish complex under both MEY -based harvest strategies
ranged from around $11 million at the low end to around $13 million at the high end.
In contrast, the 5th and 95th percentiles under MSY harvest rates differed by over $5
million, indicating much higher uncertainty in future economic yield when attempting to
maximise catch. Variability in economic yield when maximising catch or rents is similar to
that observed in the stochastic optimisation, where efforts optimised to maximise rent had
a much tighter distribution than efforts optimised to maximise BC flatfish complex total
yield over the 80 year projection (Figure 4.5).

4.3.5 Sensitivity to economic assumptions

As expected, reducing the dependence of unit price (demand) on catch or household income
leads to higher NPVs for the BC flatfish complex (Table 8). Significantly higher NPVs under
the two perfect own-price elasticity assumptions are based on no drop in price the at higher
levels of catch (quantity supplied), which in turn encourage higher fishing effort (compare
EMEY columns, Table 4.8 and 4.5). For the perfectly elastic and growing income scenario,
NPV is even higher because the Rock sole has positive income elasticity, leading to more
fishing over time in QCS (Appendix 4.7.A). The NPV for the finite own-price elasticity and
growing income scenario was the lowest among the three demand curve sensitivities (Table
4.8). Fixed incomes created a stable price/catch relationship that does not reduce prices
over time, allowing fishing effort levels to remain higher over the projections.

Time series of fishing effort for discount and income growth rate sensitivity scenarios
sorted into two groups. The high discount rate (d = 0.1) and low income growth (γ = 0.02)
scenarios had very similar optimal effort dynamics, and the low discount rate (d = 0.025) and
high income growth (γ = 0.058) scenarios were also very similar (Figure 4.11). Similarities
in the high-discount/low-growth scenarios continued across most of the projection period
after an inital difference in all areas, where the higher discount rate initially attracted more
fishing effort to take advantage of high initial CPUE (Figure 4.11). For the low discount/high
income growth scenarios, median optimal effort differed by area. Median efforts converged
early in QCS and WCVI, and stayed close for the entire projection. In contrast, in the
HSHG area, the two scenarios diverged in the middle of the projection period in the HSHG
area, where the lower discount rate scenario applied higher fishing effort, while the high
income growth scenario led to a quicker decline in effort. Dropping effort as income grows is
expected, as a the unit price of all fish is dropping faster through negative income elasticity,
and the species composition in HSHG is roughly equal among the BC flatfish complex. The
Dover sole effect meant rent was less sensitive to increased effort, so combined with a lower
discount rate (i.e., more value for future rents), efforts could remain higher.
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4.4 Discussion

In this chapter, I investigate the trade-offs between conservation and economic outcomes
under single- and multi-species harvest strategies for spatially heterogeneous, multi-species
fisheries. BC’s three-species flatfish fishery is simulated over three areas, and five harvest
strategies are defined based equilibrium maximum sustainable yield (MSYSS , MSYMSY )
and maximum economic yield (MEY ) reference points, as well as stochastically optimised
multi-species reference points MSY ∗

MS and MEY ∗. For each harvest strategy, economic
and conservation performance is estimated via closed loop simulation. For MSYMS ref-
erence points, deterministic and stochastic optima are not substantially different, given
that stochastic optima were medians, and recruitment process errors are bias corrected.
In contrast, equilibrium MEY harvest rates are significantly higher than their stochastic
analogues, as future increases in household incomes drove down the unit price, indicating
that BC flatfish complex flatfish are considered an inferior good, and families will switch
from flatfish to more expensive proteins as incomes increase [33].

For equilibrium multi-species reference points, catchability appears to be the major
determinant of effort allocation in space. Indeed, the allocation is similar among MSYMS ,
MSY ∗

MS , and MEY reference points. Although species composition and own-price elasticity
affect the total effort expended, their effect on the allocation of that effort among areas was
minor. Further, the allocation of equilibrium EMEY was insensitive to the value of own-
price elasticity, with both flat (i.e., perfectly elastic) and downward sloping demand curves
producing similar allocations. Allocations were insensitive to the shape of demand curves
despite differences in yields and rents.

