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Abstract

Magnetic resonance imaging (MRI) is being increasingly utilized to assess, diagnose, and
plan treatment for a variety of diseases. The ability to visualize tissue in varied contrasts
in the form of MR pulse sequences in a single scan provides valuable insights to physicians,
as well as enabling automated systems performing downstream analysis. However many is-
sues like prohibitive scan time, image corruption, different acquisition protocols, or allergies
to certain contrast materials may hinder the process of acquiring multiple sequences for
a patient. This poses challenges to both physicians and automated systems since comple-
mentary information provided by the missing sequences is lost. In this paper, we propose
a variant of generative adversarial network (GAN) capable of leveraging redundant infor-
mation contained within multiple available sequences in order to generate one or more
missing sequences for a patient scan. The proposed network is designed as a multi-input,
multi-output network which combines information from all the available pulse sequences
and synthesizes the missing ones in a single forward pass. We demonstrate and validate our
method on two brain MRI datasets each with four sequences, and show the applicability of
the proposed method in simultaneously synthesizing all missing sequences in any possible
scenario where either one, two, or three of the four sequences may be missing. We compare
our approach with competing unimodal and multi-modal methods, and show that we out-
perform both quantitatively and qualitatively.

Keywords: generative adversarial networks, multi-modal, missing modality, pulse sequences,
MRI, synthesis
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Chapter 1

Introduction

1.1 Motivation and Context

Medical imaging forms the backbone of the modern healthcare systems, providing means
to assess, diagnose, and plan treatments for a variety of diseases. Imaging techniques like
computed tomography (CT), magnetic resonance imaging (MRI), X-Rays have been in use
for over many decades. Magnetic resonance imaging (MRI) out of these is particularly in-
teresting in the sense that a single MRI scan is a grouping of multiple pulse sequences,
each of which provides varying tissue contrast views and spatial resolutions, without the
use of radiation. These sequences are acquired by varying the spin echo and repetition
times during scanning, and are widely used to show pathological changes in internal or-
gans and muscoskeletal system. Some of the commonly acquired sequences are T1-weighted,
T2-weighted, T1-with-contrast-enhanced (T1c), and T2-fluid-attenuated inversion recovery
(T2flair), though there exist many more [1]. The common sequences are shown in Figure
1.1.

A combination of sequences provide both redundant and complimentary information to
the physician about the imaged tissue, and certain diagnosis are best performed when a
particular sequence is observed. For example, T1 and T2flair sequences provide clear delin-

�2������1 �2
�1�

Figure 1.1: Common MR sequences acquired for a patient. Axial slices from a high grade
glioma (HGG) patient from BraTS2018 are shown.
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eations of the edema region of tumor in case of glioblastoma, T1c provides clear demarcation
of enhancing region around the tumor used as an indicator to assess growth/shrinkage, and
T2flair sequence is used to detect white matter hyperintensities for diagnosing vascular
dementia (VD) [2].

In clinical settings, however, it is common to have MRI scans acquired using varying
protocols, and hence varying sets of sequences per patient. Sequences which are routinely
acquired may be unusable or missing altogether due to scan corruption, artifacts, incorrect
machine settings, allergies to certain contrast agents and limited available scan time [3–5].
This phenomenon is problematic for many downstream data analysis pipelines that assume
presence of a certain set of pulse sequences to perform their task. For instance, most of
the segmentation methods [6–10] proposed for brain MRI scans depend implicitly on the
availability of a certain set of sequences in their input in order to perform the task. Most of
these methods are not designed to handle missing inputs, and hence may fail in the event
where some or most of the sequences may be absent. This is also illustrated in Figure 1.2.

Modifying existing pipelines in order to handle missing sequences is hard, and may
lead to performance degradation. Also, the option of redoing a scan to acquire the miss-
ing/corrupted sequence is impractical due to the expensive nature of the acquisition, longer
wait times for patients with non-life-threatening cases, need for registration between old
and new scans, and rapid changes in anatomy of area in-between scan times due to highly
active abnormalities such as glioblastoma. Hence there is a clear advantage in retrieving
any missing sequence or an estimate thereof, without having to redo the scan or changing
the downstream pipelines.

To this end, we propose a multi-modal generative adversarial network (MM-GAN) which
is capable of synthesizing missing sequences by combining information from all available se-
quences. The proposed method exhibits the ability to synthesize, with high accuracy, all the
required sequences which are deemed missing in a single forward pass through the network.
The term “multi-modal” simply refers to the fact that the GAN can take multiple-modalities
of available information as input, which in this case represents different pulse sequences.
Similar to the input being multi-modal, our method generates multi-modal output contain-
ing synthesized versions of the missing sequences. Since most of the downstream analysis
pipelines commonly target C = 4 pulse sequences S = {T1, T1c, T2, T2flair} as their in-
put [7, 11, 12], we design our method around the same number of sequences, although we
note that our method can be generalized to any number C and set S of sequences. The
input to our network is a 4-channel (corresponding to C = 4 sequences) 2D axial slice,
where a zero image is imputed for channels corresponding to missing sequences. The output
of the network is a 4-channel 2D axial slice, in which the originally missing sequences are
synthesized by the network.

2
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Figure 1.2: Illustration of scenarios where MR pulse sequences may be missing. (a) shows an
ideal scenario where MR scan is acquired consisting of all the required sequences (T1, T2, T1c,
T2flair). (b) shows practical scenario where the scan may be interrupted or the sequences get
missing due to other reasons, leading to downstream deployed algorithms to fail due to their
hard reliance on the particular set of sequences. (c) a valid use-case where MR pulse sequence
synthesizer like MM-GAN may be inserted in the pipeline to generate missing sequences,
and allowing the deployed downstream algorithms to still function without failing.
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1.2 Related Work

There has been an increased amount of interest in developing methods for synthesizing MR
pulse sequences [2, 5, 13–26]. We present a brief overview of previous work in this field by
covering them in two sections: Unimodal, where both the input and output of the system is
a single pulse sequence (one-to-one); and multimodal, where methods are able to leverage
multiple input sequences to synthesize a single (many-to-one) or multiple sequences (many-
to-many).

1.2.1 Unimodal Synthesis

In unimodal synthesis (one-to-one), a common strategy includes building an atlas or a
database that maps intensity values between given sequences. Jog et al. [15] used a bagged
ensemble of regression trees trained from an atlas. The training data (A1,A2) consisted of
multiple image patches A1 around a voxel i in a source sequence, and a single intensity
value at the same voxel in a target sequence, as A2. The use of image patches to predict
the intensity value of a single voxel in output sequence allows representing many-to-many
relationship between intensity values of input and target sequences. Ye et al. [14] propose
an inverse method, which performs a local patch-based search in a database for every voxel
in the target pulse sequence. Once the patches are found, they are “fused” together using
a data-driven regularization approach. Another atlas based method was proposed in [19]
where T2 whole-head sequence (including skull, eyes etc.) is synthesized from the available
T1 images. The synthesized T2 sequence is used to correct distortion in diffusion-weighted
MR images by using it as template for registration, in the absence of a real T2 sequence.
Yawen et al. [20] leverage joint dictionary learning (JDL) for synthesizing any unavailable
MRI sequence from available MRI data. JDL is performed by minimizing the inconsistency
between statistical distributions of the dictionary codes for input MRI sequences while
preserving the geometrical structure of the input image.

Supervised machine learning and deep learning (DL) based methods have also been
employed in sequence synthesis pipelines. A 3D continuous-valued conditional random field
(CRF) is proposed in [18] to synthesize T2 images from T1. The synthesis step is encoded
as a maximum a-posterior (MAP) estimate of Gaussian distribution parameters built from
a learnt regression tree. Nguyen et al. [27] was one of the first to employ DL in the form of
location-sensitive deep network (LSDN) for sequence synthesis. LSDN predicts the intensity
value of the target voxel by using voxel-centered patches extracted from an input sequence.
The network models the responses of hidden nodes as a product of feature and spatial
responses. Similarly, Bowleset et al. [2] generate “pseudo-healthy” images by performing
voxel-wise kernel regression instead of deep networks to learn local relationships between
intensities in T1 and T2flair sequences of healthy subjects. Since most of the methods were
based on local features in the form of patches and did not leverage global features of the
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input sequence, Sevetlidis et al. [21] proposed an encoder-decoder style deep neural network
trained layer-wise using restricted Boltzmann machine (RBM) based training. The method
utilized global context of the input sequence by taking a full slice as input. Recently, Jog et
al. [22] propose a random forest based method that learns intensity mapping between input
patches centered around a voxel extracted from a single pulse sequence, and the intensity
of corresponding voxel in target sequence. The method utilized multi-resolution patches by
building a Gaussian pyramid of the input sequence. Yu et al. [26] propose a unimodal GAN
architecture to synthesize missing pulse sequences in a one-to-one setting. The approach
uses an edge detection module that tries to preserve the high-frequency edge features of the
input sequence, in the synthesized sequence. Recently, Ul Hassan Dar et al. [28] propose to
use a conditional GAN to synthesize missing MR pulse sequences in a unimodal setting for
two sequences T1 and T2.

