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Abstract

Hyperspectral imaging provides rich information across many wavelengths of the captured
scene, which is useful for many potential applications such as food quality inspection, med-
ical diagnosis, material identification, artwork authentication, and crime scene analysis.
However, hyperspectral imaging has not been widely deployed for such indoor applications.
In this work, we address one of the main challenges stifling this wide adoption, which is the
strict illumination requirements for hyperspectral cameras. Hyperspectral cameras require
a light source that radiates power across a wide range of the electromagnetic spectrum.
Such light sources are expensive to setup and operate, and in some cases, they are not
possible to use because they could damage important objects in the scene. We propose a
deep-learning method that enables indoor hyperspectral imaging using cost-effective and
widely available lighting sources such as LED and fluorescent. These common sources, how-
ever, introduce significant noise in the hyperspectral bands in the invisible range, which are
the most important for the applications. Our proposed method restores the damaged bands
using a deep-learning model. We conduct an extensive experimental study to analyze the
performance of the proposed method and compare it against the state-of-the-art using real
hyperspectral datasets that we have collected. Our results show that the proposed method
outperforms the state-of-the-art across all considered objective and subjective metrics, and
it produces hyperspectral bands that are close to the ground truth bands captured under
ideal illumination conditions.
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iii



Dedication

To mom and dad, who have always been there for me; and to my brother, my best friend.
God bless you all.

iv



Acknowledgements

I would like to state my sincere gratitude to my supervisor Dr. Hefeeda for his unremitting
support during this path. Also, I would like to thank Neha Sharma who has been very
helpful in the project. Finally, I am also thankful to the committee members, Dr. Baghban
Karimi as the chair, Dr. Diab as supervisor, and Dr. Shirmohammadi as examiner.

v



Table of Contents

Declaration of Committee ii

Abstract iii

Dedication iv

Acknowledgements v

Table of Contents vi

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Hyperspectral Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background and Related Work 6
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Effect of Illumination on Hyperspectral Images 10
3.1 Effect of Illumination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Problem Description and Proposed Solution 14
4.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Proposed Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2.1 Architecture of the Neural Network . . . . . . . . . . . . . . . . . . 15
4.2.2 Loss Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Experimental Evaluation 19

vi



5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Results for Food Quality Inspection Applications . . . . . . . . . . . . . . . 23
5.3 Results for Material Identification Applications . . . . . . . . . . . . . . . . 25
5.4 Results for Real-life Images . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.5 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6 Conclusions and Future Work 31
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Bibliography 33

Appendix A Dataset and Source Code Description 37
A.1 Code and Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

A.1.1 Obtaining and Installing the Code . . . . . . . . . . . . . . . . . . . 37
A.1.2 Hardware dependencies . . . . . . . . . . . . . . . . . . . . . . . . . 38
A.1.3 Software dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . 38
A.1.4 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

A.2 Experiment Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
A.2.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
A.2.2 Reproducing our Results . . . . . . . . . . . . . . . . . . . . . . . . . 39

vii



List of Tables

Table 5.1 Summary of the collected hyperspectral dataset. Each sample has 204
bands, where a band is 2d image . . . . . . . . . . . . . . . . . . . . . 21

Table 5.2 Comparison of the proposed band restoration method against the state-
of-the-art (QRNN3D) using multiple objective metrics. Data shown for
the food quality inspection class of hyperspectral applications. . . . . 23

Table 5.3 Comparison of the proposed band restoration method against the state-
of-the-art (QRNN3D) using multiple objective metrics. Data shown for
the material identification class of hyperspectral applications. . . . . . 26

Table 5.4 Comparison of the various loss functions impact . . . . . . . . . . . . 30

viii



List of Figures

Figure 1.1 RGB versus hyperspectral images. . . . . . . . . . . . . . . . . . . . 1
Figure 1.2 Comparison of environmental impacts of halogen, CFL, and LED

lamps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Figure 2.1 Basic concepts of hyperspectral imaging. . . . . . . . . . . . . . . . 7
Figure 2.2 Spectral signatures of defective and non defective areas of an apple. 7

Figure 3.1 Effect of common illumination sources on capturing hyperspectral
images of fruit samples. . . . . . . . . . . . . . . . . . . . . . . . . 11

Figure 3.2 Effect of common illumination sources on capturing hyperspectral
images of object samples. . . . . . . . . . . . . . . . . . . . . . . . 11

Figure 3.3 Spectral signatures plotted for the area marked by the blue circle
using three different light sources. . . . . . . . . . . . . . . . . . . . 12

Figure 4.1 Network architecture of the proposed model. "C" = convolution, "R"
= ReLU activation function, and "B" = Batch Normalization, re-
spectively. "RB" denotes residual block, which is further expanded
in the figure. Four loss functions, MRAE, MS-SSIM, SAM, and SID,
are used to improve the accuracy of the restored bands in the spatial
and spectral domains. . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 5.1 The experimental setup used to capture hyperspectral images under
different illumination conditions. . . . . . . . . . . . . . . . . . . . . 20

Figure 5.2 RGB samples from our dataset. . . . . . . . . . . . . . . . . . . . . 21
Figure 5.3 Comparison of the bands produced by the proposed method (3rd

row) against the ground truth (4th row) and the state-of-the-art
(2nd row) from the input data (1st row). Data shown for the LED
illumination setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 5.4 Comparison of the bands produced by the proposed method (3rd
row) against the ground truth (4th row) and the state-of-the-art
(2nd row) from the input data (1st row). Data shown for the CFL
illumination setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 5.5 Spectral Signature for the apple in Figure 5.4. . . . . . . . . . . . . 25

ix



Figure 5.6 Comparison of the bands produced by the proposed method (3rd
row) against the ground truth (4th row) and the state-of-the-art
(2nd row) from the input data (1st row). Data shown for the CFL
illumination setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 5.7 Comparison of the bands produced by the proposed method (3rd
row) against the ground truth (4th row) and the state-of-the-art
(2nd row) from the input data (1st row). Data shown for the LED
illumination setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 5.8 Spectral Signature for objects in Figure 5.6. . . . . . . . . . . . . . 28
Figure 5.9 Comparison of the produced bands by our proposed and QRNN3D

netwroks for three different real life scenes. . . . . . . . . . . . . . . 29

x



Chapter 1

Introduction

This chapter starts by giving an overview about hyperspectral imaging and its usages. Then
it states the considered problem in the thesis and summarizes our contributions.

1.1 Hyperspectral Imaging

A regular camera captures a scene in the visible range of the light spectrum through three
main wavelengths: Red (R), Blue (B), and Green (G). These wavelengths were chosen based
on the characteristics of the human visual system and its sensitivities to different colors. In
contrast, a hyperspectral camera captures a scene in many wavelengths across a wide range
of the spectrum, including bands invisible to humans such as the infrared (IR) band. Thus,
hyperspectral cameras offer very rich information about the captured scene, which enables
deeper understanding of various objects in the scene, even if they are not visible to the
human eye. A sample hyperspectral band is shown in Figure 1.1. Notice that the internal
defects of the avocado that cannot be seen in the RGB image appear in the shown 830nm,
IR, band.