In contrast, market demand had a strong effect on the spatial allocation of effort under
the stochastic optimisations. As demand for inferior goods declines with increasing house-
hold incomes, total effort was reduced, and the highest proportion shifted to the QCS area
to target Rock sole, which had no upper bound on its unit price thanks to a lack of ex-
ogenous catch in the USA. Such effects of temporal variability in market demand highlight
a common argument against using MEY reference points: that the assumptions are only
valid for a short time and, therefore, MEY targets require constant updating to stay rel-
evant [36]. On the other hand, frequent model updates to check misspecification is a basic
requirement of adaptive management [143], and updating economic assumptions/models
with more recent data at the same time is of low marginal cost.

While choke effects are commonly assumed to be inherently negative outcomes, this was
not obviously the case for the BC flatfish complex fishery. Choke effects limit harvesters’
ability to fully catch a species’ TAC, and the assumption is that any foregone yield represents
an economic loss to the fishery [6], especially when a choke species are of lower value.
However, in the BC flatfish complex, all stocks are similarly priced, so choke effects more
often limit excessive TACs caused by positively biased biomass estimates and the effect on

114



rent is more subtle [71]. Such “positive” choke effects are evident under the single-species
MSYSS-based harvest strategy, which produces lower probabilities of overfishing than the
multi-species MSYMS-based strategy. Under the single-species strategy, choke species were
fished (on average) to the target biomass of BMSY,SS implied by the harvest rate, while
remaining species started, and remained, well above BMSY,SS , as TACs were underutilized
and realised harvest rates were lower. On the other hand, choke effects represent quota
that was allocated by managers according to the harvest strategy, but never utilised. This
mismatch still represents lost revenue in the form of landings, or unrecoverable fixed costs
in the form of lease price. In some BC fisheries, lease prices exceed 50% of the landed value
of the fish [109], which may be a bitter pill to swallow for harvesters that risk leasing quota
that they are choked out of utilising. Such secondary costs of choke effects are not included
in this work, potentially making single-species management seem more optimistic than in
reality.

Under the single-species MSYSS-based strategy, there is a perception of lower economic
risk. This perception is based on higher median NPV than under the multi-species maximum
yield strategy. Higher NPV stems from an increase in rents early in the projection period, as
a result of lower fishing costs associated with higher CPUE from under-utilised TACs caused
by choke effects, and higher unit prices from lower landings, combining to transfer surplus
from consumers to producers. However, while the NPV is higher, the rents still eventually
decline to negative under the MSYSS strategy after the initial period with positive rents,
but the effect is less noticeable given the early positive rents and assumed discount rate.
Rents decline below zero as unit prices are reduced with increasing household incomes, and
MSY strategies do not account for changes in price. Combined with the secondary costs
of choke effects outlined above, the economic performance of the MSYSS based strategy is
much less desirable than the NPV indicates.

The economic model used for the BC flatfish complex is fairly simple, and produces
upper bounds on resource rents that may positively bias the net-present-values in the sim-
ulations. For example, fuel and crew share were the only variable costs included, but quota
lease prices, which are a significant expense for many harvesters in this fishery, were ignored.
While crew share can be considered a constant rate as it was treated here, the price of fuel
is time-varying, meaning that the marginal cost of fishing probably changes year by year.
However, time-varying fuel costs would require a model to project the price into the future,
adding variability to the results5, and would require several assumptions, given volatility
and growth observed in fuel prices that has low correlation with GDP or CPI. Further,
some choices would simply add noise, leaving the main findings based on average/median
behaviour practically unchanged. Adding quota lease prices would change the allocation of

5Statistics Canada. Table 18-10-0256-01 Consumer Price Index (CPI) statistics, measures of core inflation
and other related statistics - Bank of Canada definitions; https://doi.org/10.25318/1810025601-eng
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effort over the course of a year, as when price/demand drops, the lease price also drops,
except for choke species. Choke species quota actually becomes more valuable as TAC is
decreased, as it is required for access to higher value species. Negative correlation between
the landed price and quota lease price would lead to interesting secondary market dynam-
ics and may lead to arbitraging behaviour [101]; however, including such dynamics would
require more detailed effort dynamics, likely at the individual vessel level.

