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Abstract

Multicast service chaining refers to the orchestration of network services for multicast traffic.
Paths of a multicast session that span the source, destinations and required services form
a complex structure that we refer to as the multicast distribution graph. In this thesis, we
propose a new path-based algorithm, called Oktopus, that runs at the control plane of the
ISP network to calculate the multicast distribution graph for a given session. Oktopus aims
at minimizing the routing cost for each multicast session. Oktopus consists of two steps.
The first one generates a set of network segments for the ISP network, and the second
step uses these segments to efficiently calculate the multicast distribution graph. Oktopus
has a fine-grained control over the selection of links in the distribution graphs, which leads
to significant improvements in the quality of the calculated graphs. Specifically, Oktopus
increases the number of allocated sessions because it can reach ISP locations that have the
required services, and thus includes them in the calculated graph. Moreover, Oktopus can
reduce the routing cost per session as it carefully chooses links belonging to the graph. We
compared Oktopus against the optimal and closest algorithms in simulations using real ISP
topologies. Our results show that Oktopus has an optimality gap of 5% on average, and
it computes the distribution graphs multiple orders of magnitude faster than the optimal
algorithm. Moreover, Oktopus outperforms the closest algorithm in the literature in terms
of the number of allocated multicast sessions by up to 37%.

Keywords: Multicast Traffic Engineering; Service Chaining; ISP Network
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Chapter 1

Introduction

Recently, network operators have adopted Network Function Virtualization (NFV) [55, 39]
to reduce the cost of purchasing and managing middleboxes such as firewalls and IDSes. In
NFV, the functionality of a hardware-based middlebox is implemented as a virtual network
function (VNF). This led the research community to explore different aspects of NFV such
as implementing VNFs efficiently and securely [30, 52, 40, 41, 44, 21], building network
stack for VNFs [31, 38], managing their state [32, 58], and deploying them [37, 49, 56]. For
simplicity, we refer to a VNF as a service.

ISP networks have observed various changes in terms of their architecture and the com-
plexity of Internet applications. Specifically, the adoption of NFV allows large ISPs to deploy
various services at different locations in their networks to support their customer needs, and
the adoption of Software Defined Networking (SDN) allows complex Internet application
design. Moreover, many recent Internet applications allow their users to produce and con-
sume content anytime at high rates. Examples of such applications include live Internet
broadcast (e.g., Facebook Live [57]), IPTV [23], webinars and video conferencing [11] and
massive multiplayer games [13]. The scale of these applications is unprecedented. For in-
stance, Facebook Live aims to stream millions of live sessions to millions of concurrent users
[57, 45]. Many large ISPs use multicast to carry traffic of these applications through their
networks efficiently. For example, AT&T has deployed AT&T TV, and BT has deployed
YouView, where both use multicast.

As these Internet applications become complex, providers of these applications require
their multicast traffic to pass through ordered sequences of network services. For example,
traffic of a live video stream may require to pass through a firewall, IDS, and transcoder.
The orchestration of ordered services in a multicast session is referred to as multicast ser-
vice chaining. A crucial requirement for service chaining is that packets of a session need to
be processed by the required sequence of services before reaching their destinations. Since
services are typically deployed at different nodes throughout the ISP network, packets of a
multicast session may need to visit a node or link multiple times. Therefore, the paths of
a multicast session that requires service chaining may not necessarily form a tree. Instead,
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paths that span the source, destinations, and required services form a more complex struc-
ture that we refer to as a multicast distribution graph. To realize service chaining, the ISP
needs to calculate multicast distribution graphs for multicast sessions efficiently.

1.1 Problem Statement

The problem we address in this thesis is designing an efficient multicast service chaining
algorithm for large-scale ISPs. Calculating multicast distribution graphs that fulfill service
chaining is, however, a challenging task. First, the ISP needs to jointly allocate resources
at the network layer (i.e., link capacities) and system layer (i.e., processing capacities of
network services), while minimizing the routing cost per session. Second, the ISP should
maximize the number of allocated multicast sessions in order to satisfy all business require-
ments. This can be a hard task to achieve, especially when the number of sessions increases.
Third, since an ISP does not necessarily deploy all service instances at all of its locations,
the calculated graphs may include loops in the network. Forwarding loops may waste sig-
nificant network resources, especially for bandwidth-demanding applications such as live
video streaming. In addition, they may introduce forwarding ambiguity at routers. Finally,
the search space of multicast service chaining is much larger than its unicast counterpart.
As a result, exhaustive search algorithms may not calculate the distribution graphs in a
reasonable time.

1.2 Thesis Contributions

We propose a new algorithm, called Oktopus, that runs at the control plane of the ISP
network to calculate a multicast distribution graph for every session in the network. Oktopus
has two goals when it calculates the distribution graph: (i) maximizing the number of
allocated multicast sessions in the ISP network, and (ii) minimizing the average routing cost
per session. Oktopus is efficient as it achieves these goals without exceeding the ISP network
and processing resources, and it does not create forwarding loops in the ISP network.
Oktopus is also general as it does not make assumptions about the ISP topology or its
available resources.

The key idea of Oktopus is the design of a new path-based approach to calculate the
multicast distribution graph. Specifically, for a given multicast session, Oktopus calculates
a set of valid network paths that satisfy the service chaining requirements from the source
to each destination. Then, it combines the calculated paths to all destinations to form the
final distribution graph. We propose several ideas in the design of Oktopus, such as efficient
offline and on-demand path generation, path weight calculation, and lightweight tracking
of path direction.

We evaluate and compare Oktopus against the optimal solution as well as the closest
algorithm in the literature [46] in simulations using real ISP topologies with different sizes.
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Compared to the optimal solution, Oktopus produces multicast distribution graphs with
a routing cost of about 5% more than the ones produced by the optimal algorithm, while
it computes the distribution graphs multiple orders of magnitude faster than the optimal
algorithm. Moreover, when increasing the number of multicast sessions, the optimal algo-
rithm fails to calculate a solution within 24 hours for large ISP topologies, while Oktopus
calculates the distribution graphs in less than two minutes. In addition, our results show
that Oktopus outperforms the closest algorithm in the literature in terms of the number
of allocated multicast sessions by up to 37%, and it efficiently utilizes the available ISP
resources to minimize the routing cost.

1.3 Thesis Organization

The thesis is organized as follows. Chapter 2 includes a brief background of the ISP architec-
ture and summarizes related work. Chapter 3 presents the system model and the problem
definition. Chapter 4 discusses the proposed Oktopus algorithm. Chapter 5 presents the
implementation and API of the framework that runs the Oktopus algorithm. The proposed
Oktopus algorithm is evaluated in Chapter 6. Chapter 7 concludes the thesis and describes
potential future work.

3



Chapter 2

Background and Related Work

2.1 Background

In this chapter, we provide an overview of software-defined networking and network function
virtualization. Then, we discuss the related works in Section 2.2.

2.1.1 Software-defined Networking

Traditionally, Internet service providers (ISPs) managed their networks by writing custom
scripts and deploying them to different network devices such as routers and switches. This
process is error-prone as it may result in configuration and logic errors, and time-consuming
as the operator needs to develop and test every script in isolation and end-to-end. In ad-
dition, ISPs suffer from vendor and product lock-in, where ISPs could not easily deploy
new hardware from other vendors or even upgrade to new hardware from the same vendor.
Thus, managing a large-scale network with heterogeneous devices is a hard task.

To reduce the management costs, ISPs have recently adopted the software-defined net-
working (SDN) architecture [3]. SDN isolates the control plane that manages the routing
logic from the data plane that manages the forwarding logic. It allows ISPs to define how
packets are forwarded from a logically centralized controller, as shown in Figure 2.1, to
engineer the network traffic.

SDN defines the traffic-engineered path by using match-action rules on the packets’
headers. The rules are distributed to the switches by the SDN controller. On the other
hand, the conventional protocol Multiprotocol Label Switching (MPLS) [22] defines the
path by encapsulating the packet with labels. The labels are distributed by an additional
protocol, such as Label Distribution Protocol (LDP) [53]. To enforce the traffic-engineered
path in the ISP network using MPLS, ISPs must carefully design the routing logic by
computing the labels and the forwarding logic by computing the LDP.

The OpenFlow protocol [34] is the defacto standard to implement SDN. Figure 2.1 shows
the components of the OpenFlow switch. An SDN switch contains a set of flow tables, where
these tables consist of flow entries that match action rules on the packet headers. The actions
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Figure 2.1: OpenFlow switch. The packet enters from the ingress port and matches to one
or more flow tables. If the matching entry is found, then action associated is performed,
such as forwarding to a particular egress port. To perform multicast forwarding, the packet
is forward to the group table where it gets cloned.

include forwarding the packet to the next flow table, dropping the packet, or forwarding the
packet to a specific egress port. An SDN switch also contains a group table that consists
of group entries to support multicast forwarding [1]. A group entry contains a list of action
buckets, where each bucket contains a set of actions. A packet matched to a group entry
is cloned for each bucket, and the corresponding bucket actions are applied to the cloned
packet.

