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Abstract

This project investigates the fouling time distribution of players in the National Basketball
Association. A Bayesian analysis is presented based on the assumption that fouling times
follow a Gamma distribution. Various insights are obtained including the observation that
players accumulate their nth foul more quickly for increasing n. Methods are developed
that will allow coaches to better manage playing time in the presence of fouls such that key
players are available in the latter stages of matches.

Keywords: Bayesian analysis; censoring; constraints; failure time distributions; predictive
inference
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Chapter 1

Introduction

In the National Basketball Association (NBA), a player fouls out of the game and is dis-
qualified from play after committing their sixth personal foul. Coaches, in an effort to
maintain the availability of star players at the end of the game, will “sit” a player who has
accumulated too many fouls in the early stages of the game.

NBA coaches have often followed the Q + 1 guideline when managing a player’s foul
trouble. That is when their number of fouls reaches one more than the quarter of the game
the player is considered to be in foul trouble and is often subbed out of the game for the
remainder of the quarter. For example, when a player attains two fouls in the first quarter
of a game, the coach will remove the player for the rest of the quarter. Similarly, when a
player attains three fouls during the second quarter of a game, the coach will remove the
player from the game.

However, there may be an issue with the above coaching tradition. The above rule does
not account for player level differences in fouling rates. Additionally by removing a player
from the game, the coach is voluntarily limiting the playing time of the player. The benefit
the coach does receive is the choice of when to play their player in exchange for how much
the player will play. By removing the player from the game the coach is giving more weight
to the player’s value in end of game situations over the rest of the game.

The decision to treat all players the same and value their abilities more at the end of
game does not appear to be informed by data. While the rule is widely followed, there is
room for coaches to optimize their decisions further to get more out of their best players at
the most valuable times throughout the game. This can be done by accounting for specific
player tendencies. For example, it may be possible that a particular player is less foul prone
than another and can continue to avoid fouling even when in perceived foul trouble.

In sporting practice, there exist traditions that are on the level of folklore, and upon
closer inspection, do not appear optimal. For example, in hockey, the tradition had been for
a team to pull its goalie when trailing with about one minute remaining in a match. However,
it has been suggested through statistical modelling and simulation that goalies should be
pulled with approximately three minutes remaining (Beaudoin and Swartz 2010). The new
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recommendations appear to have made an impact in NHL practice (Davis and Lopez 2015).
Another example of a misguided sporting tradition involves the over-reliance on popular
baseball statistics such as batting average. As is well known, the moneyball phenomenon
(Lewis 2013) highlighted alternative baseball measures such as on-base percentage which
serve as better predictors of success. In the sport of football, Yam and Lopez (2018) use
methods of causal inference to assess the impact of punting on fourth down in the National
Football League.

Many cases where traditions do not appear optimal arise when teams are exhibiting
risk-averse behaviours. For example, if a coach breaks from the traditional viewpoint and
plays a star player in foul trouble we can imagine a series of possible outcomes. Firstly, the
star player may foul out early and be unavailable at the end of the game. If the team loses
by 3 points for example, blame will be placed on the coach for mismanaging the player’s
playing time under foul trouble. Secondly, the star player may not foul out early and be
available at the the end of the game. The player will be credited for avoiding fouls. If the
coach were to follow tradition we can imagine one more scenario. Since the star player was
not on the court during large parts of the game the team ends up losing by 15 for example.
The player will be blamed for picking up early fouls and the coach will be absolved of blame
since they followed tradition. We can see that the coach will often not get credit for the
decision that made the game closer but blamed for it. Even though the decision helped the
team’s chance of winning the credit is placed elsewhere. Following tradition however, has
less risk for the coach since they are not breaking the status quo.

In this paper, we use data and statistical modelling to investigate various questions
associated with foul accumulation in the NBA. For example, do all players foul at the
same rate? Does the fouling time distribution between the (n− 1)st foul and the nth foul,
n = 1, . . . , 6 depend on n? Are there differences in the fouling time distributions according
to playing position? With respect to foul accumulation, can we advise coaches when to sit
their players?