Figure 1.1: RGB versus hyperspectral images.
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Hyperspectral imaging has been used in various industrial and military applications
including remote sensing, surveillance, identification of camouflaged objects, agricultural
research, forest monitoring, pollution monitoring, among many others [35, 5, 42, 21]. Many
of the commercially deployed hyperspectral imaging systems are large-scale and mostly
deployed in outdoor environments. In addition, the potential of hyperspectral imaging has
been demonstrated in indoor applications including medical diagnosis (e.g., early detection
of skin cancer), food quality inspection (e.g., determining the ripeness of fruits and fat
content in meats), artwork authentication, and material identification[2, 37, 27, 8, 41]

1.2 Problem Statement

Indoor illumination refers to a condition, which the scene is illuminated by artificial light
sources and they do not cover all the electromagnetic spectrum. However, sunlight with
wide spectral power distribution mainly exists in outdoor illumination conditions. Hyper-
spectral imaging has not seen wide deployment in indoor applications yet, because of the
cost and complexity associated with setting up hyperspectral imaging systems. One of the
main challenges is the strict illumination requirements for current hyperspectral cameras
to function properly. Specifically, since hyperspectral cameras capture bands in the visible
and invisible range of the spectrum, they require a light source that radiates power across
a wide range of the electromagnetic spectrum to illuminate the scene being captured. The
current solution to address this requirement is to use halogen light sources, which cover a
large part of the spectrum [13]. However, halogen light sources have limitations, which stifle
the adaptation of hyperspectral imaging systems for indoor application. Souza et al. [9] per-
formed an economic analysis based on the annualized lifetime cost of halogen incandescent,
Compact Fluorescent Lamp (CFL), and Light-Emitting Diodes (LED) lamps by consider-
ing their costs of replacement, acquisition, energy consumption, and other expenses. Their
study shows that for 5 hours of daily use, the annualized life cycle cost for halogen lamps
is about 3.64 times higher than CFL cost and 4.73 times higher than LED cost.

Moreover, Nardelli et al. [30] analyzed the characteristics of 375 lamps of 6 various
types including halogen, CFL, and LED bulb existing in the Brazilian, North American,
and European markets. Their experiments indicate that the average lifetimes of LED and
CFL are 10 times and 2.85 times longer than that of halogen lamps, respectively. Also,
these two light sources provide higher lumens per watt than halogen lamps while they have
a longer lifespan.

One of the other aspects of choosing light sources is their environmental effects. In
2009, OSRAM Photonics company, one of the globally leading brands in the light industry,
introduced 6 categories for assessment of light sources’ environmental impacts including
Global Warming Potential (GWP), Acidification Potential (AP), Eutrophication Potential
(EP), Photochemical Ozone Creation Potential (POCP), Human Toxicity Potential (HTP),
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and Abiotic Depletion Potential (ADP) [36]. Souza et al. [9] studied the life cycle environ-
mental impacts of incandescent halogen, CFL, and LED illumination sources throughout
manufacturing, use, and disposal phases and showed that halogen lamps have the highest
effect compared to other two light sources in all the mentioned 6 categories. Contribution
of various light sources is shown in Figure 1.2 based on the data presented in [9].

0%

20%

40%

60%

80%

100%

Global warming (kg
CO2)

Photochemical Ozone
Creation Potential (kg

CFC-11)

Human Toxicity
Potential (kg C2H4)

Acidification (kg SO2) Eutrophication (kg
PO4)

Abiotic Depletion
Potential (MJ)

Halogen CFL LED

Figure 1.2: Comparison of environmental impacts of halogen, CFL, and LED lamps.

Energy efficiency for artificial light sources shows the conversion rate of electricity into
luminous flux (lm/W ). luminous flux, which is usually reported in lumens instead of watts
and is measured by a goniophotometer [34]. Lower efficiency in electrical devices means a
higher amount of wasted energy in form of heat. Nardelli et al. [30] surveyed the luminous
efficiency of 379 illumination sources. Their analysis showed that CFL and LED have a close
average luminous efficiency value (of about 60 lm/W ) while power usage of most of examined
LED and CFL lamps were less than 20 W and 50 W respectively. Also, the average efficiency
of studied halogens was around 17 lm/W , and their power usages were mostly between 20
W to 70 W . Therefore, compared to CFL and LED illumination sources, halogen lamps
have a considerably smaller value of energy efficiency while consuming a higher amount of
electricity leading to releasing a significant amount of heat.

In summary, halogen light sources are expensive, have a short lifetime, consume sub-
stantial amounts of electricity, and in many cases, they are not available or even possible to
use because they may alter the characteristics of objects in the captured scene due to the
heat produced by these sources. For instance, hyperspectral imaging has been proposed for
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forensics and crime scene analysis in [11, 20], in which case even if halogen sources are pos-
sible to setup, they may affect the outcome of the analysis. Similarly, halogen light sources
are not suitable for hyperspectral systems designed for artwork authentication [31], as they
may damage the artwork, and food quality inspection [12, 46, 43], as they may spoil some
food items or affect their ripeness.

The goal of this thesis is to enable indoor hyperspectral imaging using cost-effective
and widely available lighting sources such as CFL and LED. This is a challenging problem
since the common CFL and LED light sources emit low power in the invisible range of the
spectrum. Hyperspectral images consist of rich information about the scene by providing
spectral signature for each pixel. Major number of hyperspectral applications such as mate-
rial identification relay heavily on spectral information in addition to spatial features, and
they utilize unsupervised methods including clustering approaches [28] or supervised clas-
sification methods [26], which applied on spectral signatures features to analyze the scene.
However, hyperspectral imaging in the indoor area under various illumination sources in-
cluding CFL and LED causes significant damages in the wide domain of hyperspectral
bands captured in the IR range by the camera, which are the most important bands for the
applications. In addition, a higher amount of details needs to be recovered in indoor scenes
compared to remote sensing applications, and it increases the difficultly of this problem.

1.3 Thesis Contributions

In this thesis, we propose a deep learning method to restore the damaged bands captured
with LED and CFL light sources. The proposed method greatly facilitates the deployment of
hyperspectral imaging systems for many real-life applications in a cost-effective and efficient
manner.

The contributions of this thesis can be summarized as follows [3]:

• We conduct an empirical study to analyze the effects of different light sources on
hyperspectral imaging. Unlike prior studies [22, 7], our study focuses on the impact
of common light sources on the hyperspectral bands. Our analysis shows that the
commonly used LED and CFL light sources introduce significant noises and damages
in the hyperspectral bands in the invisible range of the spectrum.

• We propose a supervised deep learning model to restore the damaged hyperspectral
bands. The proposed model considers both the spatial and spectral characteristics of
hyperspectral images. It is also general as it can restore different number of hyper-
spectral bands.

• We collect a unique hyperspectral image dataset in this domain, which contains dif-
ferent objects and materials captured by a high-end hyperspectral camera using three
different lighting sources: halogen, CFL, and LED. The dataset is available at [1].
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• We conduct an extensive empirical study to analyze the performance of the proposed
hyperspectral band restoration method and compare it against the closest work in the
literature, using multiple objective and subjective metrics. Our results show that the
proposed method outperforms the state-of-the-art across all metrics, and it produces
hyperspectral bands that are close to the ground truth bands captured under ideal
illumination conditions.