The flexibility of SDN makes the process of developing new applications at the controller
time-consuming. Specifically, network operators need to make custom optimizations suited
for each application. Recently, the industry [4, 2, 6] and academia [27, 26, 25] have proposed
adding an optimization layer at the control plane to facilitate the SDN application devel-
opment process. The functionality of this optimization layer includes providing expressive
programming interfaces, computing the traffic-engineered paths, and converting the paths
to SDN rules. In particular, traffic-engineered paths are realized using match-action rules
installed at SDN switches. An example is shown in Figure 2.2. The optimization layer re-
ceives the SDN applications request and computes a set of traffic-engineered paths. Then,
the calculated rules are installed at the network switches via the SDN controller.

2.1.2 Network Function Virtualization

In addition to network connectivity, ISPs also provide network services to their customers.
Specifically, customers of large-scale ISPs are well beyond end users, and they may include
content and cloud providers, mobile network operators, and other (often smaller) ISPs.
These customers require additional processing of their traffic inside the network through
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Figure 2.2: An example of an SDN network with an optimization layer.

services. Examples of these network services are deep packet inspection (DPI) [9, 50], fire-
wall, carrier-grade NAT (CG-NAT), load balancers [19], analytics, logging, content caching,
video transcoding, and monitoring [5].

These network services are provided as middleboxes [60, 50] deployed inside the ISP
network. A middlebox is a specialized hardware designed to execute a dedicated network
service. To reduce the cost of purchasing and managing middleboxes, ISPs virtualize these
services and deploy them to general-purpose CPUs. This is referred to as Network Function
Virtualization (NFV) [55, 39]. Specifically, the functionality of a hardware-based middlebox
is implemented as a virtual network function (VNF) and is deployed to servers [49]. NFV
offers the same network service capability at a lower cost with the tradeoff of increased
latency.

The implementation of NFV consists of three components: flow classifier, service function
forwarder (SFF), and the VNF. The classifier examines the incoming flow from the ingress
port, and based on the flow type, the required services and the ISP-specified rules, the
classifier attaches Network Service Header (NSH) protocol headers [43] between Layer 2
and Layer 3 headers. The NSH header specifies for every packet the service type and the
location of the VNF to process the packet. When the packet traverses the network, the SFF
parses the NSH header and forwards it to the corresponding server. The last component, the
VNF, is the virtualized network service that processes the packet. For example, a firewall
VNF has a set of match rules to drop packets, or a virtualized NAT maps IP addresses
to/from public and private address space.
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Figure 2.3: Example of a service chaining requirement.

ISP offers the ability for a network application to specify an ordered set of network
services that the traffic must pass through [24]. The ordered set of network services is
referred to as service chaining. The network services in the service chaining must be strictly
processed in the order the application had specified. Service chaining may contain a cycle,
or the resulting traffic may traverse the same link multiple times to satisfy the service
chaining requirement. Figure 2.3 shows a service chain that is mapped to network paths.
The network services numbered 1 and 3 are deployed on node c, and 2 and 4 on node h.
The network paths are colored according to the network service to differentiate the traffic
passing the links multiple times.

2.2 Related Work

We summarize the relevant works in the following.

2.2.1 Service Chaining

Prior works, e.g., [47, 20, 36], addressed the unicast service chaining problem. For example,
the work in [47] proposed to transform the original ISP network to another graph and then
to find a service-chained path using the Dijkstra algorithm. The work in [20] considered
the joint service chain routing and service deployment problem in unicast. These methods
are not applicable to multicast because they may introduce network loops or allocate more
network resources as they do not consider the branching nature of multicast.

Several prior works, e.g., [59, 35, 46], addressed the problem of service chaining for
multicast traffic. Xu et al. [59] proposed an algorithm to search for the best Steiner tree
that contains the required number of services. This work assumed the services are deployed
at all ISP locations, which is not practical in many scenarios. Kuo et al. [35] addressed
the multicast service chaining problem in cloud environments by building network overlays,
while Oktopus focuses on multicast service chaining at the network level (i.e., handling link
and forwarding table capacities).
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A recent work [46] proposed an algorithm, called MSA, to solve the multicast service
chaining problem. This algorithm builds an adjacency graph where each node represents a
service, and each edge represents the shortest path between the service nodes. MSA then
finds a path from the source to the last service function from the adjacency graph. Finally,
it calculates a Steiner tree that connects the last service nodes to the destinations. MSA,
however, assumes infinite link capacities, and thus it may work in certain situations where
the number of multicast sessions is small. However, as the number of sessions increases,
MSA may not allocate many sessions, or it may congest the network. In contrast to MSA,
Oktopus is general as it calculates multicast distribution graphs for large numbers of sessions
without making assumptions about the ISP resources.

2.2.2 Service Deployment

The problem of service deployment focuses on optimizing service placement with different
objectives. In [29, 48], the authors considered the problem of jointly optimizing the number
and location of deployed services to minimize their deployment cost and maximize their
usage. The authors in [42] considered the problem of the service placement and request
scheduling to maximize the utilization of services and minimizes the response latency of
the request. In [36], the authors considered the joint problem of service placement and path
selection. Here, we assume that the services are already deployed at locations within the
ISP, and we do not address the deployment problem.

2.2.3 Traffic Engineering (TE)

Multicast TE refers to the process of computing links of multicast trees that achieve a
specific objective, e.g., minimizing the maximum link usage. The current de-facto standard,
mLDP [54], builds a shortest-path multicast tree from the source to all destinations in the
multicast session. Thus, it may not be able to achieve the required TE objectives. Prior
works, e.g., [12, 28], addressed the multicast TE problem while optimizing the usage of link
and forwarding table capacities. MTRSA [28] is a heuristic algorithm that runs when the
forwarding table of a router is overloaded. This algorithm reroutes the paths that lead to the
overloaded router to other paths that reduce the total routing cost. OBST [12] addressed the
online multicast TE problem while considering the rerouting cost of multicast trees. Unlike
these works, Oktopus efficiently calculates the (complex) multicast distribution graphs while
considering the available link, processing, and forwarding table capacities.

2.2.4 Control-plane Frameworks

There are several control-plane frameworks that provide a high-level programming interface
for the network operator. For instance, frameworks such as ONOS Intents [4], Boulder [2],
and NIC [6] provide a simplified way to create and manage forwarding rules at the controller.

8



These frameworks, however, do not calculate the optimized network paths and assume that
these paths are given to them.

Moreover, frameworks such as SOL [27], Chopin [26] and DEFO [25] compute optimized
unicast paths to satisfy a specific routing objective. SOL [27] and Chopin [26] pre-generate
network paths and pass them to an existing optimization solver (e.g., CPLEX) to calculate
the optimized traffic flows. DEFO [25] calculates optimized paths by searching for a sequence
of middle-points in the network instead of engineering every link in the path. However,
DEFO cannot efficiently support service chaining as middle-points have limited control
over the chosen links. In contrast to these works, Oktopus supports multicast distribution
graphs while engineering every link in the calculated graphs.

9



Chapter 3

System Model and Problem
Definition

In this chapter, we state the system model in Section 3.1. In Section 3.2, we provide the
problem definition and hardness.

3.1 System Model

Multicast can be used in various scenarios. A common use-case is when a major ISP, e.g.,
AT&T, manages multicast sessions for its own clients. Clients, in this case, can be end-users
in applications such as IPTV and live streaming. Clients could also be caches for content
providers such as Netflix, where the contents of such caches are periodically updated using
multicast. Another common use-case for multicast services happens when large-scale content
providers, such as Facebook and Twitch, partner with ISPs to deliver live streams to millions
of users. Our abstract system model supports these and other use cases of multicast.

We consider a multi-region ISP network that has data and control planes. The data
plane is composed of core routers deployed in multiple geographical regions. The control
plane (referred to as the controller) learns the ISP network topology. This is simple to
achieve using common intra-domain routing and monitoring protocols. The controller sends
match-action rules (e.g., using the OpenFlow protocol [34]) to core routers to inform them
how to forward packets of multicast sessions.

The ISP network is modeled as a graph (N, E), where N represents ISP locations and
E represents links between the locations. Each link l ∈ E has a capacity of cl bits/sec.
The ISP sets a cost γl of forwarding a unit of traffic on link l. An ISP location refers to
a physical entity that contains routers and servers, e.g., point of a presence (PoP). We
refer to ISP locations as nodes for simplicity. Specifically, each node n ∈ N contains a core
router to forward traffic to/from other nodes. That core router has a forwarding table of size
fn entries, which is used to maintain match-action rules sent by the controller to forward
multicast packets. In addition, the node n has servers that host a set of services. The ISP
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Figure 3.1: A multicast session with a source node a, destination nodes f , g, h and i, and
required services 1→ 2. Arrows are links of the multicast distribution graph.

allocates processing resources to process pv,n bits/sec for a service v deployed at node n.
The deployment and allocation of services are beyond the scope of this work.