The modeling framework developed in this chapter can be extended to help answer
broader ecosystem based fishery management questions. For example, the “30x30 initiative”
aims to use marine spatial planning processes to protect 30% of global oceans in marine
protected areas by 2030 [19]. However, there is considerable uncertainty about the effect
that spatial planning has on the distribution of effort [62, 125]. One approach would be to
link effort allocation to the economic model to more closely simulate how harvesters choose
where to expend fishing effort [59, 83, 141]. A simple, emergent version of reallocating
fishing effort to target different species compositons when prices changed was observed in
the stochastic optimisations of rent in the BC flatfish complex fishery, where effort moved to
QCS to target higher proportions of Rock sole as prices dropped. Another extension could
evaluate predictors of choke effects, and how they relate to catch/quota balancing (TAC
utilisation) observed in the past [84, 10]. TAC utilisations could be correlated with biomass
indices and catch series to evaluate observable conditions that may lead to choke effects.
Those predictors may then have practical utility as management ‘meta-rules’ that allow
TACs to be scaled to permit sustainable overfishing of choke species to mitigate undesirable
choke effects on high value species, within reason. Finally, an extension to multi-sector
fisheries would be very valuable. Multiple gear types would create complex economic and
catch yield surfaces, where the costs of fishing, catchability, and selectivity are different
for different sectors [75, 55]. Economic demand may also be sector dependent, as different
sectors sometimes sell in different markets based on the condition or size of landings (e.g.,
BC Sablefish long-line trap and hook fleets sell to Japan, while the trawl fleet sells their
landings in continental North America).

4.4.1 Conclusion

I demonstrate significant benefits of including technical interactions in multi-species harvest
strategies. Harvest strategies based on multi-species MSY eliminate choke effects, producing
higher catches while avoiding states of conservation concern when harvest strategies are
repeatedly applied to the BC flatfish complex fishery. Low conservation concern and higher
catches increases food security, which is a growing need for the increasing global population.
While rents under multi-species MSY -based strategies appear decline below zero over time,
this is largely a function of BC flatfish complex species being inferior goods, which lowers the
annual rents from all strategies. The same price reductions caused a reallocation of fishing
effort under MEY based harvest strategies, highlighting that the optimal fishing effort
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for a spatially heterogeneous fishery is not constant, depending on time as well as space.
Finally, while choke effects in single-species MSY -based strategies protected the BC flatfish
complex from overfishing and maintained higher NPV, the behaviour is strongly dependent
on the relative health, catchabilities, and similar unit price of the BC flatfish complex stocks,
meaning that the result is not general, and should not be taken as supporting evidence for
business as usual. Despite the protective role of choke effects for the simulated BC flatfish
complex fishery, real choke effects will still cause frustrations for harvesters when TACs are
underutilized, as some harvesters will be left holding expensive quota that they are unable
to utilise or sell.
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Table 4.5: Proportions of inverse average catchability and the estimated optimal allocation
of effort among areas.

Area 1/q̄(F ) EMSY,MS EMEY E∗
MSY,MS E∗

MEY

HSHG 0.256 0.272 0.249 0.275 0.189
QCS 0.416 0.385 0.417 0.383 0.475
WCVI 0.328 0.344 0.334 0.343 0.336
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Table 4.7: Median and central 90% of the distribution of net present value of the BC flatfish
complex fishery (in millions $CAD) in the projection period, median 2040 - 2060 effort �Ep

(1000s hours) and median annual rent π( �Ep) (millions $CAD), taken over all simulation
replicates for the closed loop simulations with simulated assessment errors. Net present
value is discounted by an annual rate of 5%.

Target HR Area NPV �Ep π( �Ep)

UMSY,SS 5.04 (2.92, 7.93)
HSHG 2.34 (0.65, 3.99) 11.33 -0.35

QCS 1.56 (0.94, 2.08) 17.62 -0.04
WCVI 1.27 (0.16, 2.43) 17.30 -0.19

UMSY,MS 3.15 (0.57, 6.28)
HSHG 0.49 (-1.13, 2.4) 13.69 -0.56

QCS 1.35 (0.83, 1.95) 19.19 -0.06
WCVI 1.18 (0.05, 2.36) 17.76 -0.21

U∗
MSY,MS 2.75 (0.14, 5.94)

HSHG 0.18 (-1.52, 2.11) 14.06 -0.60
QCS 1.32 (0.78, 1.94) 19.44 -0.07

WCVI 1.12 (-0.01, 2.33) 17.95 -0.21
UMEY 12.04 (11.13, 13.12)