• We open source all our dataset and code. The work done in this thesis is based on
our paper [3] which has received the reproducibility badge from the ACM Multimedia
Systems 2021 Conference.

1.4 Thesis Organization

The rest of the thesis is organized as follows. We summarize the related work in Chapter 2.
We analyze the illumination effects on hyperspectral imaging in Chapter 3 and describe the
considered problem and our proposed solution in Chapter 4. In Chapter 5, we present our
evaluation, and conclude the thesis in Chapter 6. In the appendix A, we describe the details
of our dataset and code. We also explain how our research results can be fully reproduced
by other researchers.
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Chapter 2

Background and Related Work

This chapter first presents a brief background on hyperspectral imaging. Then, it summa-
rizes the related works in the literature.

2.1 Background

Figure 2.1 illustrates the basic concepts behind hyperspectral imaging and how it is dif-
ferent from regular RGB imaging. The figure shows different parts of the electromagnetic
spectrum. An RGB camera samples the spectrum in the visible range, which approximately
lies between 400–700 nm. The RGB camera takes only three samples, centred around the
red, green, and blue wavelengths. These three wavelengths were chosen based on the char-
acteristics of the human visual system.

In contrast, a hyperspectral camera takes many more samples from the electromagnetic
spectrum and goes beyond the visible range. Many of the hyperspectral cameras that are
used for indoor applications capture bands from 400nm to 1000nm, and these bands are
typically equally spaced in that range. For example, the Specim IQ camera used in our
experiments captures 204 bands between 400nm and 1000nm, with a spectral resolution of
∼3nm. As shown in the lower part of Figure 2.1, this fine-grained sampling of the spec-
trum allows creating the so-called spectral signatures. A spectral signature shows how the
reflectance (signal intensity) varies across different wavelengths. Recall that the reflectance
of light (and its various wavelengths) depends on the material(s) of the surface that reflects
the light. Thus, spectral signatures can be used to classify objects and identify their material
composition.

In Figure 2.2, we show an example of spectral signatures. Two signatures are shown of
different areas of an apple. Various methods of classification [26] and clustering [28] can be
utilized to separate defective region from healthy one.
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Figure 2.1: Basic concepts of hyperspectral imaging.

(nm)

Figure 2.2: Spectral signatures of defective and non defective areas of an apple.
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2.2 Related Work

Hyperspectral imaging has been getting popular in recent years, because of technological
advances in the camera design as well as the introduction of powerful machine learning
tools that can address long-standing problems in this domain. For example, multiple works
have considered estimating hyperspectral bands from regular RGB images, e.g., [15, 18, 37].
Other works have proposed methods to up-sample multispectral (with few bands) images to
hyperspectral images with many more bands and/or higher spatial resolutions, e.g., [16, 24].
Most of these works estimate bands in the visible range of the electromagnetic spectrum,
which adds small value beyond RGB images for real-life hyperspectral imaging applications.
In this thesis, we focus on maximizing the utility of images captured (not estimated) by
hyperspectral cameras.

The quality of hyperspectral data can be affected during the acquisition process, be-
cause of various reasons such as weather and illumination conditions. Thus, multiple data
enhancement methods have been proposed in the literature to increase the utility of hyper-
spectral images, which are expensive to collect. For example, Sidorov et al. [39] introduced
the concept of the Deep Hyperspectral Prior, which is an extension of the Deep Image
Prior [25], for enhancing hyperspectral images for indoor applications.

Prior works for enhancing hyperspectral images mostly consider mitigating noises in
remote sensing images. In remote sensing applications, noises and artifacts are introduced
because of atmospheric influences such as clouds, haze, rain, fog, and other weather condi-
tions [33]. Such weather conditions do not impact indoor hyperspectral imaging applica-
tions. However, indoor applications may suffer from distortions and noises because of the
illumination conditions. Specifically, outdoor hyperspectral applications benefit from the
sunlight, which has a wide spectral power distribution covering most of the electromagnetic
spectrum. Having an illumination source with wide spectral coverage is vital for capturing
hyperspectral images, as many of the bands are not in the visible light range. To provide
such wide spectral coverage for indoor applications, halogen light sources have typically
been required. However, as mentioned in Chapter 1, halogen sources limit the adoption of
hyperspectral imaging because they have short lifetimes and are expensive to operate and
install, compared to the widely available light sources such as LED and CFL. LED and
CFL light sources have low radiance intensities in the infrared (invisible) range; however,
they were designed for everyday use. As shown later in this work, using LED and CFL
light sources results in damaged hyperspectral bands, especially in the invisible range. This
damage is different in nature from the effect of noise in outdoor applications. In outdoor
applications, noise is added to the original signal, while in indoor applications, the signal is
weak from the source because of the low radiance in the invisible range.

The closest work to ours is the recent work in [44]. It uses 3D convolutions and recurrent
neural networks (RNN) to improve the quality of hyperspectral images, and was shown to
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outperform other works in the literature. We compare the performance of our proposed
method against this work.
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Chapter 3

Effect of Illumination on
Hyperspectral Images

In this chapter, we analyze the impact of various types of lighting sources on hyperspectral
images.

3.1 Effect of Illumination

Illumination plays a crucial role in capturing hyperspectral images. We start with some
basics. To obtain a hyperspectral image, a light source illuminates the scene. Then, the
reflected light from the scene is detected by the camera system, which divides it into wave-
lengths using a prism or grating structure, based on the camera design [4, 32]. Then, the
various wavelengths are captured by the camera sensor to produce the hyperspectral bands.

Let us denote the observed image value at pixel (x, y) of the nth band as I(x, y, λn).
The light source intensity at the position of (x, y) is a function of the wavelength λ and is
denoted by L(x, y, λ). The surface reflectance is denoted by S(x, y, λ) at the location (x, y),
and the sensitivity function of the camera for the nth band is indicated by Cn(λ). Then,
the image value can be defined as follows [14]:

I(x, y, λn) =
∫

S(x, y, λ) · L(x, y, λ) · Cn(λ) · dλ. (3.1)

We note that Cn(λ) is predetermined by the camera manufacturer, and the surface
reflectance S(x, y, λ) depends on the material composition of the objects in the scene. Thus,
the illumination source and its intensity at different wavelengths directly impacts the values
of the captured pixels of the hyperspectral image.

To capture hyperspectral images indoor, current systems require a light source that cov-
ers the 400–1,000 nm wavelength range with sufficient intensity. To meet this requirement,
halogen light sources are typically used since such sources have wide spectral power den-
sity [45]. However, as described in Chapter 1, halogen light sources are expensive to setup

10



and operate, not durable, and more importantly, they may alter or damage some objects in
the scene.

RGB 800nm 900nm 1000nm

Ha
lo
ge
n

LE
D

CF
L

Figure 3.1: Effect of common illumination sources on capturing hyperspectral images of
fruit samples.

RGB 800nm 900nm 1000nm

Ha
lo
ge
n

LE
D

CF
L

Figure 3.2: Effect of common illumination sources on capturing hyperspectral images of
object samples.