A multicast session s is defined by 〈src, dsts,V,b〉, where src and dsts are its source and
destinations, V is the sequence of required services, and b is the session bandwidth demand
bits/sec, respectively. Packets of s need to be processed by the sequence of required services
V before reaching its destinations.

The ISP controller uses Oktopus to calculate the multicast session s a distribution graph
D, which is defined by paths spanning src and dsts while satisfying the required sequence
of services V. The controller then maps the graph to match-action rules and sends these
rules to corresponding routers.

Figure 3.1 shows an example of an input multicast session to Oktopus defined by
〈a, {f, g, h, i}, {1 → 2}〉. Services 1 and 2 are deployed at nodes d and e, respectively.
Arrows in the figure represent the multicast distribution graph calculated by the proposed
algorithm.

Each graph node n belonging to D represents a core router, and a set of services if this
ISP location processes packets of s. Moreover, packets of a multicast session maintain in
their headers what services these packets have passed through so far. These headers are
updated by every service that processes the packets. We define the packet class as the set
of written services in its headers. Specifically, the classes of incoming or outgoing packets
on interface i at node n of session s are referred to as inc(i, n, s) or out(i, n, s), respectively.

Edges of D, denoted by L, are calculated to satisfy the service chaining requirements, and
thus, they may not follow the shortest paths computed by intra-domain routing protocols.
We define the routing cost of forwarding packets of a multicast session s on links of D as
b ×

∑
l∈L γl. In addition, the total routing cost of S is

∑
s∈S bs

∑
l∈Ls

γl, where S is the set
of requested sessions.
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The ISP controller performs the following three operations to calculate the multicast
distribution graphs. First, it periodically receives requests from ISP customers to allocate
resources to their multicast sessions. Second, for each incoming multicast session request,
the ISP controller runs the Oktopus algorithm to calculate a multicast distribution graph
D. Finally, upon the calculation of D, the controller maps the graph to match-action rules
and send them to corresponding routers. Note that the second step is a continuous online
process. The Oktopus algorithm is triggered as soon a multicast session is requested instead
of triggering once for multiple multicast sessions. The focus of this thesis is on the design and
optimization of the second step, while the design of multicast applications and match-action
rules mapping are beyond the scope of this thesis.

3.2 Problem Definition and Hardness

The problem addressed in this thesis is to calculate a multicast distribution graph D for
an input multicast session s with required services V by allocating the processing resources
(in the system-level) at each ISP location to the session as well as engineering edges of the
distribution graph (in the network-level) to pass through required services while (i) mini-
mizing the routing cost of the session without exceeding the available processing resources
at nodes, link capacities, and forwarding table sizes at core routers, and (ii) maximizing the
number of allocated multicast sessions in the ISP network.

The considered problem introduces many hard constraints and requirements that make
solving the problem very challenging. We show the hardness of the considered problem
in Theorem 1. Previous works, e.g., [8], showed that finding a unicast path that satisfies
service chaining requirements is computationally intractable even when the available pro-
cessing resources are infinite. This is because the search space of this family of problems
is prohibitively large. For the multicast case, the search space is even larger as a multicast
distribution graph needs to be composed of multiple unicast paths to reach all destinations
of the session. Even without service chaining, the multicast traffic engineering problem is
very challenging to solve with any analytical bounds on the performance. For instance, the
Steiner Tree problem is known to be NP-Hard [14], but it can be solved with an approx-
imation factor of 1.386 [10], meaning that the total cost of the Steiner tree can be found
within 1.386 times of the optimal cost Steiner tree. The multicast problem with link and
node constraints referred to as Scalable Multicast Traffic Engineering (SMTE) problem is
proven to be NP-Hard to solve and NP-Hard to approximate within a factor α(n) of the
optimum solution [28], where α is any polynomial-time computable function, and n is the
number of nodes in the network. Since SMTE is a subset of the considered problem without
the service chaining requirement, the considered problem is at least as hard as SMTE to
solve and approximate.
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Theorem 1. Determining the multicast distribution graph D that minimizes the routing
cost of a multicast session with a given sequence of service V is NP-hard.

Proof. We show a polynomial-time reduction from the Steiner tree problem to a special
instance of the considered problem, which happens when the multicast session does not
require any services. Specifically, given a graph (N′,E′), a source a′, a set of destinations
D′, the Steiner tree problem is to calculate a minimum-cost tree in (N′,E′) that connects
the destinations D′. The reduction algorithm takes as input an instance (N′,E′, a′,D′) of
the Steiner tree problem. It outputs an instance (N,E, S) of the considered problem, where
N = N′, E = E′, and S = {〈a′,D′, φ〉}. Since the Steiner tree problem is NP-hard, thus the
considered is NP-hard.

In summary, because of its huge search space, the considered multicast service chaining
problem cannot be solved optimally for practical topology sizes, nor can it be solved with
any constant-factor approximation algorithms as shown in previous works for even simpler
instances of it. Yet, it is a practical and important problem. In this thesis, we propose a
principled, heuristic, approach to efficiently find near-optimal solutions for the multicast
service chaining problem.
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Chapter 4

Proposed Oktopus Algorithm

This chapter discusses the proposed algorithm (Oktopus). First, we establish the terms
used by Oktopus in Section 4.1. Then, we provide an overview of Oktopus in Section 4.2.
Afterward, we discuss in detail the two main steps of the algorithm in Section 4.3 and
Section 4.4. An illustrative example and the analysis of Oktopus are provided in Section 4.5
and Section 4.6, respectively.

4.1 Definitions

To enable control over the selection of graph links, the proposed algorithm uses a path as
the building block for calculating the distribution graph. We define two terms that we use
extensively when describing the proposed algorithm: segment and service-chained path.

A network segment from a node n to a nodem is a sequence of nodes from n tom without
a loop. That is, no node appears more than once in a segment. Moreover, a segment does
not fulfill service chaining requirements. For example, the sequence of nodes {a, b, d, g} in
Figure 3.1 forms a segment from a to g. However, the node sequence {a, b, c, a, b, d, f} is not
a valid segment from a to f as it contains the loop {a, b, c, a}.

A service-chained path is a sequence of pairs of nodes and services that satisfies the
service chaining requirements in V either partially or fully. For brevity, we refer to such a se-
quence as a path. For example, the sequence of nodes {〈a, φ〉, 〈b, φ〉, 〈d, {1}〉 〈e, {2}〉, 〈d, φ〉, 〈f, φ〉}
form a valid path to reach f to satisfy the services {1, 2}, where φ means this node does
not provide any services to the session.

4.2 High-level Overview

Oktopus runs at the ISP controller to calculate the multicast distribution graph. It takes as
input the ISP network topology (N,E) and the parameters of the multicast session s, which
are its source src, destinations dst, required services V, and bandwidth b. The algorithm
then produces the distribution graph D to satisfy the service chaining requirements.
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We focus on designing an algorithm that can produce the distribution graph efficiently
and can be implemented robustly. At the same time, it balances the network resource
utilization and routing cost optimization. The proposed algorithm is path-based. That is,
the key insight is that links of the calculated graph are the union of unicast paths from the
source to all destinations.

To efficiently realize this path-based approach, Oktopus runs two steps to calculate
the distribution graph: segment generation and graph calculation. The first step generates
a set of network segments for the ISP network, and populates the segment store with the
generated network segments and the second step uses the segments to calculate the multicast
distribution graph.

The GenerateSegments function, described in Section 4.3, builds the set of network
segments, and it stores them in what we call segment store. Segment generation happens
offline (i.e., before the graph calculation starts) as well as on-demand (i.e., during the graph
calculation). As the number of potential segments grows exponentially with the network
size, the main challenge of building such a segment store is the balance between the space
overhead and diversity of generated segments. We address this challenge by utilizing some
observations from TE to reduce the number of generated segments in the initial segment
store, while progressively generating new segments as needed.

Next, for a given multicast session, the CalculateGraph function computes its dis-
tribution graph as detailed in Section 4.4. Specifically, for every destination in the multi-
cast session, CalculateGraph examines segments in the segment store which can reach
that destination, creates service-chained paths, calculates a weight value for each path,
and picks the paths that satisfy multicast service chaining objectives. Then, the algorithm
merges these paths to build the final graph. However, simple path merging may result in
forwarding ambiguity at routers. This ambiguity happens when a router receives packets of
a multicast session on the same interface and it should forward them on different interfaces.
Thus, the proposed algorithm should produce graphs that satisfy the service chaining re-
quirements while not resulting in forwarding ambiguity at routers. To calculate efficient a
graph without forwarding ambiguity, we propose a lightweight data structure to maintain
and track information about each path in the calculated graph.