HSHG 6.55 (5.91, 7.55) 4.68 0.15
QCS 2.34 (2.02, 2.65) 7.64 0.06

WCVI 3.14 (2.58, 3.63) 6.35 0.05
U∗

MEY 11.71 (10.84, 12.79)
HSHG 6.23 (5.71, 6.99) 2.62 0.20

QCS 2.41 (2.12, 2.75) 6.44 0.07
WCVI 2.99 (2.5, 3.51) 4.73 0.07
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Table 4.8: BC wide and area-specific NPV (CAD $ million), area specific median com-
mercial trawl effort E∗

MEY (1000s hours), and area-specific undiscounted annual resource
rents MEY ∗ (CAD $ million) under the constant price sensitivity analyses. Median effort
and rents are taken over all simulation replicates and the period 2040 - 2060, and NPV is
discounted by an annual rate of 5%.

Scenario Area NPV E∗
MEY MEY ∗

Infinite PED, Income growth 48.63
HSHG 30.99 8.99 1.78
QCS 9.76 14.33 0.56

WCVI 7.72 8.94 0.31
Infinite PED, Fixed Income 35.99

HSHG 21.81 8.00 0.99
QCS 6.00 12.27 0.28

WCVI 8.01 8.97 0.33
Finite PED, Fixed Income 24.62

HSHG 14.38 5.91 0.73
QCS 3.97 9.20 0.20

WCVI 6.25 7.47 0.27
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Table 4.9: BC wide and area-specific NPV (CAD $ million), area specific median commer-
cial trawl effort E∗

MEY (1000s hours), and area-specific undiscounted annual resource rents
MEY ∗ (CAD $ million) under the discount rate and income growth rate sensitivity analy-
ses. Median effort and rents are taken over all simulation replicates and the period 2040 -
2060, and NPV is discounted by an annual rate of 5%.

Scenario Area NPV E∗
MEY MEY ∗

Low Discount d = 0.025 13.67
HSHG 7.82 2.45 0.17
QCS 2.31 5.93 0.07

WCVI 3.58 3.98 0.06
High Discount d = 0.1 13.01

HSHG 7.46 4.49 0.15
QCS 2.17 8.45 0.05

WCVI 3.42 6.35 0.04
Low Income Growth γ = 0.02 17.99

HSHG 10.31 4.37 0.38
QCS 2.96 8.38 0.11

WCVI 4.74 6.37 0.13
High Income Growth γ = 0.058 10.52

HSHG 6.02 2.10 0.07
QCS 1.78 6.30 0.03

WCVI 2.73 4.18 0.01
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4.6 Figures
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Figure 4.1: Mininum trawlable survey biomass Btrawl estimates for DER complex species
on the BC coast, aggregated to a 10km square grid. Estimates are produced by scaling
average trawl survey (kg/m2) density values in each grid cell by the cell’s area in m2.
Locations that do not show a coloured grid cell do not have any survey blocks from which
to calculate relative biomass. Survey density for each grid cell is calculated from data for the
Hecate Strait Assemblage Survey and the BC Groundfish Trawl Synoptic Survey, stored in
the GFBio data base maintained at the Pacific Biological Station of Fisheries and Oceans,
Canada. Thick black lines delineate the major statistical areas 3CD and 5ABCDE used for
groundfish management BC, while the dashed grey lines makr out latitude and longitude,
indicating the rotation of the coordinates to save space. The full colour figure is available
in the online version of the article.
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Figure 4.2: Demand curves showing the relationship between unit price ($/kg, vertical axis)
and quantity supplied (Catch, kt, horizontal axis) for Dover, English, and Rock soles. Lines
show the median over the period 2006 - 2016, while the shaded region shows the central
90% of the demand over the same time period. Points show raw catch and price data (open
circles), and the same catch with price estimated with cost of fishing as an instrumental
variable (closed circles). The vertical dashed lines show the exogenous US West Coast catch
for each species, assumed to be fixed in the projections.
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Figure 4.3: Equilibrium catch yield by species (coloured lines) and for the BC flatfish com-
plex (thick black line) as a function of fishing effort in each stock area. Effort EMSY,MS,p

maximising the multi-species yield in each area is marked by the vertical dashed line seg-
ment, and the multi-species yield MSYMS,p and species yields at that effort are shown by
horizontal dashed line segments meeting the EMSY,MS,p segment where it intersects each
curve.
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Figure 4.4: Net resource rents (dashed curve), species revenues (coloured curves) and com-
plex revenue (thick black curve), and fuel costs of fishing (red line), all as functions of fishing
effort for the BC flatfish complex in each area (first three panels), as well as coast-wide (bot-
tom panel). Vertical dashed lines show EMSY,MS (black, maximising revenue) and EMEY