The topic of NBA substitution patterns is a topic that has been mostly discussed on
blog sites. For example, Rochford (2017) uses item response theory and Bayesian modelling
to draw various insights with respect to NBA fouls. In particular, Rochford (2017) draws
attention to the relationship between fouling and salary with the suggestion that higher
paid players are treated preferentially with respect to foul calls. Klobuchar (2018) investi-
gates the impact on win shares from the “early” substitution of players due to fouls. Falk
(2018) examines playing minutes when a coach employs a foul management strategy. The
investigation suggests different strategies, including changing a player’s defensive assign-
ment to decrease a player’s foul rate and rearranging the player’s minutes. Pomeroy (2016)
examines how players and coaches define foul trouble in college basketball. He finds self
preservation behaviour in players who are considered to be in foul trouble. Partnow (2019)
lists a number of factors to be considered when deciding on when and for how long players
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in foul trouble should be removed from the game. He notes that "coaches in effect ’foul out’
their own players early in the game, possibly taking the team out of the running for crunch
time, or putting the squad in a closer game, with greater chances to lose, than would have
been the case had the star played close to [their] normal minutes." An example of the other
factors that he suggests considering are the foul rates of the player in question, how well the
player plays while in perceived foul trouble, does the game itself have an elevated foul rate
due to physicality or refereeing, and finally how good is the backup player. In the journal
article by Maymin, Maymin and Shen (2012), the impact of early foul trouble is assessed
using tools from finance. Of note, Maymin, Maymin and Shen (2012) suggest that teams
exhibit poorer performance if they continue to play foul-plagued starters. Evans (2017b)
proposes a conditional risk set model for ordered events to model a player’s time to foul
while including covariates such as the point differential, and time remaining in the game
among others.

In Chapter 2, we begin with an exploratory data analysis where we assess the conjecture
that the fouling time distribution is Exponential. We suggest that the Gamma distribution
provides a more realistic fouling time distribution. We also investigate the impact of player
position and the impact of foul level on the fouling time distribution. In Chapter 3, we
use the Gamma distribution to build a stochastic model which incorporates unknown pa-
rameters. The model is Bayesian and requires the specification of prior distributions and
computational strategies to assess the parameters. The exploratory analysis in Chapter 2
helps us specify the prior distribution in Chapter 3. A predictive distribution is then in-
troduced which may be used by coaches. The models are implemented on NBA data in
Chapter 4 where interesting insights are obtained with respect to the fouling tendencies of
players. Additionally, we validate the results of the predictive inference and compare them
to other models. We then demonstrate how our model can be useful in real in-game scenar-
ios We conclude with a short discussion of the implications of our work and areas for further
reasearch in Chapter 5. The material in this MSc project is an extension of Chu and Swartz
(2019). As such, large passages from Chu and Swartz (2019) are included in this project.
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Chapter 2

Exploratory Data Analysis

2.1 The Fouling Time Distribution

It has been suggested that the Exponential distribution may be appropriate for the distri-
bution of fouling times (Evans 2017a).

Some simple thought experiments reveal that the validity of this assumption is too
simplistic. For example, if the time between fouls is Exponential, then fouling time satisfies
the memoryless property. This implies that a player who has just stepped onto the court
has the same probability of fouling within a period of time compared to the situation where
the player had been on the court for a longer period of time. The memoryless property
seems suspect as a tired basketball player may have difficulty moving his feet into a good
defensive stance, and is therefore more likely to commit a foul than a fresh player. On the
other hand, it may be argued that a fresh player may not be in the flow of the game and
may become overly aggressive, and more prone to foul than a player who has been on the
court for a while.

