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Abstract

In today's increasingly urban society, the consumption of power by residential customers

presents a di�cult challenge for the energy market, while also having signi�cant environmen-

tal implications. Understanding the energy usage characteristics of each individual house-

hold can assist in mitigating some of these issues. However, this is very challenging because

there is no simple way to measure the power consumption of the di�erent appliances within

a home without installation of many individual sensors. This process is prohibitive since it

is highly intrusive and not cost-e�ective for both users and providers.

Non-Intrusive Load Monitoring (NILM) is a technique for inferring the power consumption

of each appliance within a home from one central meter (usually a commercial smart-

meter). The ability to obtain such information from widely spread existing hardware, has

the potential to overcome the cost and intrusiveness limitations of power usage research.

Various methods can be used for NILM, including hidden-Markov-models (HMMs), and

integer-programming (IP), with deep learning gaining popularity in recent years. In this

thesis, I will present three projects using novel deep learning approaches for solving NILM

- two preliminary works, and one major project. First, I will present a proof of concept

that using temperature data can improve the performance of simple, easily deployable deep

neural networks (DNNs) for NILM. The second preliminary project is a state-of-the-art

NILM solution based on the WaveNet architecture named WaveNILM.

Both of these projects, along with the majority of prior NILM research, are highly reliant on

diverse and accurate training data, which is currently expensive and very intrusive to obtain.

The main project presented in this thesis will attempt to address the data limitation using

the �rst truly synthetic appliance power signature generator for NILM. This generator,

which I name PowerGAN, is trained using a variety of Generative Adversarial Networks

(GAN) techniques. I present a comparison of PowerGAN to other data synthesis work in

the context of NILM as well as demonstrate that PowerGAN is able to create truly synthetic,

realistic, appliance power signatures.

Keywords: Deep learning; generative adversarial networks; NILM; load disaggregation;

sustainability; neural networks
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Chapter 1

Introduction

1.1 Nonintrusive Load Monitoring - NILM

As the price of energy continues to rise, both economically and environmentally, the im-

portance of understanding end-user power consumption characteristics grows. Speci�cally,

it is of great interest to know how individual appliances are used, and how much power

they draw from the grid. This can be bene�cial for both sides of the energy market, the

consumer as well as the provider. The consumer can use this data to better understand

their energy bill - �Which appliance is costing me money? Are there cheaper alternatives

to this appliance? Can I change my habits to reduce my costs?� The last point will become

increasingly important as variable energy prices will come into e�ect in the near future [1].

From the power providers' perspective, understanding appliance usage characteristic can

help better anticipate future consumption, prevent brown-outs [2], and maintain consumer

satisfaction through reducing unnecessary costs.

Currently, this data cannot be obtained without either replacing all appliances to smart

appliances, replacing all plugs to smart-plugs, or installing a slew of current and voltage

sensors. Nonintrusive load monitoring [3], �rst proposed by Hart in 1992, is one approach

to allow both end-users and energy providers simple, cheap, and less obstructive access to

such data. While NILM can apply to industrial, commercial, and residential scenarios, this

thesis will mainly deal with residential settings, unless otherwise directly mentioned.

In its most simple formulation, nonintrusive load monitoring (NILM), also known as

power disaggregation, attempts to solve the following equation:

pH =
AX

i =1

pi + � (1.1)

where pH is the total power consumed by the household (sometimes also known as mains

power or aggregate) and is the known variable;pi is the power consumed by thei -th appli-

ance, which is unknown;� is measurement noise; andA is the number of appliances, which

may be known or unknown. Eq. (1.1) represents an ill-posed inverse problem as it contains
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Figure 1.1: Non-intrusive load monitoring as �rst shown in [3]. The �gure shows the total power consumption
a house with speci�c notation for the appliance responsible for each of the changes in power level

far more variables than equations, sometimes even an unknown amount of variables. For this

reason, it is bene�cial to formulate NILM as the following maximum a posteriori problem:

p̂i = arg max
pi

�
� (pi j pH )

�
(1.2)

where � (pi j pH ) is the posterior distribution of pi conditioned on the current total power

pH . Of course, when designing a NILM solution, this distribution is unknown. Estimating

this distribution is the main challenge in NILM research, and is often solved usingmaximum

likelihood methods.

Because of the large and possibly unknown number of appliances, solving either of the

two formulations requires some additional knowledge aboutpi or pH . In the most com-

mon case, this additional information exists in the time dependence and stationarity of the

appliances' power consumption. Each appliance's power draw at a given time is highly de-

pendent on its power draw at previous (and subsequent) times, and it is common to observe

appliance �power signatures�. Given the above observations, we can revise the maximuma

posteriori formulation of NILM in one of the following ways:

p̂i (t) = arg max
pi (t )

�
�

�
pi (t) j pH (t )

� �
(1.3)

p̂i (t) = arg max
pi (t )

�
�

�
pi (t) j pH (t ); p̂(� )

� �
(1.4)

where t represents a single time step,t = f t0; t1; :::; tN g; � = f � 0; � 1; :::� M g, represent a

series of time steps andp̂ = f p̂1 p̂2; :: ; p̂A g represents previously estimated solutions for
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eachpi . Note that there is no requirement for the setst and � to represent the same time

or even be comprised of the same number of samples.