(blue, maximising rent).
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Figure 4.5: Simulation envelopes of commercial trawl effort over the projection period for
the stochastic optimisation under the catch maximising (black/grey) and rent maximising
(red/pink) objective functions. Horizontal dashed lines show steady-state EMSY (long/short
dashed) and EMEY (long dashed), while vertical lines show the beginning of the projection
period (thin short dashed in 2017) and the beginning and end of the time period over which
dynamic optima are calculated (thicker short dashed lines in 2041 and 2060).
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Figure 4.9: Simulated central 90% (shaded regions) and median annual (thick line) resource
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Figure 4.10: Demand curves showing the relationship between unit price ($/kg, vertical
axis) and quanitity supplied (Catch, kt, horizontal axis) for Dover, English, and Rock soles
for the three demand curve sensitivity analyses. Lines, points, and shaded regions are as in
Figure 4.2.
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Figure 4.11: Annual median commercial trawl effort maximising NPV under the discount
and income growth rate sensitivity analyses. Horizontal dashed lines show YPR EMEY (long
dashed), while vertical lines show the beginning of the projection period (thin short dashed
in 2017) and the beginning and end of the time period over which dynamic optima are
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4.7 Appendices

4.A BC flatfish complex demand analysis

The unit price vs ($/kg) of each BC flatfish complex species s is assumed to follow a
downward sloping demand curve for total catch Cs (quantity demanded) with a constant
own-price elasticity of demand. Demand curve identifiability was a problem, given the low
sample size (11 years) of economic data and the sometimes positive relationship between BC
catch and the unit price, indicating either demand or supply shifts that created correlation
between explanatory variables (i.e., price) and the residual in the quantity demanded, also
known as endogeneity [2].

BC flatfish complex demand curves are fit to landings, ex-vessel prices, and BC household
income per capita. Average ex-vessel unit price ($/kg) data for the BC flatfish complex is
obtained from dockside fish-slips for the BC trawl fishery from 2006 - 2016, and calculated
as total ex-vessel revenues divided by total landings 6. All ex-vessel prices are specific to
the bottom trawl fishery except for English Sole in 2016, which is an outlier with a trawl
ex-vessel price almost three times the 2006 - 2016 average, and is therefore replaced with
the 2016 ex-vessel price for English sole averaged across all available gear types. All prices
are then adjusted to 2016 dollars by using the annual average consumer price index (CPI)
from Statistics Canada 7. BC household income per capita data (Table A1) is also obtained
from Statistics Canada 8.

Annual catches of Dover and English soles on the US west coast (i.e., Washington,
Oregon, and California, but not Alaska) are added to the BC catch (Table A1) [147, 23].
The BC groundfish trawl fishery is known coloquially as an “I-5 Fishery” (pers comm.
Chris Sporer), because, in addition to local BC customers, fish caught in BC are sold to
restaurants and retailers along the US west coast via the I-5 highway. Similarly, fish caught
on the US west coast are sold in BC. Therefore, the market price for BC trawl catch is
dependent on the catch from the US west coast, and demand models fit to catch and price
data do not match economic assumptions about market dynamics without the exogenous
catch data (i.e., demand curves are upward sloping). Rock sole catch is not assessed on
the west coast because there are not significant populations or catches. Further, Rock sole
demand curves are downward sloping without the exogenous catch. US west coast catch
data are unavailable after 2013 for English sole as there has not been an assessment since

6Department of Fisheries and Oceans (2019). Commercial Pacific Landings. Unpublished data Table.
Available from Pacific.CatchStats@dfo-mpo.gc.ca

7Table 18-10-0256-01 Consumer Price Index (CPI) statistics, measures of core inflation and other related
statistics - Bank of Canada definitions, https://doi.org/10.25318/1810025601-eng

8Table 36-10-0229-01, Long-run provincial and territorial data, https://doi.org/10.25318/
3610022901-eng
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that time, so West coast US English sole catch for 2013 - 2016 is assumed to be constant
at the 2013 level.