In order to test the suitability of the Exponential distribution, we introduce some stan-
dard failure time notation. Consider then a specific player who has committed his (n− 1)st
foul, and this occurs in a match which we label the jth match. We denote X(n)

j as the
time played between the (n − 1)st and nth foul, n = 1, . . . , 6 and j = 1, . . . ,mn. It is
therefore apparent that m1 ≥ m2 ≥ · · · ≥ m6. It is possible that the time to foul X(n)

j is
unobserved and there is a potential censoring time C(n)

j . In this case, the corresponding
observed dataset for the player at the nth foul level is given by (Y (n)

1 , δ1), . . . , (Y (n)
nm , δnm)

where Y (n)
j = min(X(n)

j , C
(n)
j ) and

δj =

 0 X
(n)
j ≤ C(n)

j (uncensored)
1 X

(n)
j > C

(n)
j (censored)

.

In this application, it is important to note that the censoring mechanism involves random
right censoring rather than fixed right censoring. Should a player not commit the nth foul,
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n = 1, . . . , 6, we can think of the nth foul as randomly censored. In a medical application
with fixed right censoring, this corresponds to an experiment which concludes at the same
time for all subjects. A detailed treatment of the statistical analysis of failure time data is
given by Kalbfleisch and Prentice (2002).

In our investigation of the Exponential as a fouling time distribution, we first note that
the Exponential is a special case of the Gamma distribution. Here, we use the parameteri-
zation X ∼ Gamma(α, β) such that E(X) = α/β. We consider alternative data to that used
in Chapter 4 to avoid the perils of “double use of the data”. Specifically, we consider data
from the 2012/2013 NBA regular season involving players at the jth foul level who have
mj ≥ 30 observations. This provides 1,010 player-foul combinations involving 376 unique
players. To test the fit of the Exponential distribution, we carry out likelihood ratio tests
of H0 : α = 1 at the 0.05 level of significance for each of the 1,010 datasets. Expressions
for the maximum likelihood estimators of α and β under right random censoring are given
by Harter and Moore (1965) and are estimated via an iterative procedure. We reject 20%
of the null hypotheses; this provides evidence that the Exponential may not generally be
appropriate as a fouling time distribution. More powerful goodness-of-fit tests such as tests
based on the empirical distribution function (see D’Agostino and Stephens 1986) would
likely result in higher rates of rejection of the null hypotheses.

The question then arises as to whether the Gamma is appropriate as a fouling time
distribution. We have investigated the 2012/2013 data by comparing the survival curves
(based on maximum likelihood estimation under right random censoring) versus the asso-
ciated non-parametric Kaplan-Meier estimate. In the cases that we have studied, the fit
appears adequate. In Figure 2.1, we provide the corresponding plot for Paul Pierce at foul
level n = 1. Pierce’s data is based a sample size of m1 = 77 where only 3 of the observa-
tions were censored. The survival curve for Pierce agrees nicely with Pierce’s Kaplan-Meier
estimate.

Returning to our original conundrum involving the Exponential distribution, we found
that α̂ > 1 for most player-foul combinations (821 out of the 1,010 cases). This indicates
an increasing hazard function. In basketball terms, this means that a player is more likely
to foul when they are on the court for longer periods of time. For the remainder of our
investigation, we will use the Gamma as the fouling time distribution. As a two-parameter
distribution which includes the Exponential, the Gamma is a safer choice in the sense that
it has more flexibility to accommodate various distributional shapes.

2.2 The Impact of Player Position

There is a perception that the accumulation of fouls may depend on player position. To
investigate this notion, we considered NBA data from four recent seasons, 2013-2014 through
2016-2017. We restrict the analysis to players who have accumulated more than five fouls at
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Figure 2.1: Estimated survival function (based on the Gamma distribution) and the Kaplan-
Meier estimate corresponding to the first foul level for Paul Pierce based on data from the
2012/2013 regular season.

each foul level over the three seasons. For the ith player, we used the maximum likelihood
procedure previously discussed to estimate the Gamma parameters αi and βi. The boxplots
in Figure 2.2 are based on the estimated mean fouling times α̂i/β̂i where the boxplot
categories correspond to playing positions. Each player was classified according to one of
three standard positions, namely bigs, forwards and guards. From Figure 2, we observe that
bigs foul the most quickly, followed by forwards, and then followed by guards.