4.3 Segment Generation

The GenerateSegments algorithm computes segments between each pair of nodes in the
ISP network. The algorithm takes as inputs the ISP network topology (N,E), the maximum
number of segments between every node pair K, and the ratio between the maximum
segment length and network diameter, referred to as ω. The algorithm then returns the
segment store (denoted by S) that maintains the generated segments. The segment store
is a key-value data structure, where the key is a node pair (n,m), and the value is the list
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Algorithm 1 Generate the set of network segments, and stores them in segment store.
Input: N: ISP locations (or nodes)
Input: E: ISP network links
Input: S: Segment store

1: function GenerateSegments(N,E,S)
2: //Iterate for each node pair
3: for n ∈ N do
4: for m ∈ N do
5: if [n,m] /∈ S then
6: //Generate Segment for node pair
7: S[n,m].add(BreadthFirst(K,ω, n,m,))
8: S[n,m].add(EdmondsKarp(n,m,S))

of generated segments between n and m. The segment store provides fast access to valid
network segments, which is needed by the next step in the algorithm.

The GenerateSegments algorithm shown in Algorithm 1, has two nested loops in-
dexed by n and m, respectively, each of which traverses the ISP nodes N. The algorithm
creates a new entry S[n,m] if such entry does not exist. The algorithm then generates seg-
ments and inserts them to S[n,m] as follows. For each node pair n and m, the algorithm
traverses the ISP network between the node pair using breadth-first, and computes the first
K loop-free segments whose lengths do not exceed the value ω×D, where D is the network
diameter. The algorithm then calculates a set of edge-disjoint segments between the node
pairs n and m, and adds them to S[n,m]. At a high level, this is done by calculating the
maximum flow between the node pair using existing algorithms (e.g., Edmonds–Karp algo-
rithm [18, 14]) to calculate the flow and residual networks. Saturated edges in the residual
network (i.e., links that can still forward traffic) correspond to the edge-disjoint segments.

There are three observations behind the design of the GenerateSegments algorithm.
These observations guide the generation of segments that balance link usage while calcu-
lating the graph. First, the breadth-first traversal produces segments with diverse links
compared to depth-first traversal. Second, edge-disjoint segments add more degrees of free-
dom to the generated segments as indicated by prior works, e.g., [25, 26]. Third, segments
that are much longer than the network diameter would impose significant packet delays,
and they should not be used to calculate the distribution graph.

Finally, we design the GenerateSegments algorithm to generate segments without
depending on the deployed services at ISP locations or multicast sessions. Instead, the
generated segments rely only on the ISP network topology. This is because the ISP network
topology does not change frequently, while the ISP may deploy or remove services at smaller
time scales to adapt to different network loads (i.e., the number of multicast sessions).
This enables Oktopus to maintain and reuse the segment store across different runs of the
algorithm.
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4.4 Calculating the Multicast Distribution Graph

For the given multicast session, the graph calculation algorithm calculates a set of service-
chained paths (or paths for short) and merges them to build the distribution graph. Unlike
segments maintained in the segment store, every path is created for a specific multicast
session, and it maintains information about the satisfied services by that path. This infor-
mation is calculated and used by the graph calculation algorithm.

A path p is a weighted segment which consists of a sequence of nodes Np and a weight
value wp. Each node n ∈ Np maintains the previous node prev(n), and the used incoming
and outgoing interfaces in, on, respectively. In addition, the last node n in p that provides
any service to the multicast session s is referred to as lp. The path p also has a parent path
par(p) which is used to build the final graph and validate forwarding decisions. Furthermore,
the graph calculation algorithm calculates a weight value wp for path p, which determines
the cost of forwarding and processing traffic on links and nodes of p, respectively.

The CalculateGraph Algorithm At high level, the CalculateGraph algorithm
calculates the distribution graph by merging existing paths, and generates new segments
when it detects that the network would be overloaded.

The CalculateGraph algorithm, shown in Algorithm 2, takes as inputs the ISP net-
work topology (N, E), the generated segment store S, and the multicast session s. The
algorithm then calculates and returns the distribution graph D. The CalculateGraph
algorithm iterates over the destinations and invokes the FindPaths function for every des-
tination, which we will describe in details later.

The CalculateGraph algorithm initializes a new graph D with a single path. This first
path has only one node, which is the source of the multicast session. For every destination
in the multicast session, the CalculateGraph algorithm calculates a set of minimum-
cost paths that satisfy the service chaining requirements V as follows. To pick a destination
(Lines 4–6), the algorithm builds a weighted graph (N,E), assigns for each link l ∈ E the
cost value γl, and sorts destinations according to the shortest paths from the source (i.e., a
destination with the shortest path is picked first). This sorting ensures that the algorithm
does not create unnecessary or longer paths that may lead to higher routing costs.

The algorithm then iterates over all nodes in the calculated paths so far. Each traversed
node n represents a candidate branching in the graph to reach the destination. For every
traversed node n, the algorithm computes the set of remaining services to be satisfied if the
graph would branch at n (Line 11), and calculates the set of paths by calling the FindPaths
function (Line 12), which returns a set of paths and their costs. The CalculateGraph
algorithm uses the minimum-cost paths, and updates the available resources and D. The
algorithm also updates the packet classes for every interface in the nodes belonging to the
calculated paths (Lines 18–19).
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Algorithm 2 Calculate a multicast distribution graph.
Input: N: ISP locations (or nodes)
Input: E: ISP network links
Input: S: Segment store
Input: s: multicast session
Output: D: the calculated distribution graph

1: function CalculateGraph(N,E,P, s)
2: D = new_graph(s) // Initialize a graph with one path
3: unallocated = {}
4: dsts = SortDestinations(s)
5: while len(dsts) > 0 do
6: Pop a destination dst from dsts
7: paths = null; cost = ∞;
8: // Search from previous solution to dst
9: for p ∈ D.get_paths() do

10: for n ∈ Np do
11: srv = {Vs \ out(on, n, s).processed_services}
12: sol =FindPaths(N,S, s, p, n, dst, srv)
13: if sol.cost < cost then
14: paths = sol.paths
15: cost = sol.cost

16: // Paths were found to reach dst
17: if paths != null then
18: update_resources(N, E, paths)
19: D.update_graph(paths)
20: else
21: dst.traversal_count += 1
22: Push dst to the end of dsts
23: // Trigger dynamic segment generation
24: if dst.traversal_count == 2 then
25: Generate new segments and add them to S
26: else if dst.traversal_count > 2 then
27: Pop dst from dsts
28: Push dst to unallocated
29: return D

The proposed CalculateGraph algorithm implements two fall-back strategies to im-
prove its decisions. First, if the algorithm cannot calculate paths to a destination, it pushes
that destination to the end of destination list to be revisited again at the end of the loop
(Line 22). This is because the calculated graph would grow as the algorithm allocates more
paths, and thus, the algorithm would have better search space for that destination. The sec-
ond strategy is to dynamically generate new segments and add them to S, which happens if
the algorithm could not calculate paths twice for the same destination (Lines 23–25). After
updating the segment store, the algorithm traverses the destination again.
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The dynamic segment generation updates the segment store P to reflect the available ISP
resources after allocating preceding multicast sessions. It removes links with full capacity
from the network, and then triggers the GenerateSegments algorithm. However, instead
of generating segments for all node pairs in the network, it generates segments for overloaded
node pairs only. An overloaded node pair is a node pair whose all segments in P have reached
full link capacity.
The FindPaths Algorithm. The proposed FindPaths algorithm, shown in Algorithm 3,
computes the service-chained paths that satisfy the set of services srv of a multicast session
s from a source src to a destination dst. Notice that src and dst may not be necessarily the
source or a destination of the session, respectively. The calculated paths and their costs are
maintained in a solution object referred to as sol.

The main idea of the algorithm is to break down a segment in S from src to dst into
smaller paths when srv cannot be satisfied directly using that segments. Each path is
calculated to minimize the routing cost while satisfying srv. This path breakdown ensures
that the algorithm uses larger search space when it cannot find an immediate segment in
the segment store. The recursive algorithm has two steps to realize this idea, which are
denoted by A and B in Algorithm 3, respectively.