LED and CFL light sources, on the other hand, are widely deployed, do not emit signif-
icant heat, and cost effective. However, these sources were designed to operate in the visible
light range. Thus, the intensity of these sources beyond the 700 nm wavelength is low and
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(a) RGB (b) Halogen (c) LED (d) CFL

Figure 3.3: Spectral signatures plotted for the area marked by the blue circle using three
different light sources.

not uniform. This results in significant distortions in the hyperspectral bands captured in
the 700–1,000 nm range, which are the most useful for hyperspectral applications as they
contain information not visible to the human eyes and cannot be detected by other bands
in the visible range. This is because bands in the 700–1,000 nm range belong to the near
IR part of the spectrum, and they can penetrate surfaces and materials deeper than other
bands.

We conducted multiple experiments to show the damaging effects of capturing hyper-
spectral images using LED and CFL sources, in contrast to halogen sources. Specifically,
we used a high-end hyperspectral camera to capture various objects under halogen, LED,
and CFL lighting conditions. The model of the hyperspectral camera is Specim IQ, and it
captures 204 bands in the 400–1,000 nm range with a spectral resolution of ∼3nm. The
objects captured include apples, avocados, and meat samples. Different types of fruits with
different degrees of ripeness were used.

There are many models for LED, CFL, and halogen sources.1 We selected one of the
common models in the market for each of these three light sources. We note that each light
source has its own unique characteristics, which all of its models share. The differences are
usually in the color temperature and wattage. For example, all CFL sources function in
the same way, regardless of their size and wattage, which is quite different from how LED
and halogen function. Thus, although the three models used in the experiments do not
cover all possible lighting conditions, they offer representative samples for LED, CFL, and
halogen sources. The chosen models are: (i) 135-watt CFL source that emits 7600 luminous
units (LM) and 5500K color temperature, (ii) 9-watt LED source with 1000 LM and 4000K
color temperature, and (iii) 250-watt halogen source with 6050 LM and a 3050K color
temperature.

We analyze the results along two aspects: captured bands and spectral signatures. A
representative sample of our results is shown in Figures 3.1 and 3.3, for an apple with a
small defect. In Figure 3.1, we show the RGB image as well as three hyperspectral bands

1The characteristics of more than 180 LED, CFL, and Halogen sources can be found at https://lspdd.
org/app/en/home.
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produced by the camera, under the three lighting sources. As the top row of the figure
shows, the halogen source produces clear bands. Whereas the CFL source (middle row)
and the LED source (bottom row) introduce a substantial amount of noise in the captured
hyperspectral bands, especially as the bands get further away from the visible range. Note
that bands that are in the IR range are the most useful for hyperspectral applications, and
these are the ones that are damaged the most.

A closer look across the entire spectral range is shown in Figure 3.3 for a small area
of the object, marked by the blue circle. We used the average value of the pixels in each
band and plotted this value for each band. The spectral signatures shown in Figures 3.3.c
and 3.3.d are produced using LED and CFL light sources, respectively, have significant
fluctuations and noise compared to the cleaner signature in Figure 3.3.b, which is produced
using the halogen source. Such fluctuations in the spectral signatures negatively impact the
accuracy of the processing tasks performed on the captured hyperspectral images [10].
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Chapter 4

Problem Description and Proposed
Solution

This chapter describes the considered problem and then presents the proposed solution for
it.

4.1 Problem Definition

The objective of this thesis is to enable capturing hyperspectral images using cost effective
and widely available lighting sources, including LED and CFL sources. However, as we
showed in Chapter 3, such sources do not radiate enough power outside of the visible
light range. Thus, hyperspectral bands in the non-visible range (which are the most useful)
captured using these light sources suffer from substantial distortions, which renders them
useless. This, in turn, severely limits the applicability of hyperspectral imaging in many
practical applications.

The problem we address in this thesis is how to accurately restore damaged hyperspectral
bands captured using LED and CFL light sources, instead of the expensive and often not
available or not possible to use halogen light sources. This is a more general and more
challenging problem than the RGB image restoration problem addressed in prior works
for multiple reasons. In our problem, we need to concurrently restore many hyperspectral
bands at once, compared to restoring one RGB image in prior works. Second, similar to
RGB image restoration, the spatial accuracy needs to be ensured but for all bands. By
spatial accuracy, we mean the similarity of the restored pixels to the ground truth ones
in the x, y domain. Third, unlike RGB image restoration, the spectral accuracy must also
be ensured in the case of hyperspectral band restoration. The spectral accuracy means the
similarity of the restored pixels to the ground truth ones across the λ wavelength domain.
The spectral accuracy is crucial because it impacts the accuracy of the spectral signatures
created from the different bands, and spectral signatures are used for material identification
and classification in hyperspectral applications.
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4.2 Proposed Solution

We model our problem as band restoration which has some similarity with image restoration.
Traditional approaches have been explored for denoising and restoring hyperspectral bands.
Traditional methods do not work properly in this problem. Hyperspectral images are high
dimensional data and multiple environmental factors such as illumination type, distance
from the scene, and exposure time can result in various effects appearing in the images.
Traditional non learning based works are not able to recover all possible disturbances as
they mainly assume fixed conditions for the input data. However, Deep learning has been
successful in recent years in addressing the image restoration problem, as well as others. We
propose a deep neural networks as a solution for the hyperspectral band restoration problem.
We design a neural network model that considers both the spatial and spectral domains.
The proposed model is general and supports restoring different number of hyperspectral
bands, which is a significant feature since the number of bands captured by hyperspectral
cameras depends on the design of each camera, and it varies from one manufacturer to
another, and even across models from the same manufacturer. In addition, we propose four
loss functions and integrate them into the neural network model to maximize the spectral
and the spatial accuracy across many hyperspectral bands.

In the following, we present the details of the neural network design and the loss func-
tions.

4.2.1 Architecture of the Neural Network

The proposed network architecture is illustrated in Figure 4.1. Similar to previous models,
e.g., [38, 37], we design our network using residual blocks (RBs) as the main element of the
model. As shown in the figure, in addition to convolution (C), batch normalization (B) and
ReLU activation (R) layers, each residual block has a skip connection from the input to the
output of the bock. Batch normalization makes layer’s input in each batch consistent, and
ReLU activation keeps the network from the vanishing gradient problem, which results in
helping the learning process of the network be steady and faster. Skip connections allow
retaining some information from earlier layers, which helps in restoring damaged bands.
Residual learning strikes a balance between remembering information from earlier layers
and replacing it with new information from the later layers. The initial layers in a neural
network contain low-level features and later layers have high-level features. Also, noise
is usually dominant at high frequencies which disturbs images. However, there are some
useful features at these high frequencies in noisy images such as edges of different objects
(e.g., healthy vs defective apple) in different bands. Residual networks help in learning this
useful information along with the elimination of existing noise. The proposed network has 10
residual blocks coming after a convolutional layer applied to the input for feature extraction,
each has 6 layers. At the end of the network, there is a convolutional layer coming after a
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Figure 4.1: Network architecture of the proposed model. "C" = convolution, "R" = ReLU
activation function, and "B" = Batch Normalization, respectively. "RB" denotes residual
block, which is further expanded in the figure. Four loss functions, MRAE, MS-SSIM, SAM,
and SID, are used to improve the accuracy of the restored bands in the spatial and spectral
domains.