2.3 The Impact of Foul Level

There is a second perception that the accumulation of fouls may depend on the foul level. We
again used the 2013-2014 through 2016-2017 NBA data but for each foul level n = 1, 2, . . . , 6,
we restricted the analysis to players who accumulated more than five fouls and played at
least 1640 minutes in the 2016-2017 season. This restriction was carried out so that the
maximum likelihood estimates of αi and βi are reliable. The boxplots in Figure 2.3 are
based on the estimated mean fouling times α̂i/β̂i where the boxplot categories correspond
to foul levels. From Figure 2.3, we observe a clear trend that fouls occur more quickly for
increasing foul levels n.
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Figure 2.2: Boxplots of the estimated mean fouling times for each of the standard basketball
playing positions.

Figure 2.3: Boxplots of the estimated mean fouling times for foul levels n = 1, 2, . . . , 6.
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Chapter 3

Modelling

We expand the notation of Chapter 2 where we let X(n)
ij denote the time played between

the (n − 1)st and nth foul for the ith player in the jth match, n = 1, . . . , 6. Similarly, we
define Y (n)

ij = min(X(n)
ij , C

(n)
ij ) where C(n)

ij and δij are the corresponding potential censoring
times and indicator variables, respectively. With X(n)

ij ∼ Gamma(αin, βin), this leads to the
posterior density

π(α, β | y) ∝
∏
i

∏
j

∏
n

f(y(n)
ij | αin, βin)1−δijn [1− F (y(n)

ij | αin, βin)]δijn π(α, β) (3.1)

where vector notation is utilized, f and F are the density and cumulative distribution
functions corresponding to the Gamma distribution and π(α, β) is the prior density. Here,
interest concerns the unknown parameters α and β which describe the fouling time distri-
butions.

3.1 Prior Distribution

With 30 players of interest (see Chapter 4) and six foul levels n = 1, . . . , 6, this leads to
2(30)(6) = 360 parameters α and β in (3.1). In hierarchical models, we can effectively reduce
the parameterization by borrowing information between parameters. We let pi denote the
position of player i where pi takes on the values 1 (denoting big), 2 (denoting forward) and
3 (denoting guard). We have seen from the exploratory data analysis that the fouling time
distributions depend on both position and foul level. We therefore consider a prior structure
where (αin, βin) arise from a distribution that depends on both the player position pi and
the foul level n.

We implemented the prior structure by imposing independence between the (αin, βin)
pairs and specifying

(αin, βin)′ ∼ truncated_Normal2((a, b)′,Σ) (3.2)
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where Σ = (σij). The truncations on the bivariate Normal distributions are imposed so that
αin > 0 and βin > 0 according to the definition of the Gamma distribution. We have used
some simplifying notation in (3.2) where it is emphasized that the hyperparameters a, b
and Σ depend on the combination of the player position pi and the foul level n.

The hyperparameters (a, b) were informed from the “old” 2013-2014 through 2016-2017
regular season data. At each foul level n = 1, . . . , 6, we first obtained maximum likelihood
estimates (mles) α̂in and β̂in of the Gamma parameters for all players who accumulated more
than five fouls and played at least 1640 minutes in the 2016-2017 season. We then grouped
the mles accordingly to the 3(6) = 18 combinations corresponding to player position and
foul level. The hyperparameters a and b were then determined by averaging the values of α̂in
and β̂in in each group. For the specification of the hyperparameter matrix Σ, we proceeded
in the same fashion by calculating the second moments corresponding to α̂in and β̂in in
each group.

There is one exception to the hyperprior specification described above. We grouped the
case (pi = 1, n = 5) with (pi = 1, n = 6), we grouped the case (pi = 2, n = 5) with
(pi = 2, n = 6), and we grouped the case (pi = 3, n = 5) with (pi = 3, n = 6). This was
carried out because there were fewer fouls at the higher foul levels n = 5, 6, and grouping
provided more reliable estimation.