1.2.2 Multimodal Synthesis

Multimodal synthesis has been a relatively new and unexplored avenue in MR synthesis
literature. One of the first multi-input, single-output (many-to-one) method was proposed
by Jog et al. [16]; a regression based approach to reconstruct T2flair sequence using combined
information from T1, T2, and proton density (PD) sequences. Reconstruction is performed
by a bagged ensemble of regression trees predicting the T2flair voxel intensities. Chartsias et
al. [5] were one of the first to propose a multi-input, multi-output (many-to-many) encoder-
decoder based architecture to perform many-to-many sequence synthesis, although their
multimodal method is tested only using a single-output (T2flair) (many-to-one setting).
Their network is trained using a combination of three loss functions, and uses a feature
fusion step in the middle that separates the encoders and decoders. Olut et al. [23] present
a GAN based framework to generate magnetic resonance angiography (MRA) sequence from
available T1, and T2 sequences. The method uses a novel loss function formulation, which
preserves and reproduces vascularities in the generated images. Although for a different
application, Mehta et al. [24] proposed a multi-task, multi-input, multi-output 3D CNN
that outputs a segmentation mask of the tumor, as well as a synthesized version of T2flair

sequence. The main aim remains to predict tumor segmentation mask from three available
sequences T1, T2, and T1c, and no quantitative results for T2flair synthesis using T1, T2, and
T1c are provided.

Though all the methods discussed above propose a multi-input method, none of the
methods have been proposed to synthesize multiple missing sequences (multi-output), and
in one single pass. All three methods [16], [5], and [24] synthesize only one sequence (either
T2flair or T2, many-to-one setting) in the presence of varying number of input sequences,
while [23] only synthesizes MRA using information from multiple inputs (many-to-one).
Although the work presented in [23] is close to our proposed method, theirs is not a truly
multimodal network (many-to-many), since there is no empirical evidence that their method
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will generalize to multiple scenarios. Similarly, the framework proposed in [5] can theoreti-
cally work in a many-to-many setting, but no empirical results are given to demonstrate its
scalability and applicability in a variety of different scenarios, as we do in this work. The
authors briefly touch upon this by adding a new decoder to already trained many-to-one
network, but do not explore it any further. To the best of our knowledge, we are the first
to propose a method that is capable of synthesizing multiple missing sequences using a
combination of various input sequences (many-to-many), and demonstrate the method on
the complete set of scenarios (i.e., all combinations of missing sequences).

The main motivation for most synthesis methods is to retain the ability to meaning-
fully use some downstream analysis pipelines like segmentation or classification despite the
partially missing input. However, there have been efforts by researchers working on those
analysis pipelines to bypass any synthesis step by making the analysis methods themselves
robust to missing sequences. Most notably, Havaei et al. [3] and Varsavsky et al. [4] provide
methods for tumor segmentation using brain MRI that are robust to missing sequences [3],
or to missing sequence labels [4]. Although the methods bypass the requirement of hav-
ing a synthesis step before actual downstream analysis, the performance of these robust
versions of analysis pipelines often do not match the state-of-the-art performance of other
non-robust methods in the case when all sequences are present. This is due to the fact that
the methods not only have to learn how to perform the task (segmentation/classification)
well, but also to handle any missing input data. This two-fold objective for a single network
raises a trade-off between robustness and performance.

1.3 Thesis Contributions

The following are the key contributions of this work:

1. We propose the first multi-input multi-output MR pulse sequence synthesizer capable
of synthesizing missing pulse sequences using any combination of available sequences
as input without the need for tuning or retraining of models, in a many-to-many
setting.

2. The proposed method is capable of synthesizing any combination of target missing
sequences as output in one single forward pass, and requires only a single trained model
for synthesis. This provides significant savings in terms of computational overhead
during training time compared to training multiple models in the case of unimodal
and multi-input single-output methods.

3. We propose to use implicit conditioning (IC), a combination of three design choices,
namely imputation in place of missing sequences for input to generator, sequence-
selective loss computation in the generator, and sequence-selective discrimination.

6



We show that IC improves overall quantitative synthesis performance of generator
compared to the baseline approach without IC.

4. To the best of our knowledge, we are the first to incorporate curriculum learning based
training for GAN by varying the difficulty of examples shown to the network during
training.

5. Through experiments, we show that we outperform both the current state-of-art in
unimodal (pGAN [28]), as well as the multi-input single-output synthesis (REPLICA [22]
and MM-Synthesis [5]) method. We also set up new benchmarks on a complete set of
scenarios using the BraTS2018 dataset.

1.4 Thesis Outline

The rest of the thesis is organized as follows: Chapter 2 presents detailed description of
the proposed method, along with implementation details, datasets used, as well as outlines
experimental setup for the current work. Chapter 3 discusses the results and observations
for the proposed method, and finally the thesis is concluded in Chapter 4.

7



Chapter 2

Methodology

2.1 Background

Generative adversarial networks (GANs) were first proposed by Goodfellow et al. [29] in
order to generate realistic looking images. A GAN is typically built using a combination of
two networks: generator (G) and discriminator (D). The generator network is tasked with
generating realistic data, typically by learning a mapping from a random vector z to an
image I:

G : z → I, (2.1)

where I is said to belong to the generator’s distribution pG .
The discriminator:

D : I → t (2.2)

maps its input I to a target label t ∈ {0, 1}, where t = 0 if I ∈ pG , i.e. a fake image generated
by G and t = 1 if I ∈ pr where pr is the distribution of real images. A variant of GANs,
called conditional-GAN (cGAN) [30], proposes a generator that learns a mapping from a
random vector z and a class label y to an output image I:

G : (z, y)→ I, I ∈ pG (2.3)

Another variant of cGAN called Pix2Pix [31] develops a GAN in which the generator
learns a mapping from an input image x ∈ pr to output image I ∈ pG , G : x → I, and the
discriminator learns a mapping from two input images, x1 and x2, to T , D : (x1, x2) → T .
x1 and x2 may belong to either pr (real) or pG (fake). The output T in this case is a not a
single class label, but a binary prediction tensor representing whether each N ×N patch in
the input image is real or fake [31].

A GAN is trained in an adversarial setting, where the generator (parameterized by θG)
is trained to synthesize realistic output that can ”fool” the discriminator into classifying
them as real, and the discriminator (parameterized by θD) is trained to accurately distin-
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guish between real data and fake data synthesized by the generator. GAN input/outputs
can be images [31], text [32] or even music [33]. Both the generator and discriminator act
as adversaries to each other, hence the training formulation forces both networks to contin-
uously get better at their tasks. GANs found tremendous success in a variety of different
tasks, ranging from face-image synthesis [34], image stylization [35], future frame predic-
tion in videos [36], text-to-image synthesis [32] and synthesizing scene images using scene
attributes and semantic layout [37]. GANs have also been utilized in medical image analysis
[38], particularly for image segmentation [39–41], normalization [42], synthesis [23, 26, 28]
as well as image registration [43].
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Figure 2.1: Proposed multimodal generative adversarial network (MM-GAN) training process. The generator is a UNet architecture,
while the discriminator is a PatchGAN architecture with L2 loss (least squares GAN). The green “Copy” blocks transfer the input
channels as is to its output, while the red “Drop” block deletes its input channels. The generator L1 loss is computed only between the
synthesized versions of the missing sequences (here T1 and T2). The discriminator takes Xr and Xi as input and produces a 4-channel
2D output representing whether each N ×N patch in Xi is either fake or real.
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2.2 Proposed Method

We propose a variant of Pix2Pix architecture [31] called Multi-Modal Generative Adver-
sarial Network (MM-GAN) for the task of synthesizing missing MR pulse sequences in a
single forward pass while leveraging all available sequences. The following subsections would
outline the detailed architecture of our model.

2.2.1 Generator

The generator of the proposed method is a UNet [44], which has proven useful in a variety
of segmentation and synthesis tasks due to its contracting and expanding paths in the
form of encoder and decoder subnetworks. The architecture is illustrated in Figure 2.1. The
convolution kernel sizes for each layer in the generator is set to 4×4. The generator network
is a combination of UNetUp and UNetDown blocks. The input to the generator is a 2D axial
slice from a patient scan with C = 4 channels representing four pulse sequences, and spatial
size of 256×256 pixels. The network is designed with a fixed input size of 4-channels, where
channel C = 0, 1, 2, and 3 corresponds to T1, T2, T1c, and T2flair, respectively.

In order to synthesize missing sequences, the channels corresponding to each missing
sequence are imputed with zeros. The imputed version (along with the real sequences)
becomes the input to the generator and is represented by Xz. For instance, if sequences T1

and T2 are missing, channels C = 0 and C = 1 in the input image are imputed with a zero
image of size 256 × 256. The output of the generator is given by G(Xz|θG) and is of the
same size as the input. Due to design, the generator always outputs 4 channels, however,
as we outline in the subsequent text the output channels corresponding to the existing real
sequences are not used for loss computation and are replaced with the real sequences before
relaying them as input to the discriminator. During training the ground truth image Xr,
short for “real”, which is of the same size as Xz contains all ground truth sequences at their
respective channel indices. We use the term “image” for a single 2D slice with 4 channels.

MM-GAN observes both an input image and imputed zeros z in the form of Xz, in
contrast to vanilla Pix2Pix where the generator is conditioned just by an observed image x.
The reasons behind this design choice are discussed in subsection 2.2.3. We also investigate
different imputation strategies in subsection 3.3.1, and found that zero based imputation
performs the best quantitatively.

To optimize θG , our generator adopts the general form of the generator loss in Pix2Pix,
which is a combination of a reconstruction loss L1 and an adversarial loss L2 used to train
the generator to fool the discriminator, i.e.