The first step, denoted by A, examines segments from src to dst in S, calculates candi-
date paths, and returns the minimum-cost path. To calculate a path scp from a segment seg
in S, the algorithm first calculates the sequence of services from srv that can be satisfied
using seg (Line 6). The algorithm maintains the calculated sequence as a map srv_map,
where the key is the node, and the value is the list of services provided by that node. Given
s and srv_map, the algorithm calculates the path weight w (Line 7) as:

W1
∑

l

link_weight(l, s) +W2
∑

v

∑
n

node_weight(v, n, s),

where 0 ≤ w ≤ 1, W1 and W2 are normalization factors, l and n are links and nodes
belonging to the path, v represents all services in srv. We calculate the individual link
weight link_weight(l, s) to balance the traffic across network paths, by considering both
the network condition (i.e., link usage) and network structure (i.e., link importance). Thus,
we calculate the link weight based on its cost γl, usage ul, and importance factor fl as
follows:

link_weight(l, s) =

γlα
1+fl
l,s , αl,s > 0.5

γlαl,s, otherwise,
(4.1)

where αl,s =
(
ul + bs

)
/cl. We calculate the link importance factor fl as its betweenness

score, which is the sum of the fraction of all-pairs shortest paths that pass through this
link. It assigns higher weights to links that have higher probability to carry traffic. The link
weight in Equation (4.1) grows exponentially as the link usage increases and exceeds half
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Algorithm 3 Find service-chained paths to a destination.
Input: N: ISP locations (or nodes)
Input: D: Segment store
Input: s: multicast session
Input: p: parent path
Input: src, dst: source and destination
Input: srv: set of ordered services
Output: sol: service-chained paths and their costs

1: function FindPaths(N,S, s, p, src, dst, srv)
2: sol = new_solution(); cand_paths = {}
3: A Find a path from src to dst that satisfies srv
4: for seg ∈ S[src, dst] do
5: // Locate services and calculate weights
6: srv_map = ServicesAlongSegment(s, seg, srv)
7: w = CalculateWeights(sol, s, seg, srv_map)
8: // Build a service-chained path
9: scp = CreatePath(s, p, seg, w, srv_map)

10: // Check link capacities and packet classes
11: if not IsValidPath(N, scp) then
12: continue
13: cand_paths.add(scp)
14: Pick the path scp with min. cost and max. # services
15: sol.paths = {scp}; sol.cost = scp.cost
16: if IsCompletePath(scp, srv) then
17: return sol
18: B Find paths to satisfy remaining services
19: Adjust scp and its cost
20: sol.paths = {scp}; sol.cost = cost
21: src = lscp; next_cost = ∞; next_src = null
22: v = scp.next_srv // First unsatisfied service
23: nodes = N.get_nodes_by_srv(v)
24: for m ∈ nodes do
25: tmp_sol = FindPaths(N,S, s, scp, src,m, {v})
26: if tmp_sol.cost < next_cost then
27: next_src = m; next_sol = tmp_sol
28: next_cost = tmp_sol.cost

29: sol.paths.add(next_sol.paths)
30: sol.cost += next_sol.cost; src = next_src
31: Update p to be the last service-chained path in sol
32: Update srv to be the set of remaining services
33: next_sol = FindPaths(N,S, s, p, src, dst, srv)
34: sol.sc_paths.add(next_sol.sc_paths)
35: sol.cost += next_sol.cost
36: return sol
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of its capacity. The exponential growth rate is proportional to the link betweenness score.
In other words, a link that is frequently used and located on a critical path costs more to
allocate. We calculate the node weight node_weight(v, n, s) based on the bandwidth bs and
the total and used CPU resources for the service v at n as

(
bs + uv,n

)
/pv,n.

The algorithm then creates a candidate path scp given the calculated satisfied ser-
vices and path weight (Line 9). The algorithm sets the scp parent to p and updates the
packet classes for the incoming interface in for every node n ∈ Nscp as inc(in, n, s) =
out(oprev(n), prev(n), s), where prev(n) is the preceding node to n in Nscp. If n is the first
node, then prev(n) = src. Similarly, the algorithm sets the packet classes for the outgoing
interface on for every node n ∈ Nscp as out(on, n, s) = inc(in, n, s) ∪ srv_map[n].

The algorithm then validates the calculated paths as follows. It first checks that all
link, processing and forwarding table capacities are not exceeded. Then, it validates if the
candidate path scp would introduce forwarding ambiguity at routers. This happens when
the same packet class appears more than once for the same session in any incoming or
outgoing interface in N if scp would be returned. Duplicate packet classes on an incoming
interface means that a router cannot tell which outgoing interface these packets should be
forwarded to, while duplicate packet classes on an outgoing interface means that an ISP
location produces more traffic than expected.

After validating all paths, the algorithm picks the minimum-cost path with maximum
number of satisfied services. The algorithm then returns this path if it satisfies all services
srv. Otherwise, the algorithm breaks down the path to dst by merging sub-paths that do
not belong to S[src, dst] in the second step of the algorithm, denoted by B, as follows.
The algorithm recursively calls itself to calculate sub-paths from the last node in scp that
provides a service to a node m that supports the first unsatisfied service as well as sub-paths
fromm to dst. This ensures that the algorithm controls each link in D. First, in Lines 21–29,
the algorithm sets src to be the last node in scp that provides any services (denoted by
lscp), and sets v to the first unsatisfied service in srv by scp. The algorithm then retrieves
all nodes that provides the service v without exceeding their CPU resources. The algorithm
calls itself with the new source, destination and set of services to be satisfied, and chooses
the minimum-cost paths. Notice that for each of these recursive calls, the parent path is the
sub-path scp calculated from step A. Second, the algorithm then finds sub-paths from m to
dst (Lines 31–34). This happens by recursively calling itself as well with different source and
services. Specifically, the algorithm sets the source to be m, the services to be the remaining
services after finding the node m, and the parent to be the path calculated by the previous
recursive call.
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(a) Illustrative process of the proposed Oktopus algorithm.
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(b) The output multicast distribution graph.

Figure 4.1: Illustrative example of a multicast session.

4.5 Illustrative Example

We describe an illustrative example of the proposed algorithm. Figure 4.1a depicts an ISP
network consisting of 14 nodes. The capacity of every link in the network is a single unit of
bandwidth, and the cost of forwarding one unit of bandwidth on every link is 1. The figure
shows the services that are deployed at every node (in squares). Note that not all services
are deployed at all ISP nodes, and a single node may host multiple services.

There is a multicast session of a live video to be streamed from node a to nodes k, l,
m and n. Packets of this session are transmitted at one unit of bandwidth, and they need
to be processed by a chain of the following services: IDS (1) → Firewall (2) → Encoder (3)
→ Content Manager (4) → Ad Insertion (5) → Transcoder (6). For simplicity, we assign to
each service an ID from 1 to 6.

We show how the proposed algorithm allocates ISP resources from the source at node
a to one of the destinations at node n. Notice that there is no single segment to node n
that can satisfy the service chaining requirements. Thus, Oktopus breaks down the path to
node n into multiple paths, each of which satisfies a sub-sequence of the required services.
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This is done by step B in Algorithm 3. In this example, the proposed algorithm calculates
three paths from node a to node n to satisfy the service chaining requirements as shown in
Figure 4.1a.

The first calculated path is {〈a, {1, 2}〉, 〈e, {3}〉, 〈h, φ〉, 〈j, {4}〉} to satisfy the {1, 2, 3, 4}
service requirements (Line 19 in Algorithm 3). Notice that although service 3 is deployed
at b, our algorithm does not include it in the sub-path because it results in larger routing
cost.

Next, the algorithm searches from node j for all nodes that provide service 5, since
node j is the last node that supports the maximum number of required services (Line 21
in Algorithm 3). In this example, both nodes h and i provide this service. So, the algo-
rithm sets the source to j and recursively calls itself twice, each of which with a different
destination (Lines 24–29 in Algorithm 3). The two recursive calls return {〈j, φ〉, 〈h, {5}〉}
and {〈j, φ〉, 〈g, φ〉, 〈i, {5}〉}, respectively. Our algorithm chooses the path {〈j, φ〉, 〈h, {5}〉}
to satisfy the service {5} as this path results in lower routing cost from j.

Finally, the algorithm calculates a path from node h to node n while satisfying service
{6}. The algorithm sets the source to h and the destination to n and recursively calls itself
(Line 33 in Algorithm 3). This recursive call returns the path {〈h, φ〉, 〈g, φ〉, 〈j, {6}〉, 〈n, φ〉}
as it has the lowest routing cost. Notice that the algorithm does not use the link (h, j) more
than once as it only has a capacity of one unit of bandwidth. Prior algorithms, e.g., [46], do
not have control over the selection of individual links, and thus, they may overload some
network links. Moreover, although nodes h and j appear in the three calculated sub-paths,
Oktopus ensures that the type of ingress traffic to each node is unique. Hence, core routers
are able to process ingress traffic without ambiguity.

To calculate paths to the remaining destinations, the algorithm finds a node from which
the calculated paths result in the lowest routing cost. As shown in Figure 4.1a, node j is
used to calculate paths to destinations m and l, and node i is used to reach destination k.
Figure 4.1b depicts the final output multicast distribution graph.

4.6 Analysis of Oktopus

The following lemma shows the time and space complexities of the proposed algorithm.

Lemma 1. The proposed algorithm terminates in polynomial time in the order of O(N4E2)
per session, where N and E are the numbers of ISP locations and links, respectively. The
space complexity of the algorithm is O(N3E).

Proof. The proposed algorithm consists of two steps: segment generation and graph calcula-
tion. The time complexity of the GenerateSegments algorithm is O(N3E2). Specifically,
for each node pair, the algorithm generates K segments using breadth-first in O(K(N +E))
and a set of edge-disjoint segments using Edmonds–Karp algorithm in O(NE2), where K
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is the number of segments per node pair generated. Since there are N2 node pairs, the time
complexity is O(N2(K(N + E) + NE2)). However, K is a constant value smaller than N
and E. Thus, the GenerateSegments algorithm runs in O(N3E2).