We introduced one additional feature in the prior specification based on the discovery
from Chapter 2.3. We impose the constraint αi1/βi1 ≥ αi2/βi2 ≥ · · · ≥ αi6/βi6 to reflect our
knowledge that the mean fouling time decreases with increasing n. Further, if we believe
that fouling time distributions have an increasing hazard function, then we may introduce
the constraint αin ≥ 1.0. Additional model restrictions may be useful when data used to
inform the prior is not abundant.

3.2 Predictive Distributions

In the Bayesian setting, there is a convenient framework for handling predictive inference.
Suppose that we are interested in the predictive distribution for the playing time X(n)∗

i

between the (n − 1)st foul and the nth foul for player i. The density for the predictive
distribution of X(n)∗

i is given by

f(x) =
∫
f(x | αi, βi) π(α, β | y) dα dβ (3.3)

where y denotes the historical data used in the determination of the posterior (3.1).
Fortunately, obtaining a sample from the predictive distribution (3.3) is a by-product of

Markov chain Monte Carlo (MCMC). In the kth iteration of MCMC, we generate the param-
eter vector (α(k), β(k)). We then generate x(k) ∼ f(x | α(k)

i , β
(k)
i ). Repeating the procedure,
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we have a sample x(1), x(2), . . . , x(N) from the predictive distribution. As demonstrated in
Chapter 4, the sample allows us to address various questions associated with fouling times.

3.3 Computation

With complex high-dimensional posterior distributions, one typically resorts to sampling-
based methods to approximate posterior summaries. In this application, we use MCMC
methods to generate variates from the posterior. In particular, we use the Bayesian software
package Stan which is relatively simple to use and avoids the need of special purpose MCMC
code. In Stan, the user only needs to specify the likelihood, the prior and the data; the
determination of appropriate proposal distributions and sampling schemes are done in the
background. Stan is open source software (https://mc-stan.org) and can be accessed through
RStan (https://mc-stan.org/rstan/) which is the R interface to Stan. For example, if we are
able to generate variates α(1)

in , . . . , α
(N)
in from the posterior (1), then α̂in = (1/N)

∑N
k=1 α

(k)
in

provides an estimate of the posterior mean of αin.
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Chapter 4

Results

Data were taken from the Eight Thirty Four website (Evans and Saini 2019) which consists
of enhanced play-by-play data from the 2012-2013 through 2018-2019 NBA regular seasons.

Recall that the 2013-2014 through 2016-2017 NBA regular season data were used to
specify the prior distribution. We now consider the posterior density (1) based on data from
the 2017-2018 and 2018-2019 NBA regular seasons. We use fouling time data corresponding
to the 30 players listed in Table 4.1. The players consisted of 10 bigs, 10 forwards and 10
guards. The players selected were those who had the most minutes of playing time at their
respective positions during the 2017-2018 season.

Bigs Forwards Guards
Player Team Fouls Player Team Fouls Player Team Fouls
R Drummond Pistons 249 G Antetokounmpo Bucks 231 B Beal Wizards 160
C Capela Rockets 185 H Barnes Mavericks 94 C McCollum Trailblazers 168
D Jordan Clippers 203 J Ingles jazz 178 D Lillard Trailblazers 117
J Nurkic Trailblazers 247 K Middleton Bucks 270 D DeRozan Raptors 151
K Towns Timberwolves 285 L James Cavaliers 136 D Mitchell Jazz 213
M Gasol Grizzlies 185 P George Thunder 233 J Holiday Pelicans 201
M Gortat Wizards 175 R Covington Sixers 238 K Walker Hornets 98
N Jokic Nuggets 212 T Gibson Timberwolves 218 L Williams Clippers 106
S Adams Thunder 215 T Young Pacers 175 R Westbrook Thunder 200
W Cauley-Stein Kings 185 T Harris Pistons/Clippers 164 W Barton Nuggets 168

Table 4.1: For the three positions, we list the players studied from the 2017-2018 season
and include the total fouls accumulated.