θ∗G = arg min
θG

λL1(G(Xz|θG), Xr)+

(1− λ) L2(D(Xi, Xr|θD), Lar).
(2.4)
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To calculate L1, we select synthesized sequences from G(Xz|θG), that were originally
missing, and compute the L1 norm of the difference between the synthesized versions of
the sequence and the available ground truth from Xr. Mathematically, given the set K
containing the indices of missing sequences (e.g. K = {0, 2} when T1 and T1c are missing)
in the current input, we calculate L1 only for the sequences that are missing (k = 0, 2), and
sum the values.

To calculate L2, we compute the squared L2 norm of the difference between the dis-
criminator’s predictions D(Xi, Xr|θD)) and a dummy ground truth tensor Lar of the same
size as the output of D. In order to encourage the generator to synthesize sequences that
confuse or “fool” the discriminator into predicting they are real, we set all entries of Lar to
ones, masquerading all generated sequences as real. Xi is introduced in the next section.

The choice of L1 as a reconstruction loss term for the generator is motivated by its
ability to prevent too much blurring in the final synthesized sequences, as compared to
using an L2 loss (similar to [31]).

2.2.2 Discriminator

We use the PatchGAN architecture [31] for the discriminator part of our MM-GAN. Patch-
GAN architecture learns to take into account the local characteristics of its input, by pre-
dicting a real/fake class for every N × N patch of its input, compared to classic GANs
where the discriminator outputs a single real/fake prediction for the whole input image.
This encourages the generator to synthesize images not just with proper global features
(shape, size), but also with accurate local features (texture, distribution, high-frequency
details). In our case we set N = 16.

The discriminator is built using four blocks followed by a zero padding layer and a
final convolutional layer (Figure 2.1). The convolutional kernel sizes, stride and padding
is identical to the values used in the generator (subsection 2.2.1). Due to the possibility
of having a varying number of sequences missing, instead of providing just the synthesized
sequences and their real counterparts as input to the discriminator, we first create a modified
version of G(Xz|θG) by dropping the reconstructed sequences that were originally present,
and replacing them with the original sequences from Xr. The modified version of G(Xz|θG)
is represented by Xi, short for “imputed”. The input to the discriminator is a concatenation
of Xi and Xr. This is also illustrated in Figure 2.1.

The discriminator is trained to output a 2D patch of size 16×16 pixels, with 4 channels
corresponding to each sequence. In order to supervise the discriminator during training, we
use a 4-channel 2D image based target, in which each channel corresponds to a sequence.
More specifically, given missing sequences K (e.g., K = {0, 2}, T1 and T1c missing), the
target (i.e. ground truth) variable for D is:
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Lkr =

0.0 (fake) if k ∈ K

1.0 (real) otherwise
(2.5)

Note that Lkr is a 2D tensor of size 16×16 (since each 256×256 image is divided into 16×16
patches) yet the assignment of 0.0 or 1.0 represents an assignment to the whole 16 × 16
Lkr tensor (since the whole image is either real or fake and not patch-specific). This is also
illustrated in Figure 2.1.

Between the output of discriminator D(Xi, Xr|θD) and Lr, an L2 loss is computed. The
final discriminator loss becomes:

θ∗D = arg min
θD

L2(D(Xr, Xr|θD), Lar)

+L2(D(Xr, Xi|θD), Lr).
(2.6)

This is equivalent to a least-squares GAN since the loss function incorporates an L2 loss.

2.2.3 Implicit conditioning

Due to the inherent design of deep learning architectures, the input as well as output of a
convolutional neural network model has to have a fixed channel dimension. In our use case
however, both the input and output channel dimensions vary (since the number of available
sequences can vary).

In order to address this problem, we propose a combination of three design choices, which
we collectively refer to as implicit conditioning (IC). In IC, the varying input channels prob-
lem is solved by imputing a fixed value (zeros) to the input channels where the sequences
are missing. For the problem of generator output size being fixed in channel dimension, one
possible approach can be to synthesize all four input sequences. The loss function can be
calculated between four ground truth sequences, and the four synthesized sequences. How-
ever, this poses a challenge for the generator, as its burdened with generating all sequences,
including the reconstruction of the ones that were provided as input. In order to address
this, we proposed selective loss computation in G, where the loss is only calculated between
the ground truth sequences that were missing, and the corresponding output channels of
the generators. In conjunction, we also propose selective discrimination in D, which ensured
stability during training by preventing the discriminator from overpowering the generator.
We also show that IC-based training outperforms the baseline training methodology of gen-
erating and penalizing inaccurately synthesizing all sequences (subsection 3.3.2). The design
choices are individually summarized below.
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2.2.3.1 Input Imputation

The input Xz of the generator always contains an imputed value (z = zeros) in place of
the missing sequences which acts as a way to condition the generator and informs which
sequence(s) to synthesize.

2.2.3.2 Selective Loss Computation in Generator (G)

In conjunction, the L1(G) loss that is computed only between the synthesized sequences
for the generator, and then backpropagated, allows the generator to align itself towards
only synthesizing the actual missing sequences properly while ignoring the performance in
synthesizing the ones that were already present.

2.2.3.3 Selective Discrimination in Discriminator (D)

Imputing real sequences at the generator output (i.e.Xi) before providing it as discriminator
input forces the discriminator to accurately learn to delineate only between the synthesized
sequences and their real counterparts. Since the generator loss function also has a term
that tries to fool the discriminator, this allows selective backpropagation into the generator
where it is penalized only for incorrectly synthesizing the missing sequences, and not for
incorrectly synthesizing the sequences that were already present. This relieves the generator
of the difficult task of synthesizing all sequences in the presence of some sequences.

2.2.4 Curriculum Learning

In order to train our proposed method we use a curriculum learning (CL) [45] based ap-
proach. In CL based training, the network is initially shown easier examples followed by
increasingly difficult examples as the training progresses. We hypothesized that CL can ben-
efit in training of MM-GAN due to an ordering in the level of difficulty across the various
scenarios that the network has to handle. If some cases are “easier” than others, it might
be useful if the easier cases are shown first to the network in order to allow the network to
effectively learn when ample supervision is available. As the network trains, “harder” cases
can be introduced so that the network adapts without diverging.

In our work, scenarios with 1 sequence missing are considered “easy”, followed by a
“moderate” set of scenarios with 2 missing sequences, and lastly, the scenarios with 3 missing
sequences are considered “hard”. We adopted this ordering in our work, and showed the
network easier examples first, followed by moderate and finally hard examples. After a
threshold of 30 epochs, we show every scenario with uniform probability.
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2.3 Experimental Setup

In this section we describe different aspects of the experiments that are performed in this
work.

2.3.1 Datasets

In order to validate our method we use brain MRI datasets from two sources, namely the
Ischemic Stroke Lesion Segmentation Challenge 2015 (ISLES2015) [46] and the Multimodal
Brain Tumor Segmentation Challenge 2018 (BraTS2018) [47].

2.3.1.1 Ischemic Stroke Lesion Segmentation Challenge 2015

ISLES2015 dataset is a publicly available database with multi-spectral MR images [46].
We choose the sub-acute ischemic stroke lesion segmentation (SISS) cohort of patients,
which contains 28 training and 36 testing cases. The patient scans are skull stripped using
BET2 [48], and resampled to an isotropic resolution of 1 mm3. Each scan consists of four
sequences namely T1, T2, DWI, and T2flair, and are rigidly co-registered to the T2flair se-
quence using elastix tool-box [49]. More information about the preprocessing steps can be
found in the original publication [46]. We use 22 patients from the SISS training set for
experiments.

2.3.1.2 Brain Tumor Segmentation Challenge 2018

BraTS2018 consists of a total of 285 patient MR scans acquired from 19 different institu-
tions, divided into two cohorts: glioblastoma/high grade glioma (GBM/HGG) and low grade
glioma (LGG). The patient scans contains four pulse sequence T1, T2, T1c, and T2flair. All
scans are resampled to 1 mm3 isotropic resolution using a linear interpolator, skull stripped,
and co-registered with a single anatomical template using rigid registration model with mu-
tual information similarity metric. Detailed preprocessing information can be found in [47].

In order to demonstrate our method’s ability in synthesizing sequences with both high
grade and low grade glioma tumors present, we use a total of 210 patients from HGG and 75
patients from LGG cohort. 195 patients are reserved for training for HGG cohort, while 65
are used for training in LGG experiments. For validation, we use 5 patients for both HGG
and LGG cohorts. In order to test our trained models, we use 10 patients from HGG cohort
(due to larger data available), while we report results using 5 patients for LGG cohort as
testing. To enable direct comparisons by future works, we release the list of patient images
used as test set throughout this study in the Table 2.1. Patients other than those specified
in Table 2.1 are used for training.
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Table 2.1: Patient images used for testing from BraTS2018 HGG and LGG cohorts.