The time complexity of the CalculateGraph algorithm to calculate the distribution
graph is O(N4E2). Specifically, the algorithm iterates over the destinations of the multi-
cast session, where the maximum number of destinations is O(N). For each destination, it
performs two operations. First, it searches for the best node to connect a new path to by
calling the FindPaths. Second, it calls the GenerateSegments algorithm when needed.
So, the running time of the CalculateGraph is O(N(NF +N3E2)), where O(F ) is the
time complexity of the FindPaths algorithm that we calculate as follows.

The FindPaths algorithm runs in O(KVN2), where K is the number of generated
segments per every node pair, and V is the maximum length of a service chain. Specifically,
it iterates over K generated segments, and for each segment, it calculates the available
services in that segments and its link weights. Since the maximum length of a segment is
O(N), the running time of this step is O(KN). This happens O(V N) time in the worst-
case scenario, when the generated segments cannot support the required services without
breaking down these paths. Specifically, the algorithm recursively calls itself O(N) times up
to O(V ) times (Lines 24–29 in Algorithm 3). This, however, does not result in exponential
running time for two reasons. First, each recursive call does not result in additional recur-
sive calls as the algorithm chooses these nodes because they provide the required service.
Second, the algorithm chooses only one node to search for the remaining services (Line 33
in Algorithm 3).

Putting it together, the time complexity of the CalculateGraph algorithm isO(N(KVN3+
N3E2)) = O(N4(KV + E2)). Since K and V are small values in the range of 4 to 20 (i.e.,
KV � E2), the running time of the CalculateGraph algorithm is O(N4E2).

The space complexity of the proposed algorithm is O(N3E). The GenerateSegments
algorithm takes O(N3(K +E)) space because for every node pair, it generates K segments
using breadth-first traversal and O(E) edge-disjoint segments, each of size O(N). More-
over, the CalculateGraph uses O(N) space for the session. Therefore, the total space
complexity of the proposed algorithm is O(N3E).

Practicality. Although the time complexity of the proposed algorithm may appear large,
we believe the algorithm is practical and can run for real ISP topologies for the following
reasons. First, the values of N and E are not large for realistic ISP networks. The number
of ISP locations N is in the range of 10’s–100’s [25, 51, 26, 27]. And most ISP networks
are sparse with the number of links E ranges from 500 to around 2,000. Our experiments
in Chapter 6 using real ISP topologies show that the unoptimized, sequential, version of
Oktopus takes, on average, a few seconds to compute the distribution graph for a given
multicast session on a commodity workstation. Second, we note that many steps of the
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proposed algorithm can run in parallel to reduce the running time. For example, there
are parallel variants of the breadth-first and edge-disjoint traversal algorithms used by the
segment generation algorithm. Moreover, the body of the first loop in Algorithm 3 can run
in parallel.

Finally and most importantly, the time complexity analysis is for the worst-case sce-
nario, which assumes that the dynamic segment generation and recursive composition of
services happen for every destination per multicast session, which is very unlikely for most
practical situations. We note that these two steps are optional in our algorithm and they
are used only in case of not finding a solution based on the precomputed segment store.
That is, the network operator may disable either or both of these steps for fast computa-
tions, albeit at the cost of increasing the possibility of not finding a solution. Disabling the
dynamic segment generation reduces the time complexity to O(N3) and further disabling
the recursive composition of services brings the worst-case time complexity to O(N2).
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Chapter 5

Implementation and API

In this chapter, we discuss the implementation of our control-plane framework and list the
API provided by the framework.

5.1 Implementation

We implemented a full control-plane framework in Python, which we release its source code
for the community [16]. The framework has two main components: Oktopus APIs and an
optimization engine. The Figure 5.1 shows the components of the control-plane framework.

The Oktopus APIs provide a set of high-level interfaces to developers and network oper-
ators to define their applications. Specifically, the Application APIs define the ISP topology
and available resources, the Session APIs determine the multicast session parameters in-
cluding their service chaining requirements, the Routing APIs set the routing objectives
(e.g., min. routing cost) and link constraints. We describe the details in section 5.2.

The optimization engine receives these inputs from the APIs, and runs the Oktopus
algorithm to compute the multicast distribution graphs.

5.2 Oktopus API

The Oktopus API enables operators to describe what goals the network application needs
to achieve instead of how these goals are realized. For example, these APIs do not consider
multicast distribution graphs because, from the operator perspective, multicast distribution
graphs are the mechanisms to carry traffic. Listing 5.1 shows an example of a typical usage
of the Oktopus APIs.

In the network application, the operator specifies per-session requirements and network-
wide constraints and objectives by utilizing three sets of APIs: Application, Session, and
Routing.
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Figure 5.1: Operators use the Oktopus API to express the network application. Then, the
optimization engine runs the Oktopus algorithm to compute the multicast distribution
graph.

app = App(topo_path)
# Session APIs: session requirements

s = Session(addr, src, dsts, bw)
s.traverse([’fw’, ’ids’]) # service chaining

# Routing APIs: routing obj. and link constraints

r = Routing()
for link in app.getLinks():

r.addLinkCapConstraint(link, ’bps’, 1e9)
r.addObjective(’minRoutingCost’)
# App APIs: available resources and services

app.addSessions(s); app.setRoutes(r)
app.setAlgorithm(’oktopus’) # or other algorithms

app.solve() # produces a solution

Listing 5.1: An example of using Oktopus APIs.

5.2.1 Application API

This API allows the operator to control different aspects of an application such as topology,
services, session, routing, and solution.

The operator can manipulate the topology using Link, Node and Service objects. The
operator adds, deletes and gets a link or node using add∗, del∗ and get∗ functions, re-
spectively. In addition, the operator gets access to services at every node, and sets the
available resource using setResource function. A list of services in the network can be re-
trieved by type using getServices(type) function (e.g., app.getServices(’fw’)). Sim-
ilar to links, nodes and services, sessions can be added and deleted as well. In addition,
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API Semantics
addr, src, dsts address, source and destinations
bw bandwidth demands
res required resource map

addConstraint(name, val) when routing, the max. name must
not exceed val in the resulting tree.
name=‘delay’

avoid(nodes) the session should avoid a set of
nodes, links or other sessionsavoid(links)

avoid(sessions)

traverse(services) the session should pass through a set
of services. services is ordered to
preserve chaining requirements

Table 5.1: The proposed Session interface.

Oktopus allows the operator to retrieve a group of sessions by their source. For exam-
ple, app.getSessionsBy(’src’, ’a’) will return all sessions with source node of a. The
operator uses Session APIs in Table 5.1 to manipulate sessions.

To define routing costs, constraints and objectives, the operator creates and sets a rout-
ing object using setRoutes function. Table 5.2 shows the available Routing APIs in Ok-
topus. Since the framework is algorithm-agnostic, using setAlgorithm allows users to set
the engine algorithm of the application. Finally, the framework produces the application
solution when the operator invokes solve(). Pushing OpenFlow rules is independent of the
Oktopus APIs, allowing the operator to use multiple controller technologies.

Listing 5.2 shows how the Application APIs are used. This application loads the network
topology from a file, modifies link capacity and delay between nodes 1 and 2, sets CPU
capacity of a firewall at node 3, adds a new session, sets a routing object, sets the engine
algorithm to use Oktopus algorithm and then calculates the solution.

app = App(topo_path)
app.getLink(1,2).cap = Gb(1)
app.getLink(1,2).delay = msec(10)
fw = app.getNode(3).getService(’fw’)
fw.setResource(’cpu’, 50) # set service fw to 50 cpu capacity

app.addSessions(Session(addr, src, dsts, bw)) # add session

app.setAlgorithm(’oktopus’)
app.solve() # produces a solution

Listing 5.2: General structure of Oktopus applications.
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Group API Semantics

Cost
and
Usage

addLinkCostFn(link, name, linkCostFn) Calls linkCostFn to calculate the link cost when a session
tree passes link

addLinkUsageFn(link, name, linkUsageFn)
Calculates how link resources are consumed using
linkUsageFn

linkCostFn(link, session) Definitions of link cost and usage functions. They both take
link and session objects. The former returns the cost, and
the latter modify the link object.

linkUsageFn(link, session)

addNodeCostFn(node, srv, name, nodeCostFn) Similar to link functions. The main difference is that node
functions expect a service object since a node may have
multiple services.

addNodeUsageFn(node, srv, name, nodeUsageFn)
nodeCostFn(service, session), nodeUsageFn(service, session)

Constraints

addLinkCapConstraint(link, name, val) For a given link, limit the max. value of name to val.
Currently, name=‘bps‘ (link.bps ≤ val)

addNodeCapConstraint(node, srv, name, val) For a given node and srv, limit the max. value of name to
val
(node.getService(srv).getResource(name) ≤ val)

Objectives

addObjective(name) Adds an objective to be optimized by Oktopus.
Currently, Oktopus supports the following:
minMaxLinkLoad, minRoutingCost

Table 5.2: The proposed Routing interface.