ReLU layer. The network is designed and trained on patches of images. The network does
not change the spatial size of input and output images, resulting from using a stride of 1 in
all convolution layers.

4.2.2 Loss Functions

Compared to RGB images, hyperspectral images have 3 dimensions. Our captured hyper-
spectral images, for instance, have 512 x 512 x 204 pixels. Thus, it is essential to consider
both the spatial and spectral domains in our solution. To restore hyperspectral bands and
ensure the accuracy of the both domains, we propose four loss functions, which are added
linearly to make the final loss functions. The integration of these functions in the neural
network model is shown in Figure 4.1. In the following, we define each loss function and
justify its usage.

• Mean Relative Absolute Error (MRAE): One of the challenges in hyperspectral
images is that the level of luminance varies across bands, especially when captured
with LED and CFL light sources. This means that the values of pixels in some bands
are higher than others. This can introduce bias towards bands with higher values.
Thus, we propose using the mean relative absolute error as one of the losses in the
network, which is defined as follows:

MRAE =
1
N

∑
i

∑
n

∣∣∣∣∣
Iout(i, λn) − Igt(i, λn)

Igt(i, λn)

∣∣∣∣∣ ,
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where Iout(i, λn) and Igt(i, λn) are values of i-th pixel at the n-th band of the output
and ground truth images, and N is the total number of pixels in each image.

• Multiscale Structural-similarity (MS-SSIM): This is a perceptual loss defined
to keep the shape and structure of the restored bands as close as possible to the ground
truth. This loss function was introduced by Snell et al. [40] for learning tasks since it
is differentiable. LMS−SSIM (Igt, Iout) is defined as:

LMS-SSIM (Igt, Iout) = − ∑
n

∑
i MS-SSIM(Iout(i, λn), Igt(i, λn)),

where

MS-SSIM(x, x̂) = IM (x, x̂)αM

M∏
j=1

Cj(x, x̂)βj Sj(x, x̂)γj ,

and M is a downsampling factor usually set to 5, and H(x, x̂), C(x, x̂), and S(x, x̂)
are defined as:

H(x, x̂) =
2μxμx̂ + C1

μ2
x + μ2

x̂ + C1
, C(x, x̂) =

2σxσx̂ + C2
σ2

x + σ2
x̂ + C2

,

S(x, x̂) =
2σxx̂σxx̂ + C3
σ2

x + σ2
x̂ + C3

.

The variables μx,μx̂, σx, and σx̂ are the mean and the standard deviations of pixel
intensity in an image patch positioned at either x or x̂, and C1, C2, and C3 are
constants.

• Spectral Angle Matching (SAM): SAM is a metric that measures the similarity
between two spectra [23]. SAM considers each spectra as a vector with the number
of bands as its dimension. We define a loss function based on this metric. This loss
function tries to minimize the angle between two given vectors, which represent the
reconstructed and ground truth bands. In other words, the value of the same pixel in
all bands of a hyperspectral image form a vector, and the SAM loss function uses the
dot product of the normalized versions of these vectors. Therefore, this loss function is
not sensitive to the length of the vectors, while the angle between them is important.
This feature helps the network to be robust against changes in the luminance level.
The SAM loss function is defined as:

SAM =
∑
x,y

cos−1

⎛
⎝

−−→
Iout(i, λ1:m)∣∣∣

∣∣∣−−→Iout(i, λ1:m)
∣∣∣
∣∣∣ ·

−→
Igt(i, λ1:m)∣∣∣

∣∣∣−→Igt(i, λ1:m)
∣∣∣
∣∣∣

⎞
⎠ ,
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where Iout(i, λ1:m) and Igt(i, λ1:m) are the spectral vectors with size m of the i-th pixel.

• Spectral Information Divergence (SID): The SAM metric treats spectral signa-
tures as geometrical vectors, while the SID metric proposed by Chang [6] looks at
them as random variables. SID, thus, considers the probabilistic differences between
the probability distributions of the spectral signatures. We define a loss function using
SID, which directs the spectral signature produced by the network to have a similar
probabilistic behavior as the ground truth. We used the softmax function to transfer
spectral signatures to the probability domain before using this loss function. The SID
loss function is given by:

SID =
∑

i[D(Iout(i, λ1:m) || Igt(i, λ1:m)) + D(Igt(i, λ1:m) || Iout(i, λ1:m))]

where:

D(Iout(i, λ1:m) || Igt(i, λ1:m)) =
∑

n Iout(i, λn) · log2
[

Iout(i,λn)
Imgt(i,λn)

]

and:
D(Igt(i, λ1:m) || Iout(i, λ1:m)) =

∑
n Igt(i, λn) · log2

[
Igt(i,λn)
Iout(i,λn)

]
.
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Chapter 5

Experimental Evaluation

In this chapter, we assess the performance of the proposed hyperspectral band restoration
method and compare it against the closest work in the literature, using a diverse dataset of
hyperspectral images collected under different illumination conditions.

5.1 Experimental Setup

Image Acquisition Setup. The image acquisition setup is shown in Figure 5.1. It consists
of a hyperspectral camera facing towards an experimental table, where we put the object(s)
to be captured. We created three different setups for capturing the same scene using three
different light sources. We categorize our dataset into three groups having different illumina-
tion conditions: (i) illuminating the scene with 2 halogen light sources from both directions
providing ideal illumination condition, and these images are used as ground truth for our
model, (ii) illuminating the scene with one LED light source, and (iii) illuminating the scene
with one fluorescent light source from different directions.

We used the Specim IQ hyperspectral camera for collecting the data. It is a line scanning
camera with a built-in scanner. This camera works in the visible and near infrared (400 −
1000nm) spectral range with ∼3nm spectral resolution providing 204 bands. This camera
operates by chargeable batteries and it has an internal storage to save the captured data. It
also has a mini display to help in focusing and adjusting the camera lens before capturing
and configuring the exposure time. Captured images are later transferred to a workstation
for post processing using a software tool provided with the Specim IQ camera to visualize
hyperspectral images.
Data Collection. To demonstrate the effectiveness of the proposed hyperspectral band
restoration method, we consider two broad classes of hyperspectral applications: (i) food
quality inspection and (ii) material identification and classification. We would like to show
that our method restores the damaged hyperspectral bands, which would allow such applica-
tions to function under LED and CFL lighting sources. Since the setups of these applications
would greatly vary based on the actual industrial environment, we focus on assessing the
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Figure 5.1: The experimental setup used to capture hyperspectral images under different
illumination conditions.

quality of the restored bands and comparing them to the ground truth bands that are
captured using ideal lighting conditions, which in this case are created using halogen light
sources.

For the food quality inspection class of applications, we collected data for two fruit
samples (apples and avocados) and meat samples (steak). Several previous studies proposed
using hyperspectral imaging to investigate various issues in these common fruits, e.g., [29,
17], including determining ripeness and detecting bruises and internal defects. We purchased
15 samples of different apple types: 4 honey crisp, 4 granny smith, 2 fuji, 2 gala, and 3
ambrosia. We picked combinations of apples having different degrees of firmness and bruises.