HGG Patients LGG Patients
Brats18_2013_12_1 Brats18_2013_9_1
Brats18_CBICA_AAP_1 Brats18_TCIA10_449_1
Brats18_CBICA_APR_1 Brats18_TCIA12_466_1
Brats18_CBICA_ASA_1 Brats18_TCIA12_470_1
Brats18_CBICA_ASK_1 Brats18_TCIA13_654_1
Brats18_TCIA01_390_1
Brats18_TCIA02_226_1
Brats18_TCIA02_473_1
Brats18_TCIA02_491_1
Brats18_TCIA08_469_1

2.3.2 Preprocessing

Each patient scan is normalized by dividing each sequence by its mean intensity value. This
ensures that distribution of intensity values is preserved [5]. Normalization by mean is less
sensitive to high or low intensity outliers as compared to min-max normalization procedures,
which can be greatly exacerbated by the presence of just a single high or low intensity voxel
in a sequence. This is especially common in the presence of various pathologies, like tumors
as in BraTS2018 datasets, which tend to have very high intensity values in some sequences
(T2, T2flair) and recessed intensities in others (T1, T1c). In practice, we observed this for
BraTS2018 HGG cohort, where some voxels had an unusually high intensity value due to
a pathology. On performing min-max normalization to scale intensities between [0,1], we
found that the presence of very high intensity voxel squashed the pixel range to always
lie very close to zero. This artificially bumped the performance numbers for the generator
since most voxels lied close to zero, and hence the generator could synthesize images with
intensity values close to zero, and achieve a low L1 score easily. On the other hand, mean
normalization was relatively unaffected due to a large number of voxels in a defined range
( 0-4000). The mean value was not strongly affected by the presence of one or more high/low
intensity voxels.

We also tested the method internally with zero mean and unit variance based standard-
ization, and found the results to be at par with mean normalization. In order to crop out the
brain region from each sequence, we calculate the largest bounding box that can accommo-
date each brain in the whole dataset, and then use the coordinates to crop each sequence
in every patient scan. The final cropped size of a single patient scan with all sequences
contains 148 axial slices of size 194×155. Each slice in every sequence is resized to a spatial
resolution of 256×256, using bilinear interpolation, in order to maintain compatibility with
UNet architecture of the generator.
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We note that avoiding resampling twice (once during registration performed by the
original authors of the dataset, and once during resampling to 256× 256 in this work) may
preserve some information in the scans that may otherwise be lost. However, it is a necessary
preprocessing step in order to maintain compatibility with various network architectures
that we utilize, which includes inherent assumptions that the input size would be a power
of two to allow successive contracting and expanding steps used in many encoder-decoder
style architectures. In order to fully avoid the second resampling step (to 256× 256 in this
work), a different network architecture may be used without the encoder-decoder setup,
though the performance of those networks may not be at par with the modern encoder-
decoder style networks as established in synthesis field [28,31,50]

2.3.3 Benchmark Methods

We compare our method with three competing methods, one unimodal and two multimodal.
The unimodal (single-input, single-output, one-to-one) method we compare against is pGAN
[28], while the multimodal (many-to-one) models being REPLICA [22] (in a multi-input
setting), and that of Chartsias et al. [5], called MM-Synthesis hereafter. Both pGAN and
MM-Synthesis were recently published (2019 and 2018), and they outperform all other
methods before them (MM-Synthesis outperforms LSDN [27], Modality Propagation [14],
and REPLICA [22], while pGAN outperforms both REPLICA and MM-Synthesis in one-to-
one synthesis). To the best of our knowledge, we did not find any other methods that claimed
to outperform either pGAN or MM-Synthesis, and so decided to evaluate our method against
them.

For comparison with pGAN [28], we reimplement the method using the open source
code provided with the publication, and train both pGAN and our method on a randomly
chosen subset of data from BRATS2018 LGG cohort. We also compare with a standard
baseline which is a vanilla Pix2Pix [31] model trained and tested in a one-to-one setting. For
our multimodal (many-to-one) experiments, we report mean squared error (MSE) results
for both REPLICA and MM-Synthesis directly from [5], as we recreate the exact same
testbed for comparison with MM-GAN, as used in MM-Synthesis. We adopt the same
testing strategy (5-fold cross validation), database (ISLES2015), and scenarios (7 scenarios
where T2flair is always missing and is the only one that is synthesized). As highlighted
in [5], the multi-input version of REPLICA required seven models each for each of the
seven valid scenarios in many-to-one setting synthesizing T2flair sequence. MM-Synthesis
and our proposed MM-GAN only required a single multimodal (many-to-one) network which
generalized to all seven scenarios.

For our final extended set of experiments, we demonstrate the effectiveness of our method
in a multi-input multi-output (many-to-many) setting, where we perform testing on the
HGG and LGG cohorts of BRaTS2018 dataset for which we report results of all 14 valid
scenarios (=16−2, as scenario when all sequences are missing/present are invalid for our ex-
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periments) instead of just 7. The results showcase our method’s generalizability on different
use-cases with varying input and output subsets of sequences, and different difficulty levels.
We use a fixed order of sequences (T1, T2, T1c, T2flair) throughout this thesis, and represent
each scenario as a 4-bit string, where a zero (0) represents the absence of a sequence at that
location, while a one (1) represents its presence.

2.3.4 Training and Implementation Details

In order to optimize our networks, we use Adam [51] optimizer with learning rate η = 0.0002,
β1 = 0.5 and β2 = 0.999. Both the generator and discriminator networks are initialized with
weights sampled from a Gaussian distribution with µ = 0, σ = 0.02.

We perform four experiments, first for establishing that multi-input synthesis is better
than single-input (many-to-one vs one-to-one respectively), second for T2flair synthesis us-
ing multiple inputs (many-to-one) (called MISO, short for multi-input single-output) using
ISLES2015 dataset to compare with REPLICA and MM-Synthesis. The third set of experi-
ments encompasses validation of multiple key components proposed throughout this thesis,
in terms of their contribution towards overall network performance. We test different impu-
tation strategies (z = {average, noise, zeros}), as well as the effect of curriculum learning
(CL) and implicit conditioning (IC). The final set of experiments pertain to multimodal
synthesis (MIMO, short for multi-input multi-output), which sets a new benchmark for
many-to-many synthesis models using BraTS2018 HGG and LGG cohorts. We refer to the
second and fourth experiments as MISO and MIMO, respectively, hereafter. We use a batch
size of 4 slices to train models, except for MISO, where we use batch size of 2. We train the
models for 30 epochs in MISO and 60 epochs for MIMO sets of experiments, with no data
augmentation.

We choose λ = 0.9 for the generator loss given in equation 2.4, while we multiply the
discriminator loss by 0.5 which essentially slows down the rate at which discriminator learns
compared to generator. During each epoch, we alternate between a single gradient descent
step on the generator, and one single step on the discriminator.

For our MIMO experiments, we use the original PatchGAN [31] discriminator. However
for our MISO experiments, due to lack of training data, we used a smaller version of the
PatchGAN discriminator with just two discriminator blocks, followed by a zero padding
and final convolution layer. Also, random noise was added to both Xr and Xi inputs of
the discriminator in MISO experiments. This was done to reduce the complexity of the dis-
criminator to prevent it from overpowering the generator, which we observed when original
PatchGAN with no noise imputation in its inputs was used for this set of experiments. The
generator’s final activation was set to ReLU for MIMO and linear for MISO experiments
due to the latter having negative intensity values for some patients.

For our implementation we used Python as our main programming language. We imple-
mented Pix2Pix architecture in PyTorch. The computing hardware consisted of an i7 CPU

18



with 64 GB RAM and GTX1080Ti 12 GB VRAM GPU. Throughout our experiments we
use random seeding in order to ensure reproducibility of our experiments. For our MIMO
experiments, we use curriculum learning by raising the difficulty of scenarios every 10 epochs
(starting from one missing sequence) that are shown to the network until epoch 30 (shown
examples with three missing sequences), after which the scenarios are shown randomly with
uniform probability until epoch 60. For MISO experiments we train the model without
curriculum learning, and show all scenarios with uniform probability to the network for 30
epochs. MM-GAN takes an average time of 0.1536 ± 0.0070 seconds per patient as it works
in constant time at test-time w.r.t number of sequences missing.

2.3.5 Evaluation Metrics

Evaluating the quality of synthesized images should ideally take into account both the quan-
titative aspect (per pixel synthesis error) as well as qualitative differences mimicking human
perception. In order to cover this spectrum, we report results using three metrics, namely
mean squared error (MSE), peak signal-to-noise ratio (PSNR) and structural similarity
index metric (SSIM).

The MSE is given as:

MSE = 1
n

N∑
i=1

(yi − y
′
i)2, (2.7)

where yi is the original sequence and y′i is the synthesized version. MSE however depends
heavily on the scale of intensities, hence for fair comparison, similar intensity normaliza-
tion procedures were followed. In this work, we adopt the normalization procedure used
in [5]. We report all results except in Section 3.2 after normalizing both ground truth and
synthesized image in range [0, 1]. We do this in order to maintain consistency across the
study, and allow all future methods to easily compare with our reported values regardless
of the standardization/normalization procedure used in network training. We note that the
generator successfully learns to synthesize images that lie in the same normalized range as
the ground truth and input training images, and hence there is no need for re-normalization
after synthesis. Re-normalization in our case was only applied before evaluation to ensure
fair comparison for current and future works. For Section 3.2, in order to directly compare
with the results reported in [5], we report results without re-normalizing.

In order to still provide a normalization agnostic metric, we report PSNR, which takes
into account both the MSE and the largest possible intensity value of the image, given as:

PSNR = 10 log10

(
I2
max/MSE

)
, (2.8)

where Imax is the maximum intensity value that the image supports, which depends on the
datatype.
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We also report SSIM, which tries to capture the human perceived quality of images by
comparing two images. SSIM is given as:

(2µxµy + c1)(2σxy + c2)
(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2) , (2.9)

where x, y are two images to be compared, and µ =mean intensity, σ2 =variance of
image, and σxy =covariance of x, y.
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Chapter 3

Results and Discussion

In this section we present the results for our experiments validating our method and com-
parison with competing unimodal (one-to-one) (Section 3.1), and multi-input single-output
(many-to-one) methods (Section 3.2) methods. We also present a validation study (Sec-
tion 3.3) to investigate quantitative performance improvements by various key components
proposed in this work. Finally we present benchmark results in multi-input multi-output
(MIMO) synthesis (Section 3.4).