Eq. (1.3) simply states that when solving the maximum a posteriori problem for the

current time step of pi , we may use samples of the measured aggregate power from several

time-steps. Notably, in many NILM solutions, these time-steps are not required to be in the

past, meaning NILM is often not solved in a causal manner. In Eq. (1.4) we further condition

the posterior distribution upon our previous estimates of the appliance's consumption. Note

that here too, �previous� is only in the sense of the order of calculation, and not necessarily

the chronological order of samples.

Furthermore, most appliances have a �nite set of operating states (more on this in

section 1.1.1). These states, in many cases, de�ne the power consumption exclusively. Thus,

we can �rst solve for the appliance state, and then, if desired, continue to solve for the

actual energy consumption. We can express this formally in the following manner:

pi (t) = arg max
pi

�
�
pi jŝi (t )

�
; ŝi = arg max

si

�
Pr

�
si (t) j pH (t ) ; ŝ (� )

� �
(1.5)

where si (t); ŝi (t) are the state of appliancei at time t, and its estimate, respectively; and

ŝ is a vector of all appliance state estimates. Note that� has been replaced withP r since

we are now dealing with discrete probabilities as opposed to continuous densities.

Having established the basic formulation of NILM, we can begin to appreciate its dif-

�culty. Inherently, we are solving one equation with a great and often unknown number

of variables. In order to achieve this, we must obtain signi�cant statistical insight into the

appliances and the aggregate. When attempting to gain such understanding, we are faced

with a few major challenges:

� Variety - Di�erent homes use a di�erent set of appliances, and these appliances are

generally from a di�erent make or model. For example, some homes may have electrical

heating while others may use gas heating or no heating at all; Common television

technologies such as LCD, OLED, and Plasma greatly di�er in power consumption,

and there is even further di�erence between di�erent models and manufacturers within

each technology.

� Data collection - In order to collect enough appliance data from real world scenarios,

we must do the exact thing NILM attempts to solve - install a great amount of sensors

in various households. Since this process is expensive and intrusive, the data collected

for NILM is done primarily by research groups (more on this in section 2.2) and the

characteristics of each dataset vary greatly, making it di�cult to combine data from

di�erent sets.

� Real-Time calculations - In order to make NILM a viable tool for many households

it is important to get the dissaggregated power measurements relatively quickly. This

3



means NILM solutions need to strive to be causal, relying as much as possible on

past samples, or at the very least, incurring only a �nite delay in samples for cal-

culation. Furthermore, to remain �nancially viable, NILM solutions must achieve the

aforementioned real-time performance on simple, widely available hardware platforms.

� Generalization - NILM solutions, trained or designed using �nite amounts of data

must be able to generalize to other scenarios. This can be achieved within the original

solution, or through some online learning method. As a result of the data collection

challenges and the great variety of appliances, generalization remains the single most

di�cult aspect of the NILM problem.

One of the ways to overcome some of these challenges is through understanding the

di�erent types of appliances, how we can divide them into groups and how those e�ect our

ability to model them.

1.1.1 Appliance Types

One of the major challenges in solving NILM is the great variety of appliances available

in the market and in households. One of the ways to mitigate this di�culty is through

grouping appliances by the characteristics of their power signature. In his paper [3], Hart

noted that appliances can be roughly divided into three categories. In a later paper [4], Kim

et al. built upon Hart's work and recognised a fourth useful type of appliance. Including

this, the four appliance types are as follows:

� Type 1 - On\O�. These simple appliances have a binary state, they are either on or o�.

This category includes many appliances such as lights, toasters, kettles, etc. Fig. 1.2(a)

shows the power used by a simple 20 Watt light, which is a type 1 appliance.

� Type 2 - Finite State Machine (FSM). These appliances have �nite, and discrete set of

operating states. The transition between these states can be user controlled, such as

in a blow-dryer with multiple heat and fan settings, or automatic, such as in a dryer

or washing machine operating cycle. Fig. 1.2(b) shows the power used by a lamp with

3 possible light intensities, which is a type 2 appliance.

� Type 3 - Continuously variable. These appliances have a component whose power

consumption can change on a continuous scale, rather than jump between discrete

states. In some cases these appliances are also members of the previous two groups.