Table 4.A.1: US catches and BC household income per capita data used for estimating the
BC flatfish complex inverse demand curves.

Year Dover English GDPpc

2006 5.957 1.0662 34.9156
2007 9.264 0.7894 36.8733
2008 11.203 0.4201 37.6750
2009 11.731 0.4155 37.1238
2010 10.374 0.2581 37.9491
2011 7.261 0.1981 39.4824
2012 6.772 0.2161 40.6199
2013 7.391 0.2241 42.1524
2014 6.011 0.2241 43.2927
2015 5.823 0.2241 45.4112
2016 6.746 0.2241 46.9050

A 2-stage least squares (2SLS) regression was used to reduce endogeneity, predicting the
unit price using instrumental variables [1]. The instrument was the unit cost of supplying
catch of each species, estimated via assumed fuel costs

ws,t =
∑

p Ep · cp∑
p Cs,p

, (4.4)

. where cp is derived in the Section 2. The first stage then regresses the observed ex-vessel
log-price vs,t for species s in year t year on the log-cost of supply

log vs,t = α0,s + α1,s log ws,t, (4.5)

and uses the resulting coefficents αi,s to predict a unit price v̂s,t with less (or no) endogeneity.
The predicted price v̂s,t is then used as an explanatory variable in the second stage regression
for the demand curve

log Cs,t = β0,s + λs log v̂s,t + β1,syt, (4.6)

where Cs,t is the US west coast and BC catch in year t, λs is the own-price elasticity for
species s [17], β1,s is the income elasticity, and yt is the British Columbia household income
per capita in year t. When modeling an inverse demand curve, with price as the response
variable, the quantity 1

λs
is called price flexibility f [66]. Models were also fit with cross-

price elasticity of demand, but no cross-price elasticity parameters were significant, and are
therefore not reported or used in projections.
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Demand relationships from the 2SLS fit the data well, and are suitable for projections
in closed-loop simulations. Coefficients from price regressions on cost of fishing instruments
are not significant at the 0.05 level for any species (Table A1), but do reasonably well at
reducing endogeneity in the price data (Figure 4.2, main body, compare open points to closed
point). Despite the low explanatory power of the fuel cost instrument, IV estimates of unit
prices showed that all three species have elastic demand (Table A2), which is within range
of previous demand analyses of flatfish [5]. English and Rock sole demand was more elastic
than Dover sole demand, which was only slightly elastic (Table A2) and not significant
at the p = 0.1 level (p = 0.101). The higher probability of a spurious estimate for Dover
sole is expected, as the catch and price data show a fairly flat relationship, even after the
IV regression, that would fit equally well to many different price elasticities of demand
(Fig 2, main body). However, the inverse demand relationship is sufficient for the purpose
of simulating realistic demand in model projections, as the curve does not contradict the
data, and the demand is downward sloping [102]. Further, p values are continuous, and
p = 0.101 is a low probability of a spurious effect, given the uninformative data. All species
have a negative income elasticity parameter β1, indicating that they are all inferior goods
[33], which means that families with more disposable income will switch to more expensive
sources of protein, such as higher value fish or beef, rather than the inexpensive flatfishes
of the BC flatfish complex.

Table 4.A.2: Two-stage least-squares regression results when modeling inverse demand (price
is the response variable). An asterisk denotes that the parameters were significant at the
p = 0.1 level.

Price IV model Inv demand

Species α0 α1 β0 f β1 λ

Dover -0.973 -0.632 2.554 -0.279 -0.593 -3.584
English 0.176 0.401 2.537* -0.195* -0.636* -5.128
Rock 0.007 0.477 1.266* -0.353* -0.393* -2.833

To simulate price as a function of catch (i.e., the inverse demand relationship) in model
projections, two simplifying assumptions are made. First, US West Coast Dover and English
sole catches are assumed to be exogenous and fixed at the average catch for the 2006 - 2016
time period, and second, growth in median BC household income is assumed to be at the
fixed rate of 3.9% per year 9.

For sensitivity analyses, inverse demand curves are refit to the price instrument and
household incomes assuming own-price elasticity was infinite (i.e., 1

λs
= 0 for all species).