3.1 Single-Input VS Multi-Input Synthesis

In order to understand the performance difference between using a single sequence versus
using information from multiple sequences to synthesize a missing sequence, we set up
an experiment evaluating the two approaches. Our hypothesis for this experiment is that
multiple sequences provide complimentary information about the imaged tissue, and hence
should be objectively better than just using one sequence for the task of synthesizing a
missing one. We set up an experiment to compare multi-input single-output model with
two single-input single-output models in two tasks, namely synthesizing missing T1 and
T2 sequences respectively. For single-input single-output models, we set up a Pix2Pix [31]
model as baseline, called P2P. We also compare with a state-of-art single-input single-output
synthesis method called pGAN [28]. pGAN adopts it’s generator architecture from [50] and
proposes a combination of L1 reconstruction loss and perceptual loss using VGG16 as the
loss-network in a generative adversarial network framework. The discriminator for pGAN
was adopted from [31]. We use the official pGAN implementation1 for training and testing
on the pGAN (k=3) model. Finally, for our multi-input single-input model, we implement
a multi-input single-output variant of our proposed MM-GAN called MI-GAN (multi-input
GAN).

1https://github.com/icon-lab/pGAN-cGAN
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We call the baseline Pix2Pix models P2PT1 (synthesizing T1 from T2) and P2PT2 (syn-
thesizing T2 from T1). Similarly, pGAN models are named as pGANT1 and pGANT2 . For our
multi-input variants, the two variants of MI-GAN are named as MI-GANT1 and MI-GANT2 ,
which synthesize T1 from (T2, T1c, T2flair) and T2 from (T1, T1c, T2flair) respectively. For
P2P and MI-GAN models training was performed for 60 epochs, using consistent set of
network hyperparameters used throughout this thesis. For pGAN, training was performed
as outlined in the original paper [28] for 100 epochs, with k=3 slices as input to the network.
All networks were trained on 70 patients from LGG cohort of BraTS2018 dataset, and tested
on 5 patients. Although input normalization between the P2P/MI-GAN and pGAN differ,
all metrics were calculated after normalizing both ground truth and synthesized image in
range [0, 1]. We also perform Wilcoxon signed-rank tests across all test patients and report
p-values wherever the performance difference is statistically significant (p < 0.05).

Table 3.1: Comparison between P2P, pGAN and MI-GAN. Values in boldface represent
best performance values. Reported values are mean ± std.

Model MSE PSNR SSIM
P2PT1 0.0135±0.0044 22.1168±2.1001 0.8864±0.0180
pGANT1 0.0107±0.0048 23.8645±2.8851 0.8992±0.0203
MI-GANT1 0.0052±0.0026 26.6057±1.3801 0.9276±0.0118
P2PT2 0.0050±0.0019 25.0606±1.2020 0.8931±0.0176
pGANT2 0.0050±0.0033 25.4511±1.6773 0.9008±0.0250
MI-GANT2 0.0049±0.0041 26.1233±2.6630 0.9078±0.0324
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Figure 3.1: Qualitative results for P2P, pGAN, and MI-GAN. Left subfigure (columns (a) through (d)) visualize the performance of
three models in synthesis of T1 sequence. The second subfigure (columns (e) through (h)) show synthesized T2 sequences for each of the
tested models. Red arrows indicate areas where tumor regions were present, and successfully synthesized by MI-GAN in both T1 and
T2 synthesis.
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Table 3.1 presents MSE, PSNR and SSIM results for all three model architectures and
their variants. We observe that both variants of MI-GAN outperform both P2P and pGAN
models in all metrics.

Comparing MI-GANT1 and the baseline P2PT1 , MI-GANT1 outperformed by 61.48% in
terms of MSE (p < 0.05), 20.29% in PSNR (p < 0.05) and 4.64% in SSIM (p < 0.05).
MI-GANT1 also outperformed the state-of-art single-input single-output model pGANT1 , in
all metrics, with improvements of 51.40% in MSE (p < 0.01), 11.48% in PSNR (p < 0.05)
and 3.15% in SSIM (p < 0.05).

Similarly for T2 synthesis, MI-GANT2 outperforms both P2PT2 , pGANT2 . With respect
to P2PT2 , MI-GANT2 performs better by 2% in MSE, 4.24% in PSNR and 1.64% in terms of
SSIM. Compared to pGANT2 , MI-GANT2 shows improvement of 2% in MSE, 2.64% in PSNR
and 0.77% in SSIM. Although the quantitative improvement in T2 synthesis was modest
compared to both P2PT2 and pGANT2 , we notice interesting qualitative improvements,
visible in Figure 3.1, where MI-GANT2 managed to synthesize the pathology region which
other methods failed to generate.

These improvements of MI-GAN over P2P and pGAN models can be attributed to the
availability of multiple sequences as input, which the network utilizes to synthesize missing
sequences. The qualitative results showing axial slices from a test patient are provided in
Figure 3.1 in which red arrow points to the successful synthesis of tumor regions in the case
of MI-GAN, which was possible due to tumor specific information present in the available
three sequences about the various tumor sub-regions (edema, enhancing and necrotic core)
in the input sequences, which is not available in its entirety to the single-input single-output
methods. We also notice that MI-GAN performs consistently for a single patient, without
showing significant deviation from the ground truth intensity distributions in both T1 and
T2.

Superior quantitative and qualitative results showing MI-GAN outperforming P2P and
pGAN reinforce the hypothesis that using multiple input sequences for the synthesis of a
missing sequence is objectively better than using just one input sequence. Moreover, using
multi-input methods reduces the number of required models by an order of magnitude, where
for a multi-input single-output (many-to-one) only 4 models would be required, compared
to 12 for single-input single-output (one-to-one) model (C(C − 1) when C = number of
sequences = 4). A multi-input multi-output (many-to-many) model which we explore in
this work, improves this further by just requiring a single model to perform all possible
synthesis tasks for a given C, leading to enormous computational savings during training
time.
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3.2 T2flair Synthesis (MISO)

In this second set of experiments we train our MM-GANmodel to synthesize T2flair sequence
in the presence of a varied number of input sequences (one, two or three). Contrasting from
the MI-GAN models, this model is trained to generalize on number of different scenarios
depending on the available input sequences. In this case, the number of valid scenarios
are 7. We perform validation on the ISLES2015 dataset in order to directly compare with
REPLICA [22] and MM-Synthesis [5]. The quantitative results are given in Table 3.2. We
note that the proposed MM-GAN (0.226±0.046) clearly outperforms REPLICA’s unimodal
synthesis models (0.271±0.10) in all scenarios, as well as MM-Synthesis (0.236±0.08) in
majority (4/7) scenarios. Our method also demonstrates an overall lower MSE standard
deviation throughout testing (ranging between [0.03, 0.07], compared to REPLICA [0.08,
0.16] and MM-Synthesis [0.02, 0.13]) in all scenarios but one (T2 missing). The qualitative
results for ISLES2015 are shown in Figure 3.2. Compared to MM-Synthesis (from qualita-
tive results shown in their original paper [5]), our results are objectively sharper, with lower
blurring artifacts. MM-GAN also preserves high frequency details of the synthesized se-
quence, while MM-Synthesis and REPLICA seem to miss most of these details. We request
the readers to refer to the original MM-Synthesis [28] manuscript’s Figures 5 and 6 for com-
parison with our proposed MM-GAN’s qualitative results given in Figure 3.3 of the current
manuscript. Qualitatively from Figure 3.2, MM-GAN follows the intensity distribution of
the real T2flair sequence in its synthesized version of T2flair.

Table 3.2: Comparison with unimodal method REPLICA and multimodal method MM-
Synthesis. The reported values are mean squared error (MSE). Boldface values represent
lowest values of the three methods for a particular scenario.

Scenarios REPLICA MM-Synthesis MM-GAN
T1 T2 DW (Proposed)

- - X 0.278±0.09 0.285±0.13 0.210±0.057
- X - 0.374±0.16 0.321±0.12 0.279±0.055
- X X 0.235±0.08 0.214±0.09 0.182±0.033
X - - 0.301±0.11 0.249±0.09 0.281±0.071
X - X 0.225±0.08 0.198±0.02 0.191±0.039
X X - 0.271±0.12 0.214±0.08 0.254±0.066
X X X 0.210±0.08 0.171±0.06 0.182±0.041

Mean 0.271±0.10 0.236±0.08 0.226±0.046

We found that using CL based learning did not help in MISO experiments, as the pres-
ence of more sequences does not necessarily increase the amount of information available.
For example, the presence of both T1 and T2 does not result in better T2flair synthesis (MSE
0.2541) compared to the presence of DW alone (MSE 0.2109). This is because, for every
missing sequence, there tends to be some “highly informative” sequences that, if absent,
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1110 1100 1010

0110 1000 0100 0010

Figure 3.2: Qualitative results from T2flair synthesis experiments with ISLES2015 dataset.
The order of scenario bit-string is T1, T2, DW, T2flair , where a zero (0) represents missing
sequence, while a one (1) represents an available sequence. We note that the presence of
multiple sequences (scenario 1110) qualitatively matches the closest to the ground truth,
with sharp boundaries between white and grey matter, as well as less blurring artifacts
compared to scenarios with two or just one available sequences. Patient images shown here
are from VSD ID 70668 from ISLES2015 SISS cohort.

reduces the synthesis performance by a larger margin. On the other hand, the presence
of these highly informative sequences can dramatically boost performance, even in cases
where no other sequence is present. Due to this, the assumption that leveraging a higher
number of present sequences implies an easier case (i.e. more accurate synthesis) does not
hold, and thus it becomes problematic to rank scenarios based on how easy they are, which
renders CL useless in this case. Globally (for all valid scenarios, presented in next subsec-
tion), however, this assumption tends to hold due to the complex nature of interactions
between sequences. CL helps tremendously in achieving a stable training of the network in
the subsequent experiments (MIMO). For MISO, every scenario was shown to the network
with uniform probability, throughout training.