5.2.2 Session API

This API, shown in Table 5.1, creates sessions and adds constraints and requirements.
To create a session, the operator inputs its IP address, source, destinations and bandwidth
demands. If service chaining is required for the session, the operator has to create a resource
requirement map. This map has two keys: service name and resource name, and its value
is the required resource value. For example, Listing 5.3 depicts a session with two required
services: firewall (fw) and video transcoder (vt) with required CPU of 10 and 20 units per
second, respectively. If the operator defines service chaining requirement without a resource
map, it assumes that the session does not consume service resources, and it will satisfy the
order only.

res_dict = {’fw’:{’cpu’:10}, ’vt’:{’cpu’:20}} # define resource consumption

s = Session(addr, src, dsts, bw, res=res_dict)
# define session requirements

s.addConstraint(’delay’, msec(30)) # s.delay <= 30 msec

s.avoid(n1)
s.traverse([’fw’, ’vt’]) # service chaining

Listing 5.3: An example of using the Session API.

Oktopus API provides additional three APIs to define constraints and requirements.
The function addConstraint(name, val) limits the maximum name value of the tree to
val. Currently, Oktopus API supports limiting the delay per session, which is useful to
control per-session routing constraints. For example, the network operator may choose to
limit the maximum allowed delay to 30 msec for the session in Listing 5.3. For per-session
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traffic isolation and steering and service chaining, Oktopus API exposes the functions avoid

and traverse, respectively. In Listing 5.3, the session should avoid node n1 and traverse
two services: firewall and video transcoder.

5.2.3 Routing API

The operator uses this API by creating and modifying a routing object. Unlike the Session
API, the Routing API (shown in Table 5.2) defines node and link constraints and network-
wide objectives. Moreover, it allows the operator to change how Oktopus calculates costs
and consumes network resources by implementing cost and usage functions.

Listing 5.4 illustrates a typical usage for the Routing API. First, the operator defines a
custom functions: cpuCostFn and cpuUsageFn to modify the cost and consumption behavior
of CPU resources at all services. Note that Oktopus algorithm allows different functions for
different services, nodes and links. Then, the application adds a constraint for each link to
limit the maximum bandwidth to 109 bit per second (bps). It also adds a constraint for
every firewall and video transcoder to limit their CPU load by 90% and 70%, respectively.
The network objective in this example is to minimize the routing cost.

5.2.4 Developer Benefits

Using the Oktopus API, the operator uses 71% fewer lines of code (LOC) [15] to write
the service chaining multicast application compare to the specialized algorithm, MSA [46].
Although LOC does not directly show the developer benefit, we believe that using an intent-
based API such as Oktopus API is far simpler than writing the complex formulation.
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def cpuCostFn(srv, session):
session_cpu = session.res[srv.name][’cpu’]
used_cpu = srv.getUsedResource(’cpu’)
cpu_cap = srv.getResource(’cpu’)
return (session_cpu+used_cpu)/cpu_cap

def cpuUsageFn(srv, session):
srv.addUsedResource(’cpu’, session.res[srv.name][’cpu’])

r = Routing()
for link in app.getLinks():

# limit link to 1e9 bps

r.addLinkCapConstraint(link, ’bps’, 1e9)
# custom cost funtion

r.addLinkCostFn(link, ’bps’, costFn=lambda l,s:(s.bw+l.used_cap)/l.cap)
# custom usage funtion

r.addLinkUsageFn(link, ’bps’, usageFn=lambda l,s: l.used_cap += s.bw)

for node in app.getNodes():
# limit the cpu of fw on node to 0.9

r.addNodeCapConstraint(node, ’fw’, ’cpu’, 0.9)
r.addNodeCapConstraint(node, ’vt’, ’cpu’, 0.7)
for srv in node.getServices():

# custom cpu cost funtion of srv on node

r.addNodeCostFn(node, srv, ’cpu’, costFn=cpuCostFn)
# custom cpu usage funtion of srv on node

r.addNodeUsageFn(node, srv, ’cpu’, usageFn=cpuUsageFn)

r.addObjective(’minRoutingCost’)
app.setRoutes(r)

Listing 5.4: An example of using the Routing API.
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Chapter 6

Evaluation

In this chapter, we compare Oktopus versus the optimal and closest algorithms in simula-
tions using real ISP topologies.

6.1 Setup

Algorithms Compared Against. We implemented a Python-based simulator to eval-
uate Oktopus’s performance across various scenarios and compare Oktopus against prior
work. The simulator creates network applications with the control-plane framework describe
in Chapter 5. The optimization engine receives input from the Oktopus APIs and runs an
algorithm to compute the multicast distribution graphs. In the current version of our frame-
work, we implemented and integrated the Oktopus algorithm, optimal (OPT), and MSA
[46] algorithms in the optimization engine. We implemented MSA because it is the closest
algorithm in the literature solving the considered multicast service chaining problem. We
implemented OPT using CPLEX 12.8 and using the problem constraints from [46].
Performance Metrics.We consider four important performance metrics that measure the
quality of the allocated multicast sessions:

• Percentage of allocated multicast sessions: The ratio between the allocated and
total numbers of multicast sessions. The larger the percentage the better the fulfillment
of the ISP customer requirements.

• Average routing cost: The cost of forwarding packets of a multicast session on links
of its distribution graph, and it is defined by b

∑
l∈L γl.

• Average graph size: The average number of links of the calculated distribution
graph per session. A small graph indicates lower delays to reach all destinations.

• Average running time: The average elapsed time to calculate a distribution graph
per session.
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Control Parameters. We use the following five real ISP topologies from the Internet
Topology Zoo [33]: AttMpls (25 nodes), Dfn (57 nodes), Columbus (70 nodes), Ion (125
nodes) and Colt (153 nodes). We chose these topologies as they constitute representative
samples of different network sizes. We set the link capacity to 10Gbps, and link cost to 1 per
bandwidth unit. Moreover, due to the lack of publicly available data on service chaining,
we use the results of this recent study [17] to generate the service chain requirements.

We control five parameters for every experiment as follows:

• Session characteristics: For every multicast session, its source node is chosen ran-
domly. In addition, the percentage of nodes to be destinations is chosen randomly to
be 10%, 20%, 30%, or 40% of the total nodes.

• Number of sessions: We vary the number of multicast sessions from 1,000 to 4,000.
For comparison versus OPT, we set the number of multicast sessions to 10 to ensure
that OPT produces a solution within 24 hours. In each generated dataset, 21%, 57%
and 22% of the multicast sessions have bandwidth of 2 Mbps, 7.2 Mbps and 15 Mbps,
respectively [7].

• Service chain length: We vary the length of the service chain from 3 to 6.

• Service deployment: Since different services have different usage patterns [17], we
categorize services into two types, essential and auxiliary type. Essential services are
popular ones such as firewalls and IDS, and they are deployed to all ISP nodes.
Auxiliary services, on the other hand, include services that are least used such as
video encoders and traffic monitors. For each dataset, we set the percentage of nodes
that provide auxiliary services to be one of 5%, 15%, 25%, 35% or 45%. The service
function capacity per node is set equal to the number of sessions in the multicast
application.

• Service chain ordering: We generate service chains with different ordering of essen-
tial and auxiliary services. Specifically, we have two orderings: partial and random. In
partial ordering, the essential services are ordered before the auxiliary services. More
specifically, the first and second services of the service chain are randomly chosen from
the essential services, and the rest of the services are chosen from auxiliary services.
In random ordering, services in the service chain are randomly ordered.

6.2 Oktopus versus OPT

We compare Oktopus versus OPT in terms of the routing cost, graph size and running time.
We ran OPT on a server with 128 GB of memory, and configured CPLEX to terminate in
24 hours. We set the numbers of multicast sessions to 10 and 50. As we will show, running
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ISP
Routing Cost Avg. Graph Size Avg. Running Time
Opt. Gap OPT Oktopus OPT Oktopus

AttMpls 4.75% 10.7 11.3 1.2 s 0.2 s
Dfn 1.75% 23.7 24.1 18 s 0.4 s
Columbus 8.5% 40.7 44.5 42 s 0.6 s
Ion 5.9% 71.9 75.1 1.8 hrs 3.5 s
Colt 5.5% 70.7 74.4 1.4 hrs 6 s

Table 6.1: Results of Oktopus versus OPT for 10 sessions.