4.1 Example: Giannis Antetokounmpo - predictive distribu-
tions

We illustrate the fouling tendencies of Giannis Antetokounmpo of the Milwaukee Bucks
based on his fouling data from the 2017-2018 and 2018-2019 regular seasons. Following
Chapter 3.2, we approximated predictive distributions for the fouling times at the foul lev-
els n = 1, . . . , 6. The estimated predictive densities are shown in Figure 4.1. The densities
are based on 3,000 draws from the predictive distributions which are estimated by the func-
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tion geom_density_ridges from the ggridges package in R. We observe that the predictive
densities have long right-skewed tails indicating that there is possibility of playing a long
time without fouling. Like all players, we further observe that Giannis fouls quicker at later
foul levels. For example, the mean predictive fouling time for Giannis is 11.6 minutes for
his first foul and 10.9 minutes for his third foul.

Referring to Table 4.1, Harrison Barnes is also a forward but he fouls much less frequently
than Giannis Antetokounmpo. We observe that the mean predictive fouling time for Barnes
is 23.8 minutes for his first foul and 16.8 minutes for his third foul.

Figure 4.1: Predictive densities of the fouling time distribution for Giannis Antetokounmpo
at the foul levels n = 1, . . . , 6 based on data from the 2017-2018 and 2018-2019 regular
seasons.

4.2 Example: Lebron James - endgame scenario

Lebron James has been a star NBA player for his entire career. Any coach of Lebron would
like to see him playing at the end of a match where the outcome is in the balance. Let’s
imagine that Lebron has picked up his fifth foul midway through the third quarter where
there is 18 minutes left to play. Should Lebron’s coach force Lebron to sit or should he
continue to play? Based on the MCMC output, Lebron’s estimated posterior mean time
for the sixth foul is 9.9 minutes (2.2 minutes longer than Giannis). However, the mean
fouling time does not provide a complete picture for the problem at hand. We use the MC
algorithm and the predictive distribution (3) to generate fouling times x(1), x(2), . . . , x(N)
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corresponding to Lebron’s sixth foul. The 10th percentile of the predictive sample based on
N = 1, 000 is 1.3 minutes. Therefore, if the coach wants to be 90% confident that Lebron
is playing at the end of the match, the coach should force Lebron to sit and re-enter the
match with 1.3 minutes remaining. This strikes us as an overly conservative strategy, where
we suggest that coaches ought to be willing to have Lebron re-enter the match earlier than
1.3 minutes remaining. For reference, the 30th and 50th percentiles for Lebron are 4.2 and
7.5 minutes, respectively.

The same scenario and analysis is considered for another impact player, Karl-Anthony
Towns. If his coach wants to be 90% confident that Towns is playing at the end of the
match having committed his fifth foul, the coach should force Towns to sit and re-enter the
match with 0.8 minutes remaining. The 30th and 50th percentiles for Towns are 2.6 and
4.8 minutes, respectively.

4.3 Example: Damian Lillard - cumulative fouls

We provide a third example which further illustrates the convenience of simulation-based
inference using the proposed model. Following the description of the generation of predictive
variates in Chapter 3.2, suppose we are interested in the total time T that Damian Lillard
can play following his second foul. If xj is the predicted time between the (j− 1)st foul and
the jth foul, then our interest concerns T = x3 + x4 + x5 + x6.

In Figure 5, we provide the survival curve corresponding to T for Damian Lillard. We
observe that Lillard’s median time for fouling out exceeds 48 minutes (ie. the length of
a match). Therefore, in the case of Damian Lillard, it may be unnecessarily cautious for
coaches to follow the Q+ 1 rule.

4.4 Example: Victor Oladipo - playoff scenario

We provide a fourth example which examines an actual game between the fourth seeded
Cleveland Cavaliers and the fifth seeded Indiana Pacer in their series from the 2017-2018
NBA finals. This scenario was described by Falk (2018) and was the motivation for his
discussion of the use of the Q+ 1 rule.