9https://www2.gov.bc.ca/assets/gov/british-columbians-our-governments/
government-finances/financial-economic-review/financial-economic-review-2020.pdf
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When price-flexibility f is removed from the inverse demand curve, the parameters are very
different. Dover and English soles have no significant parameters (0.4 < p < 0.65), while
Rock sole’s inverse demand curve has significant coefficients at the p = 0.1 level. Further,
while Dover and English soles have a reduction in price with household incomes, as above,
Rock sole’s relationship with income is reversed, showing that it is no longer an inferior good
and demand will increase with household income. This indicates that own-price elasticity
and income elasticity are confounded, but is not wholly unexpected, as Rock sole has the
smallest magnitude β1 coefficient in the finite elasticity case, and is sometimes considered
a more desirable eating fish.

Table 4.A.3: Two-stage least-squares regression results when modeling inverse demand as-
suming own-price elasticity is infinite. An asterisk denotes that the parameters were signif-
icant at the p = 0.1 level.

Inv demand

Species β0 β1

Dover 0.255 -0.143
English 0.587 -0.105
Rock -2.453* 0.634*
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4.B Assessment error simulation

Assessment errors for the BC flatfish complex stocks were simulated as an auto-correlated
series of multi-variate, log-normal deviations

δjs,p,t = ρjs,pδjs,p,t−1 +
√

1 − ρ2
js,p

· ιjs,p,t (4.7)

ιjs,p,t N(�μ, Σ) (4.8)

μj =
σ2

js,p

2
1 − ρjs,p√
(1 − ρ2

js,p

(4.9)

where js,p = 1, ..., 9 is a 1 dimensional index for species s and stock p with the mapping
js,p = 3(p − 1) + s, t = 2016, ..., 2095 is the time step in years, ρj is the auto-correlation
in the assessment errors δ, and �μ is the mean and Σ the covariance matrix (with diagonal
entries σ2

js,p
) for the yearly deviations ι. The mean of the ι distribution is the log-normal

bias-correction for auto-correlated deviations, applied so that the median assessment error
is unbiased over time. For the remainder of the appendix, the s, p subscripts are excluded
from the j index for simplicity. For t = 2016, δj,t = ιj,t.

The covariance matrix Σ and auto-correlations ρj were estimated from the distribution
of assessment errors obtained in a previous article [71]. There were 100 replicates of assess-
ment errors from applying a hierarchical, multi-species surplus production stock assessment
model to the BC flatfish complex fishery in closed loop simulations for 32 year projection
period. Based on the results from the original article where bias in biomass and productivity
compensated for each other [71], I adjusted assessment errors so that they were zero mean
(i.e., unbiased). To use biased biomass esitmates would have required compensating for the
bias by simulating an error for the optimal harvest rate.

Covariance Σ and auto-correlation ρj were derived from assessment errors for each in-
dividual replicate. The covariance matrix was computed via a diagonal decomposition

Σ = D · C · D,

where D = [σj ] is a diagonal matrix of assessment error standard deviations and C is
the correlation matrix of assessment errors, both estimated directly from the distribution
of assessment errors. The auto-correlation parameter ρj was also estimated directly from
the distribution of errors using the acf() function in R [123], which returns a matrix of
lag-1 correlations for the series of assessment errors, with auto-correlations along the main
diagonal.
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4.C Catchability and effort

The optimal allocation of effort in each area p, derived under equilibrium reference point
calculations, is very close to the ratio ρp of inverse average catchabilty scalars within an
area p to the sum of inverse average catchabilities, i.e.,

ρp =
1/q̄

(F )
p∑

p 1/q̄
(F )
p

,

q̄(F )
p =

1
3

∑
s

q(F )
s,p .

Further, the optimal equilbrium allocation is also very close to the EMSY,MS allocation
(Table 4.5), but the pattern does not hold for stochastic simulations under time-varying
demand, as explained in the results.
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Chapter 5

Conclusion

In this thesis, I ask whether multi-species harvest strategies centred around hierarchical
stock assessment models outperform status-quo single-species harvest strategies for data-
limited fisheries. Multi-stock and multi-species stock assessment models and harvest strate-
gies were applied to data from a simulated multi-species complex of flatfishes, modeled on
the three species complex of Dover sole, English sole, and Rock sole in British Columbia,
Canada.