3.3 Validation of Key Components

3.3.1 Imputation Value and Curriculum Learning

In our proposed multi-input multi-output MM-GAN model, the missing sequences during
both training and test time has to be imputed with some value. In order to identify the best
approach for imputing missing slices, we test MM-GAN with three imputation strategies,
where z = average of available sequences, z = noise, and z = zeros.

We also test curriculum learning (CL) based training strategy where the network is
initially shown easier examples followed by increasingly difficult examples as the training
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progresses. We compare this approach with random sampling (RS) method, where scenarios
are uniformly sampled during training regardless of the number of missing sequences. In
order to test the effectiveness of CL based learning, we report results with CL-based learning
as well as random sampling (RS) based learning for each imputation strategy.

The results for our experiments are given in Table 3.3. The imputation value z = zeros
performed the best when CL based training strategy is adopted (MSE 0.0095 and PSNR
24.2487), and was slightly outperformed in SSIM by z = zeros with RS sampling (SSIM
0.8955). z = noise performs slightly worse than zero imputation, but better than the z =
average imputation for both CL and RS strategies. This may be due to the fact that imputing
with a fixed value (zero vs noise/average) provides network with a clear indication about
a missing sequence (implicit conditioning), as well as relieves it from learning weights that
have to generalize for variable values imputed at test time. Imputing with zeros also removes
the non-deterministic behaviour that was prevalent in z = noise, where each test run would
yield slightly different quantitative (though mostly similar qualitative) results. For our final
benchmark results on LGG and HGG cohorts in BraTS2018, we set z = zeros and use CL
based learning strategy to train the networks.

27



Table 3.3: Quantitative experiments testing three different imputation methods z ∈ {average, noise, zeros}, as well as two training
strategies curriculum learning (CL) and random sampling (RS). The combination z = zeros and curriculum learning based training
performs the best in terms of MSE and PSNR, while z = zeros and random sampling performs slightly better in SSIM. Bit strings 0001
to 1110 denote absence (0) or presence (1) of sequences in order T1, T2, T1c, T2flair respectively.