We suggest developing a "coach’s cheat sheet". This denotes the probability of fouling out
for a given player given a budget of minutes. The probability of fouling out is calculated from
the predictive distribution. The survival curve is plotted as a colour gradient to condense
the information into a smaller area and to make the information more visually appealing
for a coach. A coach can discuss with their staff pre-game to determine their level of risk.
We present an example for Victor Oladipo in Figure 4.3. The cheat sheet could have been
used to help inform decisions throughout the upcoming scenario.

In Game 2 of the series, Victor Oladipo the star player of the Indiana Pacers picked up
his second foul at 1:02 into the first quarter. Following his second foul in the first quarter,
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Figure 4.2: Survival curve of the total playing time T = x3 + x4 + x5 + x6 prior to fouling
out for Damian Lillard after he has committed his second foul.

Head Coach of the Indiana Pacers, Nate McMillan, removed Oladipo from the game. He
was re-inserted into the game at the start of the second quarter with 36 minutes remaining
in the game.

We use the predictive distributions of Oladipo’s time to foul out following his second
foul with data from the 2016-2017 and 2017-2018 seasons in order to avoid using data from
the game in question. We predict that Oladipo would have been able to play the 42 minutes
(the most minutes he played in a non-overtime game that season) in the game 42% of the
time without fouling out. In the "coach’s cheat sheet" under "Next Foul: 3" the foul out
percentage is roughly 60%, or a survival percentage of 40%. Instead, Oladipo sat on the
bench until it was impossible to reach the 42 minute total. When he was reinserted into the
game we predicted that he would be able to play the remaining 36 minutes (assuming no
substitutions for rest) 53% of the time without fouling out.

When Oladipo re-entered the game the Pacers were losing 33-18. The Pacers cut the lead
to 41-35 when Oladipo picked up his third foul, with 5 minutes left in the second quarter (29
minutes left in the game). Oladipo was again removed from the game as he had three fouls in
the second quarter and sat until the end of the half. When Oladipo picked up his third foul,
we predicted that he’d be able to play 24 minutes (the 5 remaining minutes of the second
quarter and the 19 minutes he’d play in the third and fourth quarters) without fouling out
50% of the time. By sitting the 5 minutes in the second quarter Oladipo’s probability of
surviving without picking up his sixth foul increased to 66% for the 19 minutes that he
played in the second half.
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Figure 4.3: Example of a coach’s cheat sheet for Victor Oladipo.

Oladipo finished the game with three fouls as he did not pick up another foul for the rest
of the game. We wonder if Coach McMillan understood how each minute of playing time
affected Oladipo’s probability of fouling out? If not, would Coach McMillan have played
Oladipo more minutes? That is, would Coach McMillan trade an 11 minutes in the first
quarter and 5 minutes in the second quarter for an 11% and 16% increase in probability of
survival respectively.

We also note that the distribution for the time to fouling out is right skewed so an
appetite for more risk, especially earlier in the game, creates the possibility for a bigger
reward.

4.5 Model Validation

It is important to validate the accuracy of our model. In particular we compare the accuracy
of our predictive distributions to predictions from three other sources, a baseline survival
probability of 0.5, Kaplan-Meier curves, and maximum likelihood estimates for a Gamma
distribution.