The results of simulation tests of hierarchical stock assessment models suggests that
their usage should be increased for stock assessment and management of data-limited,
multi-species fisheries. In most tested cases, hierarchical stock assessments and multi-species
harvest strategies perform better than assessments/strategies based on a single-species ap-
proach, or, in Chapter 3, those based on data-pooling methods. The superior performance
of hierarchical models is especially noticeable as data quality and quantity is reduced. For
example, in Chapter 2, estimates of key management parameters from hierarchical models
are more robust to reductions in quality or quantity of simulated data than single-stock
models, maintaining stronger feedback links between harvest decisions and stock status in
low statistical power scenarios. However, while estimation performance of hierarchical mod-
els is more robust to decreasing statistical power, hierarchical models do not spontaneously
create statistical power. Indeed, my results in Chapter 3 show that management perfor-
mance is better under hierarchical models despite relatively high bias in biomass estimates.
Bias in biomass estimates is compensated by bias in productivity estimates, which is in turn
affected by the shrinkage priors on productivity parameters. The biomass/productivity bi-
ases therefore cancel out, and TACs are better scaled to maximise catch under hierarchical
methods.

Results from Chapter 4 indicate that multi-species harvest strategies incorporating tech-
nical interactions could increase food security and economic welfare. First, choke effects are
less prevalent when harvest rates are based on technical interactions, avoiding higher quota
lease costs from under-utilised TACs. Second, under MEY strategies, fishery rents may in-
crease by a factor of two, with only a small reduction in total yield. However, most fisheries
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do not supply inferior goods (i.e., species with negative income elasticity of demand), so
the relative economic benefits between MEY and MSY strategies will likely be smaller.
In any case, the higher biomasses under MEY -based strategies reduce conservation risk,
increasing longer-term food security and economic welfare at a small cost of lower average
yield.

Expanding existing single-species harvest strategies to include technically interacting
species may be an efficient way of increasing adoption of management procedures, while
realising potential increases in food security and economic welfare. In 2019, Canadian com-
mercial marine fishery landings totalled 742,634 t, with a landed value of $3.6 billion 1.
Roughly 28% of total Canadian landings are groundfish, accounting for approximately $351
million, or 10% of the total commercial marine fishery landed value. Groundfish are typi-
cally captured using non-selective gears that tend to generate technical interactions among
target and byproduct species. As of 2016, formal harvest strategies have been adopted for
five Canadian groundfish fisheries, namely Greenland Halibut (NAFO Area 3KLMNO) [98],
Atlantic Halibut (3NOPs4VWX5) [25], Western Component Pollock [35], British Columbia
Sablefish [24], Pacific Halibut [64], and Outside Yelloweye Rockfish [26]. These six fisheries
had landings of 25,859 t in 2019, or about 12%, of Canadian groundfish landings, but ac-
count for approximately $197 million worth of landed value, or 55% of the total landed value
of Canadian groundfish in that year. Despite such high value, all six fisheries are managed
under a single-species paradigm in which TACs and realized catches are often mismatched
in the presence of bycatch/byproduct species, leading to choke effects, higher fishing costs,
and higher quota lease prices [109]. While the marginal economic benefit of adopting formal
harvest strategies for the remaining groundfish species in Canada (i.e., the other 88% of
landings) is necessarily lower than these high-value examples, it may be offset by improving
the economic performance of these high value fisheries. Indeed, it would probably be more
straight-forward to adapt existing harvest strategies for high-value species across Canada
to include some (or all) technically interacting quota species, than to define new single-
species harvest strategies for lower-value species, whose lower rents may not offset the costs
of ignoring technical interactions.

Ultimately, making effective harvest decisions under uncertainty in multi-species fisheries
requires tools that reflect the complexities and uncertainties in the management system.
Outside of harvest strategy objectives (Chapter 4) and simulation performance (Chapters
2 and 3), the hierarchical multi-species modeling framework I developed here has sufficient
complexity to answer management questions for most multi-species fisheries dominated by
technical interactions. Further, the framework is readily expandable to incorporate extra
complexity, such as movement, ecological interactions, and climate change influences on

1Statistics Canada. 2017. Table 32-10-0107-01 Aquaculture, production and value;
https://doi.org/10.25318/3210010701-eng
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recruitment and/or movement. Finally, leveraging technical interactions among species, and
their shared evolutionary history, in the form of shrinkage priors adds value by potentially
qualifying ‘data-limited’ fisheries for formal, simulation tested harvest strategies, as required
under most fishery policies and eco-certification programs.
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