z StrategyMetrics 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 Mean

average

CL

MSE
0.0102
±

0.0041

0.0072
±

0.0034

0.0043
±

0.0024

0.0136
±

0.0049

0.0178
±

0.0080

0.0088
±

0.0040

0.0072
±

0.0040

0.0135
±

0.0064

0.0107
±

0.0043

0.0104
±

0.0039

0.0058
±

0.0050

0.0148
±

0.0058

0.0121
±

0.0031

0.0125
±

0.0037

0.0106
±

0.0045

PSNR
24.3600
±

3.1202

25.8186
±

2.8329

26.5299
±

2.2198

22.3548
±

3.2600

21.5038
±

2.6834

24.3666
±

2.4599

25.3814
±

2.2801

23.1930
±

3.6652

23.8125
±

2.1223

23.7930
±

2.2222

25.5398
±

2.7827

21.5824
±

2.2552

22.5795
±

1.2743

22.5779
±

1.3326

23.8138
±

2.4650

SSIM
0.8688
±

0.0707

0.8890
±

0.0495

0.9136
±

0.0169

0.8642
±

0.0655

0.8740
±

0.0398

0.8982
±

0.0174

0.9273
±

0.0128

0.8853
±

0.0507

0.9007
±

0.0243

0.8748
±

0.0186

0.9023
±

0.0303

0.8844
±

0.0190

0.9078
±

0.0236

0.8676
±

0.0198

0.8899
±

0.0328

RS

MSE
0.0091
±

0.0036

0.0071
±

0.0034

0.0047
±

0.0028

0.0125
±

0.0053

0.0153
±

0.0069

0.0093
±

0.0044

0.0082
±

0.0044

0.0134
±

0.0068

0.0113
±

0.0047

0.0107
±

0.0038

0.0061
±

0.0052

0.0147
±

0.0054

0.0129
±

0.0038

0.0124
±

0.0039

0.0105
±

0.0046

PSNR
24.7807
±

3.0408

25.8981
±

3.0860

26.4938
±

2.3945

22.9278
±

3.3844

22.2024
±

2.7340

24.1413
±

2.5214

24.8613
±

2.4021

23.2776
±

3.8887

23.7212
±

2.3412

23.7417
±

2.2673

25.5211
±

2.8685

21.5878
±

2.1707

22.4448
±

1.2573

22.5763
±

1.3752

23.8697
±

2.5523

SSIM
0.8707
±

0.0674

0.8892
±

0.0497

0.9130
±

0.0194

0.8709
±

0.0609

0.8806
±

0.0361

0.8969
±

0.0193

0.9219
±

0.0157

0.8835
±

0.0544

0.8992
±

0.0269

0.8751
±

0.0184

0.9027
±

0.0308

0.8844
±

0.0186

0.9055
±

0.0266

0.8691
±

0.0209

0.8902
±

0.0332

noise

CL

MSE
0.0087
±

0.0039

0.0078
±

0.0033

0.0042
±

0.0025

0.0108
±

0.0049

0.0142
±

0.0072

0.0092
±

0.0049

0.0073
±

0.0040

0.0124
±

0.0065

0.0114
±

0.0053

0.0110
±

0.0036

0.0057
±

0.0049

0.0153
±

0.0063

0.0157
±

0.0022

0.0118
±

0.0051

0.0104
±

0.0046

PSNR
24.9639
±

3.1463

25.4739
±

2.8858

26.7597
±

2.3988

23.9253
±

3.5588

22.8694
±

3.0571

24.4041
±

2.4803

25.3652
±

2.1933

23.4336
±

3.7283

23.7107
±

2.3808

23.5981
±

2.2295

25.4479
±

2.7345

21.7608
±

2.4545

21.6432
±

1.1993

22.9348
±

1.6894

24.0208
±

2.5812

SSIM
0.8747
±

0.0647

0.8877
±

0.0485

0.9133
±

0.0192

0.8795
±

0.0587

0.8858
±

0.0346

0.8984
±

0.0165

0.9238
±

0.0119

0.8860
±

0.0520

0.8997
±

0.0266

0.8754
±

0.0167

0.9020
±

0.0289

0.8831
±

0.0192

0.9008
±

0.0262

0.8694
±

0.0226

0.8914
±

0.0319

RS

MSE
0.0094
±

0.0034

0.0087
±

0.0034

0.0039
±

0.0019

0.0121
±

0.0050

0.0141
±

0.0061

0.0102
±

0.0040

0.0057
±

0.0036

0.0138
±

0.0069

0.0116
±

0.0040

0.0123
±

0.0032

0.0059
±

0.0057

0.0151
±

0.0053

0.0158
±

0.0014

0.0129
±

0.0055

0.0108
±

0.0042

PSNR
24.7128
±

3.1711

25.1588
±

3.1052

26.7751
±

2.2401

23.3274
±

3.5124

22.7595
±

2.6671

23.9286
±

2.2215

26.2113
±

1.8840

23.1377
±

3.8143

23.5335
±

1.9258

23.3185
±

1.9840

25.5491
±

2.8145

21.4729
±

1.8973

21.7065
±

0.8774

22.6359
±

1.6579

23.8734
±

2.4123

SSIM
0.8663
±

0.0683

0.8838
±

0.0535

0.9140
±

0.0159

0.8740
±

0.0600

0.8831
±

0.0345

0.8942
±

0.0144

0.9300
±

0.0115

0.8855
±

0.0515

0.8999
±

0.0220

0.8742
±

0.0178

0.9023
±

0.0301

0.8832
±

0.0167

0.9001
±

0.0227

0.8691
±

0.0227

0.8900
±

0.0315

zeros

CL

MSE
0.0092
±

0.0037

0.0072
±

0.0032

0.0040
±

0.0022

0.0108
±

0.0044

0.0129
±

0.0054

0.0084
±

0.0036

0.0061
±

0.0035

0.0120
±

0.0063

0.0109
±

0.0040

0.0102
±

0.0030

0.0057
±

0.0046

0.0128
±

0.0048

0.0120
±

0.0025

0.0113
±

0.0040

0.0095
±

0.0039

PSNR
24.7832
±

3.3197

25.7012
±

2.9797

26.9985
±

2.4075

23.6527
±

3.4296

22.9238
±

2.6554

24.7581
±

2.2131

25.9841
±

2.1926

23.6018
±

3.8153

23.8408
±

2.1715

23.9202
±

2.0746

25.6005
±

2.7909

22.1330
±

1.8389

22.4980
±

1.1684

23.0852
±

1.5142

24.2487
±

2.4694

SSIM
0.8758
±

0.0651

0.8925
±

0.0486

0.9179
±

0.0178

0.8811
±

0.0560

0.8873
±

0.0337

0.8984
±

0.0144

0.9288
±

0.0137

0.8908
±

0.0509

0.9028
±

0.0244

0.8792
±

0.0178

0.9030
±

0.0303

0.8885
±

0.0164

0.9086
±

0.0253

0.8692
±

0.0224

0.8946
±

0.0312

RS

MSE
0.0083
±

0.0034

0.0078
±

0.0025

0.0039
±

0.0021

0.0114
±

0.0047

0.0141
±

0.0070

0.0094
±

0.0046

0.0070
±

0.0037

0.0115
±

0.0053

0.0104
±

0.0044

0.0102
±

0.0029

0.0051
±

0.0035

0.0142
±

0.0052

0.0136
±

0.0037

0.0122
±

0.0043

0.0099
±

0.0041

PSNR
25.1025
±

2.9154

25.5322
±

2.7620

27.0696
±

2.2400

23.4269
±

3.2486

22.7479
±

2.9075

24.2726
±

2.3542

25.4209
±

2.1961

23.6656
±

3.5530

23.9555
±

2.1310

23.9078
±

1.9425

25.7566
±

2.3658

21.7955
±

2.1545

22.0829
±

1.4224

22.6741
±

1.5116

24.1008
±

2.4075

SSIM
0.8814
±

0.0608

0.8925
±

0.0456

0.9193
±

0.0173

0.8850
±

0.0546

0.8879
±

0.0352

0.9010
±

0.0157

0.9264
±

0.0125

0.8909
±

0.0498

0.9042
±

0.0256

0.8803
±

0.0155

0.9050
±

0.0281

0.8873
±

0.0179

0.9063
±

0.0258

0.8699
±

0.0237

0.8955
±

0.0306
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3.3.2 Effect of Implicit Conditioning (IC)

We proposed to use a combination of zero imputation, selective loss computation in G, and
selective discrimination in D, collectively referred to as implicit conditioning (IC) in order
to better train the network to learn to synthesize only the missing sequences, without pe-
nalizing it for inaccurate synthesis of other available sequences. In this set of experiments
we test the effectiveness of IC based training by training an MM-GAN model on the LGG
cohort, with and without IC enabled. In the model with IC disabled, we penalize the gen-
erator for inaccurately synthesizing all sequences (C = 4), as well as let the discriminator
take the whole G output (G(Xz)) as input, instead of imputing real sequences in them (Xi).
We keep the zero imputation part intact due to the network architectural constraints.

The results are shown in Table 3.4. We observe that training a model with implicit
conditioning turned on outperforms the one which is trained without it in all three metrics.
IC-based trained model achieves a MSE of 0.0095, compared to 0.0100 for non-IC model.
Similarly, IC-based trained model outperforms in PSNR (24.2487 vs 23.6626), and in SSIM
(0.8946 vs 0.8796) (p < 0.01). This performance improvement can be attributed to the
fact that the generator has to work harder in case where IC is not used, since it has to
synthesize all the sequence with high accuracy in order to achieve a lower loss value. This
leads to a trade-off as the limited capacity of the generator would have to synthesize all
input sequences, instead of a subset of the input which is the case in IC-based training.
Moreover, selective discrimination in IC helps the generator by making it harder for the
discriminator to discriminate between real and fake sequences by imputing real sequences
in its input. This prevents the discriminator to overpower the generator, thereby leading to
a stable training process with an even learning ground. This phenomenon was not observed
while training MM-GAN without IC, in which without the selective discrimination in D,
it quickly overpowered the generator by easily detecting fakes and lead to overall poorer
performance of the generator which was exacerbated by lack of selective loss computation
in G. In the final benchmark presented in subsection 3.4 of the thesis, we train networks
with implicit conditioning enabled.
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Table 3.4: Quantitative results for evaluating effectiveness of implicit conditioning (IC) based training strategy.

Strategies
Scenario No-IC IC
T1 T2 T1c T2f MSE PSNR SSIM MSE PSNR SSIM
- - - X 0.0120±0.0050 22.3268±3.0867 0.8282±0.0812 0.0092±0.0037 24.7832±3.3197 0.8758±0.0651
- - X - 0.0086±0.0033 23.2450±2.3221 0.8456±0.0646 0.0072±0.0032 25.7012±2.9797 0.8925±0.0486
- - X X 0.0036±0.0016 26.8574±1.9684 0.9092±0.0168 0.0040±0.0022 26.9985±2.4075 0.9179±0.0178
- X - - 0.0089±0.0027 22.3974±2.3134 0.8294±0.0716 0.0108±0.0044 23.6527±3.4296 0.8811±0.0560
- X - X 0.0152±0.0051 22.2603±2.4174 0.8749±0.0337 0.0129±0.0054 22.9238±2.6554 0.8873±0.0337
- X X - 0.0076±0.0030 24.4887±2.2431 0.8912±0.0167 0.0084±0.0036 24.7581±2.2131 0.8984±0.0144
- X X X 0.0054±0.0034 26.3621±1.8637 0.9304±0.0080 0.0061±0.0035 25.9841±2.1926 0.9288±0.0137
X - - - 0.0116±0.0058 23.7413±3.6682 0.8858±0.0534 0.0120±0.0063 23.6018±3.8153 0.8908±0.0509
X - - X 0.0119±0.0034 23.5427±1.8551 0.8999±0.0223 0.0109±0.0040 23.8408±2.1715 0.9028±0.0244
X - X - 0.0090±0.0021 24.0322±1.6683 0.8698±0.0208 0.0102±0.0030 23.9202±2.0746 0.8792±0.0178
X - X X 0.0050±0.0036 25.7482±2.2597 0.9013±0.0249 0.0057±0.0046 25.6005±2.7909 0.9030±0.0303
X X - - 0.0133±0.0036 21.9508±1.5660 0.8855±0.0162 0.0128±0.0048 22.1330±1.8389 0.8885±0.0164
X X - X 0.0188±0.0035 20.8677±1.3094 0.8957±0.0214 0.0120±0.0025 22.4980±1.1684 0.9086±0.0253
X X X - 0.0094±0.0030 23.4557±1.3986 0.8671±0.0198 0.0113±0.0040 23.0852±1.5142 0.8692±0.0224

mean±std 0.0100±0.0035 23.6626±2.1386 0.8796±0.0337 0.0095±0.0039 24.2487±2.4694 0.8946±0.0312
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3.3.3 Reconstruction Error in Other Planes

Due to the design of our proposed method in which 2D axial slices are used in train-
ing/testing, we ran another experiment in order to quantify whether any inconsistency in
terms of reconstruction error (mean squared error) exists in other planes (sagittal and coro-
nal). We calculated reconstruction errors for 5 test patients in LGG cohort for all three
planes (axial, sagittal, and coronal). Then, we compared the error distributions from each
plane using the Mann-Whitney U statistical test, which tests statistical significance between
two unpaired sample distributions without the assumption that they are originally sampled
from the Normal distribution. The null hypothesis for this test is chosen as follows: if an
error value is randomly chosen from the first sample distribution, the value is equally likely
to be either greater than or less than another random value chosen from the second sample
distribution. In our case, we perform two tests; between axial and sagittal planes, and be-
tween axial and coronal planes. We maintain our choice of confidence threshold of 0.05 in
this test as well.

We report the results of the test in Table 3.5. We observe that out of the 10 observed
p-values, all but one were significantly higher than our chosen confidence threshold of 0.05.
Through these tests, we confirmed that the null hypothesis cannot be rejected due to high p-
values in both the tests (axial versus sagittal and axial versus coronal), for all tested patients.
Hence the test strongly suggests that there are no significant differences or inconsistency
between reconstruction error distributions in different planes.

Table 3.5: Results for Mann-Whitney U statistical test on 5 test patients from LGG cohort.
p-values from two tests (axial vs coronal and axial vs sagittal) are reported.

Patient Name p-values
Coronal Sagittal

Brats18_2013_9_1 0.2814 0.2714
Brats18_TCIA10_449_1 0.4980 0.4670
Brats18_TCIA09_451_1 0.4848 0.3592
Brats18_TCIA12_470_1 0.4353 0.0730
Brats18_TCIA12_466_1 0.3061 0.4213

3.4 Multimodal Synthesis (MIMO)

We present results for our experiments on BRaTS2018’s HGG and LGG cohorts in Table 3.6
and 3.7. We set z = zeros for imputation, and train the networks with implicit conditioning
(IC) and curriculum learning (CL). In this experiment we train our proposed MM-GAN
model on all 14 valid scenarios, in order to synthesize any missing sequence from any
number or combination of available sequences. We observe that the proposed MM-GAN
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model performs consistently well when synthesizing just one sequence, with high overall
SSIM (>0.90 in most cases except one in LGG), PSNR (>22.0) values, and low MSE
(<0.015). As more sequences start missing, the task of synthesizing missing sequences gets
harder.

During the initial epochs of training, MM-GAN tends to learn the general global struc-
ture of the brain, without considering the local level details. This seems to be enough
for the generator to fool the discriminator initially. However, as the training progresses
and the discriminator becomes stronger, the generator is forced to learn the local features
of the slice, which includes small details, especially the boundaries between the grey and
white matter visible in the sequence. The qualitative results shown in Figure 3.3 show how
MM-GAN effectively synthesizes the missing sequence in various scenarios, while preserving
high frequency details that delineate between grey and white matter of the brain, as well
as recreating the tumor region in the frontal lobe by combining information from available
sequences. The synthesis of the tumor in the final images depend heavily on the available
sequences. For example, the contrast sequence T1c provides clear delineation of enhancing
ring-like region around the necrotic mass, which is an important indicator of the size of the
tumor.