For assessing the accuracy of the models we consider the integrated time-dependent
expected Brier score as suggested by Mogensen, Ishwaran and Gerds (2012) and adjusted
for right censoring times as described by Gerds and Schumacher (2006). The Brier score
evaluates the accuracy of a predicted survival function for any given time t. For a given
time t, it is the squared error between the observed survival status (0,1) and predicted
survival probability of an observation. Under right censoring, we adjust the Brier score by
weighting the squared error using the inverse probability of censoring weights method. The
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time-dependent expected Brier Score using this adjustment is given by

B̂(t) = 1
K

30∑
i=1

∑
j

∑
n

((0− Ŝ(n)
i (t)

)2
· 1yij≤t,δi=1

Ĝ(yij)
+

(
1− Ŝ(n)

i (t)
)2
· 1yij>t

Ĝ(t)

)
(4.1)

where Ĝ(t) = P [C > t] is the estimator of the conditional survival function of the censoring
times calculated using the Kaplan-Meier method, K is the total number of observations,
Ŝ

(n)
i (t) is the estimated survival function given by the predictive distribution for player i

and foul level n.
We calculate B̂ for t = 0, . . . , 48 minutes and approximate the integral with respect to

time t to obtain the integrated time-dependent expected Brier score. The integrated time-
dependent expected Brier scores for each methodology are calculated from out of sample
predictions in the 2018-2019 NBA season from models that were fit on data from the 2016-
2017 and 2017-2018 NBA seasons and reporter in Table 4.2.

Foul Level Bayesian Kaplan-Meier MLE 0.5 Baseline
1 0.123 0.123 0.123 0.250
2 0.132 0.133 0.133 0.251
3 0.136 0.137 0.138 0.251
4 0.161 0.165 0.167 0.245
5 0.147 0.155 0.159 0.222
6 0.160 0.199 0.150 0.221

Table 4.2: Integrated time-dependent expected Brier Score by foul level for each model.

Our Bayesian model outperforms the other models for all cases except for foul level 6,
where the maximum likelihood estimates provide the best out of sample estimates.
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Chapter 5

Discussion

This paper introduces parametric models in a Bayesian framework for the analysis of fouling
time distributions. The problem is important since NBA players foul differently, and coaches
should take this into account when managing playing time for players in foul trouble.

Some of the messages in this paper include (1) that the Gamma distribution provides a
flexible and appropriate distribution for fouling times, (2) that mean fouling times decrease
across the positional types given by bigs, forwards and guards, and (3) that mean fouling
times decrease as more fouls are accumulated. Future work may consider the impact of
consecutive playing time versus segmented playing time, and other covariates such as those
suggested by Evans (2017a, 2017b).

Additionally, another avenue of future research could analyse the value of each part of
the game. In other words, are there parts of the game where a player will have more of an
impact on the probability of winning than others? Then one could combine both analyses
to determine playing time for a player in foul trouble.

We envision our formalization of player foul rate estimation to be a launching point
for future analysis from a statistical point of view and in depth discussions about player
rotations from basketball minds. For those coming from a basketball perspective there are
a couple of other factors to consider. It is most likely beneficial to remove a player from
the game immediately after they are perceived to be in foul trouble for a variety of reasons.
Evans (2017b) notes that players who have just been rested are less likely to foul. Pomeroy
(2016) mentions that players have self preservation habits with respect to foul trouble and
Maymin, Maymin and Shen (2012) found similar results with respect to other aspects of a
players performance. Therefore, the perception of foul trouble should not be ignored. We
still support the notion of removing the player perceived to be in foul trouble for a short
period of time. However, we suggest understanding the player’s foul habits and in most
cases returning the player to play before the usual guideline suggests. Coaches should also
take into account that players will naturally get rest on the bench through regular player
rotations and should account for this when budgeting a player’s remaining minutes. Finally,
our estimation is done with respect to a player’s usual of defensive assignments. Therefore,

17



a coach may be able to change a player’s underlying foul rate by changing the player’s
defensive assignment, or the team’s defensive scheme.

It is our hope that the methods presented here may help NBA teams make better
substitution decisions. Should teams implement the methods, we suggest that they remove
intentional fouls from the dataset. Although intentional fouls are infrequent, they should
not be included as they do not characterize individual fouling behaviour.

Finally, while this analysis was done with respect to NBA data we are excited by the pos-
sibility of quantifying foul rates for the Women’s National Basketball Association (WNBA),
Women’s and Men’s College Basketball and International Basketball competitions.
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