OPT for numbers of sessions larger than 10 results in out-of-memory exceptions and/or
takes too long to terminate.
Results for 10 Sessions. We summarize the results in Table 6.1. We note that both
algorithms allocated all the multicast sessions, so we focus on the other performance metrics.
First, the optimality gap of Oktopus ranges from 1.75% to 5.9% for the considered topologies
except for Columbus topology. The optimality gap is higher for the Columbus topology, with
a gap of 8.5% due to the complex topology structure. Overall the optimality gap is small,
considering that the optimality gap is measured between the total routing cost to allocate
all the sessions. Second, we compare the average graph size to study the quality of the
distribution graph. Oktopus calculates distribution graphs with similar sizes to the OPT
counterpart. For instance, for the Colt topology, Oktopus calculates graphs with only an
additional five links per session on average. The size of the multicast distribution graph for
other topologies shows a similar result of around 5.5% larger than the ones produced by
the optimal algorithm and with similar standard deviation. Finally, Oktopus computes the
graphs much faster than OPT. As the size of the network increases, the running time of
OPT explodes. For example, OPT requires 1.8 hrs per session for the Ion topology, while
Oktopus calculates a graph in only 3.5 s per session. Moreover, running OPT requires a
large amount of memory. For example, for the Ion ISP topology, OPT requires 55 GB of
memory, while Oktopus requires less than 1 GB of memory only.
Results for 50 Sessions. In this case, OPT could not produce a valid solution for large
ISP topologies. For the Ion ISP topology, for example, OPT spent 24 hours and required
about 100 GB of memory without calculating a final solution. Oktopus calculated valid
distribution graphs for the 50 sessions in 72 seconds only while using less than 1 GB of
memory.
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6.3 Oktopus versus the Closest Algorithm

Recall that the closest algorithm in the literature, called MSA, assumes infinite link capac-
ities and thus it cannot allocate large number of sessions. We show in the following that
Oktopus outperforms MSA across all performance metrics.
Percentage of Allocated Sessions.We first show in Figure 6.1 the percentage of allocated
multicast sessions in the Ion ISP topology (of 125 nodes) for different service chain lengths,
deployed auxiliary services percentages, receiver densities, and service chain orderings. We
also set the number of multicast sessions to 4,000 in these experiments to stress Oktopus and
MSA. The figure shows that Oktopus outperforms MSA across all the considered scenarios.

Figure 6.1a shows that Oktopus allocates more multicast sessions for all service chain
lengths. Moreover, the figure shows that Oktopus performance is consistent even when
increasing the service chain length. For instance, it increases the percentage of allocated
multicast sessions by 31% and 30% for service chain length of 2 and 6, respectively.

Figure 6.1b shows the allocation performance when increasing the percentage of deployed
auxiliary services. Oktopus can utilize the added CPU resources more efficiently than MSA
as it allocates 30% more multicast sessions when more auxiliary services are deployed to
more nodes. This is because Oktopus considers the CPU utilization across the available
services.

Figure 6.1c shows that Oktopus allocates more multicast sessions compared to MSA for
different numbers of destinations. For instance, Oktopus increases the number of allocated
multicast sessions by up to 37% when the receiver density is 10% of the nodes. This means
that Oktopus allocated 808 more multicast sessions using the same network resources.

In another experiment, we control the order of required services in the service chains.
Recall that Oktopus does not assume any knowledge of the service chain order. Figure 6.1d
demonstrates that the order of services within service chains does not impact the allocation
performance, and that the performance of Oktopus is robust even when the service order is
random.

We can also see similar results from other ISP topologies across different scenarios in
Figures 6.2–6.5. For example, Figure 6.3 shows the percentage of allocated multicast sessions
in a smaller ISP topology (Dfn, 57 nodes). Oktopus increases the percentage of allocated
multicast sessions up to 28%, 42%, 37%, and 24% for different service chain lengths, deployed
auxiliary services percentages, receiver densities, and service chain orderings, respectively.

Next, we present the percentage of allocated multicast sessions for ISP topologies with
different sizes in Figure 6.6. The figure shows that Oktopus allocates more multicast sessions
than MSA especially when the number of multicast sessions increases, and its performance
is consistent across the different topologies. For example, when the number of multicast
sessions is 4,000, Oktopus increases the percentage of allocated multicast sessions by 27%,
28% and 20% for the three topologies, respectively.
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Figure 6.1: Percentage of allocated multicast sessions for the Ion ISP topology across dif-
ferent scenarios. # multicast sessions: 4,000.
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Figure 6.2: Percentage of allocated multicast sessions for the AttMpls ISP topology across
different scenarios. # multicast sessions: 4,000.
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Figure 6.3: Percentage of allocated multicast sessions for the Dfn ISP topology across dif-
ferent scenarios. # multicast sessions: 4,000.
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Figure 6.4: Percentage of allocated multicast sessions for the Columbus ISP topology across
different scenarios. # multicast sessions: 4,000.
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Figure 6.5: Percentage of allocated multicast sessions for the Colt ISP topology across
different scenarios. # multicast sessions: 4,000.
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Oktopus utilizes network resources more efficiently than MSA because it calculates bet-
ter paths while satisfying the required services by carefully engineers each link in the cal-
culated graphs while balancing the load across different links.
Average Routing Cost and Graph Size. We next present the average routing cost
and calculated graph size for the Ion ISP topology while varying the number of multicast
sessions in Figure 6.7. Figure 6.7a shows that Oktopus results in similar routing cost per
multicast session as MSA, while Oktopus allocates more multicast sessions as previously
shown in Figure 6.6d.

To show the quality of the distribution graph, we also plot the average size of the
calculated multicast distribution graphs in Figure 6.7b. The figure shows that both Oktopus
and MSA computes similar graph sizes as well. Moreover, Figure 6.7c shows the standard
deviation of the graph size. Oktopus is slightly larger than its counterpart of MSA (by up
to two links) as Oktopus balances the traffic across the links. Also, it shows the average size
of the multicast distribution graphs is close to the true average size. For instance, based on
the 2000 allocated sessions, the average size of a distribution graph calculated by Oktopus
is 79 links with a standard deviation of 15 links. This means that with 99.9% confidence
the true average size of the multicast distribution graph is just ± 1 link from 79.

These results indicate that Oktopus can balance between maximizing the number of
allocated sessions while reducing the average routing cost per session for the same net-
work conditions. We observed similar results for other topologies and scenarios shown in
Figures 6.8–6.11.
Average Running Time. We measure the average running time to calculate a distribu-
tion graph per session for both algorithms. Our measurements show that Oktopus adds a
negligible overhead on average. For example, the average running time on the Ion topology
is 8.625s and 8.5s per session for Oktopus and MSA algorithms, respectively. This slight
overhead is used towards calculating more efficient distribution graphs, as demonstrated in
the previous experiments. Moreover, many steps in the proposed algorithm can be run in
parallel to reduce the average running time. We leave these optimizations for future work.
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Figure 6.6: Percentage of allocated multicast sessions with different number of multicast
sessions.
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Figure 6.7: Average routing cost and graph size per session for the Ion ISP Topology.
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Figure 6.8: Average routing cost and graph size per session for the AttMpls ISP Topology.
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Figure 6.9: Average routing cost and graph size per session for the Dfn ISP Topology.
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Figure 6.10: Average routing cost and graph size per session for the Columbus ISP Topology.
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Figure 6.11: Average routing cost and graph size per session for the Colt ISP Topology.
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Chapter 7

Conclusion and Future Work

In this chapter, we conclude the thesis and discuss some potential future works.

7.1 Conclusion

In this thesis, we considered the problem of multicast service chaining. We proposed a new
algorithm, called Oktopus, to calculate multicast distribution graphs that minimize the
routing cost per session. The main idea of Oktopus is to calculate and merge paths that
fulfill the required services from the source to all destinations. This path-based approach
enables Oktopus to have control over calculated links in the distribution graphs, which
improves the quality of the calculated graphs.

We implemented Oktopus on an intent-driven control plane framework. We evaluated
Oktopus in simulations using real ISP topologies, and compared it versus the optimal so-
lution and closest algorithm in the literature. Our experiments showed substantial gains
compared to these algorithms. Specifically, Oktopus computes the distribution graphs with
a small routing cost optimality gap while terminating multiple orders of magnitude faster
than the optimal algorithm. Moreover, Oktopus increases the number of allocated multicast
sessions by up to 37% compared to the closest algorithm in the literature. Thus, Oktopus
can optimized multicast service chaining in the ISP environment.

7.2 Future Work

Future work could examine the dynamic aspect of service chaining. The dynamic aspect
of service chaining is referred to as branching [24], where a network service in the chain
affects the requirement of the rest of the chain. For example, the initial service chain is
DPI → Load_Balancer. The DPI network service executes the traffic, and attack traffic
is detected. Instead of going to the Load_Balancer, the traffic is altered to include a
firewall, DPI → firewall.

In this thesis, we assume that the network services are deployed, and multicast sessions
are requested one at the time. Future work could include network service placement into
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the optimization and explore optimizing concurrent sessions. Furthermore, it could extend
Oktopus to support multiple applications and incorporate fair allocation of resources among
applications in the optimization objectives.

Another future work worth examining is the extension to a multiple ISPs domain setting.
In this case, the solution of the multicast service chaining problem will need to work with
limited information, since separate administrative ISPs may not disclose all the network
topology information.
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