To capture hyperspectral images of apples, we arranged the samples in groups of different
sizes, ranging from 1 apple per group to 5 randomly chosen apples per group. For each group
of apples, we captured at least one hyperspectral image, which contains 204 bands produced
by the hyperspectral camera. We repeated the experiment for the considered three different
light sources: halogen, LED, and CFL. In total, we captured 180 hyperspectral images of
different types and groups of apples: 66 images were captured using halogen source, 57 using
LED, and 57 using CFL. Similarly, we captured hyperspectral images of different types and
groups of avocados. We had a total of 110 avocado hyperspectral images: 55 images were
captured using halogen and 55 using CFL.

Also, we gathered hyperspectral images samples of steak with various thicknesses, differ-
ent qualities and amount of fat captured in three different lighting. Hyperspectral imaging
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has been proposed for analyzing the nutrition and fat contents of meat and other foods,
e.g., [19]. We captured a total of 186 steak hyperspectral images: 72 using halogen, 57 using
CFL, and 57 under LED.

For the material identification class of applications, we collected data from different
types of objects composed of various materials such as metal, wood, plastic, and paper. We
captured objects individually and in groups. Thus, most scenes contained varieties of mate-
rials at the same time. In total, we captured a total of 123 hyperspectral images containing
various objects: 49 using halogen, 49 using CFL, and 25 using LED. Figure 5.2 shows a
few (RGB) samples of our datasets. And Table 5.1 summarizes the collected hyperspectral
dataset, which we believe is unique in this domain and we make it publicly available at [1].

Table 5.1: Summary of the collected hyperspectral dataset. Each sample has 204 bands,
where a band is 2d image

Halogen CFL LED Total
Apples 66 57 57 180

Avocado 55 55 - 110
Meat 72 57 57 186

Objects 49 49 25 123
Total 242 218 139 599

Figure 5.2: RGB samples from our dataset.

Model Implementation and Training. We implemented our neural network model using
PyTorch. We used the Adam optimizer with a batch size of 64 and a decaying learning rate,
and each convolutional layer has 64 filters with 3x3 size and a stride of 1. All training and
testing of the model were done on a workstation with a NVIDIA TITAN RTX GPU.
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We train our model for each class of applications separately. For example, for the material
identification, we use the hyperspectral images collected from different objects, but we do
not use images for fruits or meat. This is realistic, as such applications will not likely
be mixed in the same environment and the characteristics of materials are quite different
in each class, which makes using a single model to handle all such varieties impractical.
For each application class, we divide the relevant dataset into three disjoint sets: training,
validation, and testing.

For each sample in our dataset, we have three hyperspectral images: one taken under
halogen, another under LED and a third under CFL. For training, we pair each image
captured under CFL or LED with its corresponding image under halogen. The hyperspectral
images taken under halogen light do not have distortions and are considered as the ground
truth.

Each hyperspectral image has 204 bands. Since neighbouring bands are similar to each
other and to save processing time, we selected 25 of these bands that are equally spaced in
the spectral range. We note that our method is general and supports restoring any number
of bands, including all of the 204 bands. Training on more bands will, however, take longer
and require more memory. In practice, sample bands are typically used in hyperspectral
applications.

We utilize common data augmentation techniques in the literature, including combina-
tions of flipping and rotating the images. This augmentation has increased our datasets by
8 folds. In addition, our neural network model is designed to process patches of images.
Each image is divided into 64 non-overlapping patches of size 50 x 50 pixels.
State-of-the-Art Compared Against. Our problem is close in nature to works that
address noise reduction in hyperspectral imaging. We chose the most recent method for
hyperspectral denoising [44] to compare against. This method, referred to as QRNN3D,
was shown to outperform others in the literature. QRNN3D uses a recurrent neural network
(RNN) with 3D convolutions to consider the spectral dimension in addition to the two spatial
ones in the denoising process. QRNN3D was shown to handle different types of noise such
as Gaussian noise, impulse noise, and dead pixels or lines. We trained QRNN3D on our
datasets, in which hyperspectral bands contain noise due to diverse illumination conditions.
Performance Metrics. We use subjective and objective metrics in our analysis. We demon-
strate multiple sample images from different bands and experiments to subjectively assess
the visual quality and accuracy of our method relative to the ground truth and in compar-
ison to the state-of-the-art. In addition, we show and compare sample spectral signatures
across the entire spectrum.

We use five objective metrics to assess the spatial and spectral accuracies of the restored
bands, relative to the ground truth. Four of these metrics are defined in Chapter 4 and they
are: Mean Relative Absolute Error (MRAE), Structural Similarity Index Measure (SSIM),
Spectral Angle Matching (SAM), and Spectral Information Divergence(SID). MRAE and
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SSIM assess the spatial accuracy through measuring the error introduced in the restored
bands as well as the similarity of their structure to the ground truth bands. SAM and SID
consider the differences between the restored bands and the ground truth ones across the
spectral dimension. The last metric is Coefficient of Correlation (CoC), which is commonly
used in hyperspectral imaging works to measure how correlated are two spactras. The metric
can be defined mathematically as follows:

CoC =
∑

n(Iout(i, λn) − Iout(i, λn))(Igt(i, λn) − Igt(i, λn))√∑
i(Iout(i, λn) − Iout(i, λn))2(

∑
i Igt(i, λn) − Igt(i, λn))2

(5.1)

5.2 Results for Food Quality Inspection Applications

We present sample results showing the quality of the restored bands for hyperspectral ap-
plications designed for inspecting fruits such as apples. We start with the objective metrics,
which are summarized in Table 5.2. All metrics reported in the table are measured relative
to the ground truth. These metrics can be divided into two groups. The first group contains
MRAE and SSIM, and it shows the quality of the restored images in the spatial domain.
The second group measures the quality of the restored images in the spectral domain and
contains SAM, SID, and CoC. it. As Table 5.2 shows, the proposed method outperforms the
state-of-the-art across all metrics, and it produces fairly accurate bands across the spatial
and spectral domains.

Table 5.2: Comparison of the proposed band restoration method against the state-of-the-art
(QRNN3D) using multiple objective metrics. Data shown for the food quality inspection
class of hyperspectral applications.

Ours QRNN3D Comments
MRAE 0.24694 0.31486 Closer to 0 is better

CoC 0.9170 0.8040 Closer to 1 is better
SSIM 0.84460 0.64000 Closer to 1 is better
SAM 0.05903 0.18007 Closer to 0 is better
SID 0.00013 0.00015 Closer to 0 is better

Next, we present sample results to visually demonstrate the quality of the restored
bands. Two samples are shown in Figure 5.4 and Figure 5.3 for different apples. Figure 5.4
shows the results for the CFL illumination setting, while Figure 5.3 shows the results for the
LED illumination setting. In each figure, the RGB image is shown as well as four sample
bands at wavelengths 740, 810, 890, and 960nm. The figures also show the ground truth
bands captured using halogen illumination in the lowest row.