For example, a light with a dimmer switch, will have a variable load as the user may

change its intensity, yet it will still generally be switched on and o� by the user. In

other cases, the variable load may be present in one of the states of a multiple state

appliance. For example, in Fig. 1.2(c) we can see that the spin cycle, which represents

one of the many states of a washing machine, has a continuously varying power draw,

dependent on the spinning frequency.
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Figure 1.2: Examples of the power signatures of various appliances types. (a) is a simple 20 Watt light,
controlled by a standard switch; (b) is a lamp with 3 user controlled intensity settings; (c) is a washing
machine, note the continuously variable load during the machine's spin cycle; (d) is a fridge, always left on,
automatically cycling between cooling and standby states as the fridge's internal temperature changes

� Type 4 - Always On\Cyclical - These appliances have a periodic nature and will

remain on extensively or even permanently, switching between their internal states.

For example a fridge will generally always be on, and it will alternate between cooling

and standby cyclically. Here too, there may be some overlap with the other appliance

types. For example, an electric heater, will be controlled by the user (or by a pre-

programmed thermostat), but once activated, will remain on for extended periods

of time, periodically changing between heating the room until reaching the desired

temperature, and moving to standby as the room cools. Fig. 1.2(d) shows the periodic

nature of the power draw of a fridge, which is a Type 4 appliance.

Understanding the di�erent types of appliances can help in many algorithms for solving

NILM, and it is crucial in any solutions based on modelling the appliances. For example,

when modelling type 1 and 2 appliances we can focus on the state machine, because the

power given each of the states is quite well known. On type 3 appliances on the other hand,

we must model a continuous stochastic process of some sort. Type 4 appliances can some-

times be modeled similarly to periodic waveforms. Even when not modelling the appliance

directly, understanding the various appliance types is crucial for any NILM researcher.

1.1.2 The Complex Power Signal

Generally, all household electrical power comes from the grid in the form of alternating

current (AC) electricity. Notable exceptions to this are home batteries and solar pannels,

which produce direct current electricity, but today they still provide only a minor portion
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of the power used by the average household. Because of its oscillating nature, AC electricity

power can be momentarily negative (power is returning from the household to the grid).

For this reason, when discussing AC energy consumption, we separate the power into two

main types: active power (P) and reactive power (Q).

Active power represents the portion of the power that gets physically dissipated in the

household, and is usually the only quantity monitored by utility companies for residential

customers. This kind of power is dissipated by appliances converting electric energy into

work or heat. In some cases, active power is consumed by design, for example in a simple

electric heater which uses a resistor to transform electricity to heat; or in a fan which

converts power to kinetic energy. In other cases, the active power consumption is a result of

an unwanted resistive component of a complex appliance's load. This usually represents an

undesired, yet unavoidable, conversion of power to thermal energy, such as when a computer

heats up during its operation.

Reactive power, on the other hand, is the portion of the power that is only temporarily

stored in an appliance. Conceptually, a load, such as a perfect capacitor, can be completely

reactive, meaning it will not dissipate energy at all. In practice however, no such loads

exist (thanks to the second law of thermodynamics), and even near-perfect reactive loads

are uncommon since they do not serve a functional purpose. Instead, common household

appliances are generally composed of a combination of active and reactive load components.

Mathematically, active power results from in-phase voltage and current, whereas reactive

power results from out-of-phase voltage and current. Apparent powerS, sometimes referred

to as total power, is simply the combination of real and active power, and is often an

easier quantity to calculate. The relationships between all of the aforementioned qualities

are detailed below:

S = I � V; P = S � cos(� ); Q = S � sin(� ); (1.6)

whereI and V are current and voltage RMS values respectively, and� is the phase of voltage

relative to current. Fig. 1.3 demonstrates the the active and reactive power components of

a simple sinusoidal waveform.

It is important to note that in larger industrial settings, the reactive power does, in fact,

contribute to signi�cant costs and thus is generally monitored. Although predominantly

reactive loads do not consume power themselves, they require the transmission of large

amounts of energy over electrical lines. This requires the grid to meet higher generation and

transmission demands. Additionally, as power transmission is always imperfect, a proportion

of the energy will always get dissipated en-route to the end-user, generating additional costs

for the provider.

Given the understanding of the di�erent power components of AC electricity, we can

surmise that additional information regarding the appliance exists in the di�erences between

its active and reactive power signatures. This is con�rmed by observing actual appliance

6



Figure 1.3: The di�erent components of a AC power. For this �gure � = 0 :3�

power signatures, as can be seen in the example, taken from the AMPds2 dataset [5],

appearing in Fig. 1.4. Using this insight we can further reformulate our NILM problem as

follows:

pi (t) = arg max
pi

�
�
pi jŝi (t )

�
; ŝi = arg max

si

�
P

�
si (t) j pH (t ); ŝ(� )

� �
(1.7)

wherepH (as opposed topH ) represents a set of the di�erent measured electrical attributes

of the home, such as active, reactive, and apparent power, voltage, current, and phase.

Figure 1.4: Active and reactive power signatures for the dishwasher and clothes washer from AMPds2 [5].
The two appliances have complex and somewhat similar signatures in active power, but far simpler and more
distinct signatures in reactive power.
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