We can conclude three points from Figures 5.3 and 5.4. First, hyperspectral bands
captured under LED and CFL illuminations (1st row) are severely damaged, especially for
the most important bands in the infrared range. Second, the proposed band restoration
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method produces much better hyperspectral bands than the state-of-the-art (QRNN3D).
Third, the bands produced by our method are close to the ground truth.

Finally, we analyze and compare the spectral signatures created based on bands restored
by our method versus the ones restored by the state-of-the-art method. Figure 5.5 presents a
sample of our results. The figure also shows the spectral signatures created from the ground
truth bands and from the noisy inputs for comparison. The figure shows that signatures
created based on bands produced by our method are much closer to the ground truth
signatures than the ones produced by the state-of-the-art method.
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Figure 5.3: Comparison of the bands produced by the proposed method (3rd row) against
the ground truth (4th row) and the state-of-the-art (2nd row) from the input data (1st
row). Data shown for the LED illumination setting.
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Figure 5.4: Comparison of the bands produced by the proposed method (3rd row) against
the ground truth (4th row) and the state-of-the-art (2nd row) from the input data (1st
row). Data shown for the CFL illumination setting.
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Figure 5.5: Spectral Signature for the apple in Figure 5.4.

5.3 Results for Material Identification Applications

We evaluate our method on another common class of hyperspectral imaging applications,
which is material identification. As described in Section 5.1, we collected hyperspectral
images of different materials. We trained our model on some (but not all) materials. That
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is, we intentionally put some objects in the test dataset that were not seen during the
training process.

Two representative samples of our results are shown in Figure 5.6 for the CFL illumina-
tion condition and in Figure 5.7 for the LED illumination condition. We note that none of
the images in the training set contained the cups in Figure 5.6 or the whiteboard markers
in Figure 5.7. However, our network used the characteristics of other objects with similar
materials in the training dataset to restore the hyperspectral bands of these objects that
were never seen before.

In Figure 5.6, there are three cups. The white cup is made of paper and the blue and
red cups are made of plastic. We show in Figure 5.8 the spectral signatures for the two
different materials of the cups. The figure shows that our method produces fairly accurate
signatures that are close to the ground truth ones. This is unlike the signatures created
by the QRNN3D method, which deviate from the ground truth signatures, and hence may
compromise the performance of hyperspectral systems used for material identification.

Finally, we present the summary of the objective performance metrics in Table 5.3, which
shows that our method outperforms the state-of-the-art in all metrics. We note, however,
that the performance of our method on this class of applications is relatively lower than its
performance on the food quality inspection class of applications (summarized in Table 5.2).
This is because our setup contained significantly more diverse objects and materials in the
material identification case. In real-life applications, hyperspectral systems are typically
designed to differentiate a smaller number of different materials, e.g., identifying metal
objects from non-metal ones for recycling purposes. Thus, we expect our method to perform
even better for real applications.

Table 5.3: Comparison of the proposed band restoration method against the state-of-the-
art (QRNN3D) using multiple objective metrics. Data shown for the material identification
class of hyperspectral applications.

Ours QRNN3D Comments
MRAE 0.39096 0.48839 Closer to 0 is better

CoC 0.8693 0.7280 Closer to 1 is better
SSIM 0.75140 0.58540 Closer to 1 is better
SAM 0.09199 0.19367 Closer to 0 is better
SID 0.00020 0.00027 Closer to 0 is better
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Figure 5.6: Comparison of the bands produced by the proposed method (3rd row) against
the ground truth (4th row) and the state-of-the-art (2nd row) from the input data (1st
row). Data shown for the CFL illumination setting.
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Figure 5.7: Comparison of the bands produced by the proposed method (3rd row) against
the ground truth (4th row) and the state-of-the-art (2nd row) from the input data (1st
row). Data shown for the LED illumination setting.
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Figure 5.8: Spectral Signature for objects in Figure 5.6.

5.4 Results for Real-life Images

We verify our proposed model by testing on hyperpsectral images captured indoor under
diverse, uncontrolled, illumination scenarios outside of our labs. For this experiment, we
have gathered samples of real-life hyperspectral images covering visible and near infrared
range of the spectrum using the Specim IQ camera. We use the pretrained neural network
for material identification application from section 5.3 and test this network on real world
test data. We also test these data on QRNN3D model trained on the objects dataset in
Section 5.3 in order to compare the ability of both netwroks in recovering the real world
data. The visual quality results for three different scenes are shown in Figure 5.9. Our
model successfully addresses these scenes captured under diverse illumination conditions.
It results in images with considerably less artifacts than the produced images by the state-
of-the-art. Consequently, it shows the proposed model’s strength in handling uncontrolled
illumination conditions. Our model is generalized due to several reasons; First, we utilized
the most common efficient light sources in our dataset. Second, we included different sce-
narios such as lighting from different directions or capturing images with various exposure
times. Third, the model is carefully designed based on spectral and spatial characteristics
of hyperspectral images, and we also used Spectral Information Divergence in the pro-
posed loss function, which makes the model able to handle the uncertainty existing in the
damaged images. Finally, we enlarged the data by benefiting augmentation techniques and
patch-based training.
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Figure 5.9: Comparison of the produced bands by our proposed and QRNN3D netwroks for
three different real life scenes. 29



5.5 Ablation Study

In order to analyze the impact of loss functions on proposed model, we conduct an ablation
study. We train the neural network separately with the same settings and various loss func-
tions to make it possible to compare their effects. At first, we use the Mean Square Error
(MSE) which is one of the most popular reconstruction loss functions in training neural net-
works for computer vision tasks. Next, we train the network utilizing the proposed spectral
loss. Then, we add the spatial loss, and we, finally, train the network using both spectral
and spatial loss functions together. We present the test results of training the network using
the food processing dataset in Table 5.4 in which MRAE and SAM respectively show the
spatial and spectral reconstruction quality.

Table 5.4: Comparison of the various loss functions impact

MSE Spectral Spatial Spectral + Spatial Comments
MRAE 0.72120 22.6749 0.27255 0.25541 Closer to 0 is better
SAM 0.17612 0.06503 0.08575 0.06104 Closer to 0 is better

Table 5.4 shows that using MSE can produce outputs neither with acceptable spatial
nor with sufficient spectral quality. In this setting, the SAM metric is considerably lower
compared to its value of using the proposed spectral loss function. MRAE is also significantly
smaller when we benefit from the proposed spatial loss. This shows the importance of the
effect of variations in the level of luminance across bands which MSE cannot handle.

However, using the spectral loss results in the worst MRAE in the table. This is because
spectral loss function does not pay attention to the pixels values and it only considers the
pattern of spectral signatures of the restored and ground truth images. Also, utilizing the
spatial loss function is not able to provide the best spectral quality. Finally, training the
networ on both the spectral and spatial loss functions outperforms all previous netwroks.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we considered the problem of capturing hyperspectral imaging using common
lighting sources such as fluorescent (CFL) and light emitting diode (LED) for indoor appli-
cations, instead of using expensive, and occasionally not possible to use, halogen sources.
Unlike halogen sources, CFL and LED light sources emit low power in the invisible range
of the spectrum. We analyzed the effects of using different light sources on hyperspectral
imaging and showed that CFL and LED sources introduce significant noises and damages
in the hyperspectral bands in the invisible range of the spectrum, which are the most im-
portant bands for the applications. Then, we proposed a deep-learning model to restore the
damaged hyperspectral bands, which accounts for the spatial and spectral characteristics
of hyperspectral images. We collected a hyperspectral image dataset of around 600 images,
each with 204 bands. Our dataset contains different objects and materials captured using
various lighting sources. We are not aware of similar datasets in the literature. We con-
ducted an empirical study to analyze the performance of the proposed method. Our results
showed that the proposed method produces hyperspectral bands that are close to the ground
truth bands captured under ideal illumination conditions. Thus, the proposed method could
facilitate the deployment of hyperspectral imaging systems for many real-life applications
using cost-effective lighting sources. In addition, we compared the proposed method against
the closest work in the literature, using multiple objective and subjective metrics. Our re-
sults showed that the proposed method outperforms the state-of-the-art across all metrics.
Finally, our method results in a considerable amount of power-saving compared to using
halogen light sources while capturing hyperspectral images in industrial locations such as
warehouses.
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6.2 Future Work

The work in this thesis can be extended in multiple directions. For example, the deep learn-
ing model can be implemented on the hyperspectral camera itself. Current hyperspectral
cameras have GPU in their system. For example, Specim IQ uses NVIDIA Tegra K1. The
GPUs are on the hyperspectral cameras are currently utilized for various tasks such as clas-
sification of hyperspectral images. Optimizing the proposed model for implementation on
the camera hardware and integrating it with the current pipeline can lead to more powerful
and versatile hyperspectral cameras that could be used used for more real-life applications,
especially the ones that require fast or real-time processing. Another direction for extending
this work is exploring potential application of hyperspectral applications, such as artworks
authentication. Current approaches for validating artworks are invasive and destructive,
which can result in damages to the artworks. Using hyperspectral images is an alternative
approach for this application. However, halogen light sources can cause harm to the artworks
too. The work done in this thesis can be a solution without any potential damages to these
valuable items. Extending this work for this application requires gathering relevant datasets
to this problem. Next, the proposed band restoration method can be adapted to support
outdoor applications, especially for mitigating the effect of weather conditions on hyper-
spectral images since illumination conditions similarly vary in adverse climate conditions,
and introduce noises in captured images. Finally, the proposed method can be explored for
applying to the applications requiring bands above near-infrared (NIR) including part of
short wave infrared (SWIR); however, it may not be able to work for higher wavelengths
such as far-infrared (FIR).
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Appendix A

Dataset and Source Code
Description

This appendix contains information about how to install the requirements for running the
code to train the proposed neural network and to reproduce the results obtained in this
thesis. The code and dataset for training, validation and testing are publicly available. We
note that the paper published based on this thesis work [3] has received the reproducibility
badge from the ACM Multimedia Systems 2021 Conference.

A.1 Code and Datasets

A.1.1 Obtaining and Installing the Code

The code can be found on GitHub at https://github.com/pazadimo/HS_In_Diverse_
Illuminations

Use:

$ git clone https://github.com/pazadimo/HS_In_Diverse_Illuminations.git

$ cd HS_In_Diverse_Illuminations

Install PyTorch and other dependencies. For Conda users, you can create a new Conda
environment using:

$ conda env create -f environment.yml
$ conda activate HSIDI
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A.1.2 Hardware dependencies

To run the train and test code for the provided neural network, you need a NVIDIA GPU
supporting CUDA.

A.1.3 Software dependencies

The main requirements are:

• Python 3.7.7

• MATLAB

• Pytorch 1.5.0

• CUDA CuDNN

A.1.4 Dataset

The provided dataset is divided into training, validation, and testing sets and covers two
hyperspectral imaging applications including fruit processing and material identification.
The publicly avalaible dataset contains 25 bands from 400nm to 1000nm. The complete
dataset has 204 bands from 400nm to 1000nm for each hyperspectral image which can be
available upon request due to large size.

Dataset is available at https://drive.google.com/drive/folders/18Q-iWels4sZxSrVmne7HgX
MM3pKkQCTM?usp=sharing

A.2 Experiment Workflow

A.2.1 Training

Training dataset preparation:

• Original augmented dataset in .mat format for the Food Processing(FP) and Material
Identification(MI) categories is available at following links:
-FP: https://drive.google.com/drive/folders/1BI6J3aJiuqpXMFlNwYt3O0JLP3PHW
4zD?usp=sharing
-MI: https://drive.google.com/drive/folders/1LBvEqoJuQ3o9ryulqWbktEmI3K-g-K
1?usp=sharing

• The model requires 50x50x25 patches sampled from augmented dataset for the training
process stroed in .h5 format.

38



• Training and Validation .h5 files for the both fruit processing and material identifi-
cation categories are available at follwing links which you need to download them for
training the model:
- FP Training Set: https://drive.google.com/file/d/1qQGmerp7RU6igRSg7gUWX6
2EvTj1YYsS/view?usp=sharing
- FP Validation set: https://drive.google.com/file/d/1EvY3f-Rbm2FYMmw7SWA3
0pbO4WyTWXqz/view?usp=sharing

- MI Training Set: https://drive.google.com/file/d/1fhotXS85J7Bt1oH8AHxa4zNt9
fon1wJt/view?usp=sharing
- MI Validation set: https://drive.google.com/file/d/1 hZJZIYA2yI0v2WRkpIFpur
6ae8ldCup/view?usp=sharing

• Move these downloaded .h5 files to ./train/Data/ directory.

Train the models:

• Train a model for the fruit processing application:

$ python train_fruit.py

• Train a model for the material identification application:

$ python train_material.py

• The trained models will be stored in ./train/models/ folder with log files.

A.2.2 Reproducing our Results

Test dataset preparation:

• Test Dataset for both Fruit Processing and Material Identification Applications is
available at:

– Test Data: https://drive.google.com/file/d/1a3R77JJvedsuCH8KoR m5H BOaw
62fA1/view?usp=sharing

• Extract Data.zip file and transfer resulted Data folder into ./test/ directory.

Test the models:

• The pre-trained models for both applications are present in ./test/models/ folder.
Follow the next steps to get exact numerical and visual results as the evaluation
chapter.
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• Test pre-trained model for fruit processing application by using the following code in
./test/ directory.

$ python evaluate_model_fruit.py

• Test pre-trained model for material identification application by using the following
code in ./test/ directory.

$ python evaluate_model_material.py

• By running each of these files, the value of MRAE, SAM, and SID metrics for the
resulted hyperspectral images of the test sets will be printed.

• Resulted Images are available in ./test/Data/Fruit/test_results and ./test/Data/Ma
terial/test_results in .mat format. You can analyze them using matlab.

• For visualizing the inputs, ground truth, and resulted images of the same scenes shown
in the evaluation chapter, run this MATLAB file: ./test/visualize.m It will visualize
bands number 15, 17, 19, 21, and 24 (∼ 740, 790, 840, 890, and 960nm) and also saves
figures in .png format in ./test/ directory.
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