Table 3.6: Performance on BraTS2018 High Grade Glioma (HGG) Cohort

Scenarios
T1 T2 T1c T2f MSE PSNR SSIM
- - - X 0.0143±0.0086 23.196±4.2908 0.8973±0.0668
- - X - 0.0072±0.0065 24.524±4.0671 0.8984±0.0726
- - X X 0.0060±0.0061 25.863±3.2218 0.9166±0.0339
- X - - 0.0102±0.0065 23.469±4.1744 0.9074±0.0680
- X - X 0.0136±0.0048 22.900±2.1989 0.9156±0.0260
- X X - 0.0073±0.0070 24.792±2.9524 0.9140±0.0311
- X X X 0.0091±0.0053 24.173±3.2754 0.9228±0.0190
X - - - 0.0072±0.0056 24.879±3.8216 0.9091±0.0651
X - - X 0.0073±0.0041 26.189±2.1337 0.9264±0.0328
X - X - 0.0040±0.0032 26.150±1.8470 0.9107±0.0275
X - X X 0.0017±0.0026 28.678±2.3290 0.9349±0.0262
X X - - 0.0068±0.0041 25.242±2.0339 0.9175±0.0275
X X - X 0.0098±0.0066 24.372±2.2792 0.9239±0.0375
X X X - 0.0033±0.0040 26.397±1.9733 0.9150±0.0275

mean±std 0.0082±0.0054 24.789±2.8999 0.9120±0.0401
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Table 3.7: Performance on BraTS2018 Low Grade Glioma (LGG) Cohort

Scenarios
T1 T2 T1c T2f MSE PSNR SSIM
- - - X 0.0092±0.0037 24.7832±3.3197 0.8758±0.0651
- - X - 0.0072±0.0032 25.7012±2.9797 0.8925±0.0486
- - X X 0.0040±0.0022 26.9985±2.4075 0.9179±0.0178
- X - - 0.0108±0.0044 23.6527±3.4296 0.8811±0.0560
- X - X 0.0129±0.0054 22.9238±2.6554 0.8873±0.0337
- X X - 0.0084±0.0036 24.7581±2.2131 0.8984±0.0144
- X X X 0.0061±0.0035 25.9841±2.1926 0.9288±0.0137
X - - - 0.0120±0.0063 23.6018±3.8153 0.8908±0.0509
X - - X 0.0109±0.0040 23.8408±2.1715 0.9028±0.0244
X - X - 0.0102±0.0030 23.9202±2.0746 0.8792±0.0178
X - X X 0.0057±0.0046 25.6005±2.7909 0.9030±0.0303
X X - - 0.0128±0.0048 22.1330±1.8389 0.8885±0.0164
X X - X 0.0120±0.0025 22.4980±1.1684 0.9086±0.0253
X X X - 0.0113±0.0040 23.0852±1.5142 0.8692±0.0224

mean±std 0.0095±0.0039 24.2487±2.4694 0.8946±0.0312

33



� � � � � � � ℎ

Figure 3.3: Qualitative results from the multimodal synthesis experiments with BRaTS2018 dataset. Each row corresponds to a particular
sequence (row names on the left in order T1, T2, T1c and T2flair). Columns are indexed at the bottom of the figure by alphabets (a)
through (h), and have a column name written on top of each slice. Column names are 4-bit strings where a zero (0) represents missing
sequence that was synthesized, and one (1) represents presence of sequence. Column (a) of each row shows the ground truth slice, and
the subsequent columns ((b) through (h)) show synthesized versions of that slice in different scenarios. The order of scenario bit-string
is T1, T2, T1c, T2flair. For instance, the string 0011 indicates that sequences T1 and T2 were synthesized from T1c and T2flair sequences.
Patient images shown here are from Brats18_CBICA_AAP_1 from HGG cohort.
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Presence of T1 and/or T2flair sequence leads to improved synthesis of edema features.
The contrast sequence T1c provides unique information about the enhancing region around
the tumor, which is usually not visible in any other sequence.

Figure 3.4: Illustration of MM-GAN filling up parts in the scan that are originally missing in
the ground truth. Red arrow shows the top part of brain that is missing, and is synthesized
in all scenarios. Blue arrow highlights the high-frequency details that are missing in ground
truth, but are synthesized in most images. We also notice that when all sequences are
present, the T2flair synthesis is the most accurate with respect to the pathology visible in
the frontal cortex. The order of scenario bit-string is T1, T2, T1c, T2flair. Patient images
shown here are from Brats18_2013_9_1 from LGG cohort.

As shown in Figure 3.4, we also observe that the method fills up lost details as can be
seen in T2flair sequence. The original ground truth sequence has the frontal lobe part cut off,
probably due to patient movement or miss-registration. However MM-GAN recreates that
part by using information from the available sequences. Another interesting side-effect of
our approach is visible in T2flair synthesis, where the synthesized versions of T2flair exhibit
higher quality details (Figure 3.4) than the original sequence, which was acquired in a very
low resolution. This effect is the consequence of the method using high-resolution input
sequences (all sequences except T2flair are acquired at higher resolution) to synthesize the
missing T2flair sequence. This also suggests that our method may be used for improving or
upscaling resolution of available sequences. However we do not investigate this further here,
and leave it as future work.

We observe that the generators perform really well when they are constrained using a
non-linear activation function at the final layer. However in the case of MISO, the limitation
of the normalization type (dividing by mean value of sequence) used in MM-Synthesis
prevents us from using a non-linear activation at the end of generator. This is due to
the fact that some patients’ data in SISS cohort from ISLES2015 contain negative intensity
values, which after normalization stay negative. It can be seen that the MSE values reported
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Table 3.8: MM-GAN performance variation with respect to number of sequences missing
for HGG and LGG cohort.

Dataset Missing MSE PSNR SSIM

HGG
1 0.0539 ± 0.0215 29.1162 ± 0.9716 0.9268 ± 0.0115
2 0.0602 ± 0.0170 28.9064 ± 0.8095 0.9223 ± 0.0090
3 0.0752 ± 0.0125 28.0801 ± 0.4110 0.9087 ± 0.0071

LGG
1 0.1296 ± 0.0485 26.1362 ± 2.8872 0.9080 ± 0.0383
2 0.1499 ± 0.0208 25.5641 ± 1.3161 0.8976 ± 0.0157
3 0.1914 ± 0.0358 24.8987 ± 0.8363 0.8732 ± 0.0205

in Table 3.2 tend to be higher than the ones reported in Tables 3.6 and 3.7, due to the latter
set of experiments using ReLU activation at the end of generator.

Although MM-GAN observes different scenarios and hence different fake sequences in
each iteration, which may affect stability during training, we did not observe any unsta-
ble behaviour during the training process. The use of implicit conditioning (IC) assisted
in ensuring stable training of networks by making the task challenging for the discrimi-
nator, preventing it from overpowering the generator, which in turn lead to the generator
converging to a good local minima.

We also observe that the proposed method shows graceful degradation as the number
of sequences missing start increasing, which is apparent both qualitative and quantitatively
in Figure 3.3 and Table 3.8. For instance, in HGG experiments, compared to having one
sequence missing, the performance of MM-GAN drops on average by 27.1%, 2.7% and 0.7%
in MSE, PSNR and SSIM respectively for scenarios where two sequences are missing. For
scenarios where three sequences are missing, the performance drops on average by 39.1%,
7.2% and 2.2% in terms of MSE, PSNR and SSIM respectively compared to one sequence
missing, and 29.3%, 4.6% and 1.5% when compared to scenarios where two sequences are
missing. We observe that the method holds up well in generating sequences with high
fidelity in terms of PSNR and SSIM even in harder scenarios where multiple sequences may
be missing.

Qualitatively, we also investigated the question as to which sequences are the most
valuable for the synthesis for each of the four sequences in BraTS2018 HGG cohort. For every
sequence that is synthesized, we list a ranking based upon our investigation of the results
for each of the remaining sequences. For synthesizing T2flair, we found that T1c sequence,
followed by T2 and T1 sequences were important. This is also apparent in Figure 3.3, where
the removal of T1c in column (c) lead to the synthesized sequence missing necrotic part of
tumor completely, while the removal of T1 (columns (b) and (f)) and T2 (columns (b) and
(d)) did not affect the performance dramatically. For the synthesis of T1c, we found that T2

sequence held the highest significance, followed by T1 and T2flair (comparing columns (b)
with (d), (f), (c)). This is also evident from row 3 column (d) in Figure 3, when removal
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of T2 sequence lead to increased blurring artifacts in the synthesized version of T1c, which
were not as pronounced when T1 or T2flair were removed. For T2 synthesis, we found that
T1c sequence contributed the most towards accurate synthesis (comparing columns (b) and
(d)), with T1 sequence also playing an important role (columns (b) and (f)), lastly followed
by T2flair. Finally for T1 synthesis, we found that T1c was the most important sequence
(columns (b) and (d)) enabling accurate synthesis, followed closely by T2 (columns (b) and
(f)) and T2flair (columns (b) and (c)).

Due to MM-GAN being a single unified model (MM-GAN), it relieves the end-user
from the difficult task of choosing the right model for synthesis during inference time. For
instance, in the case where sequences (T1,T2,T1c) are present, and T2flair to be synthesized,
a single-input single-output method would have three networks capable of synthesizing
T2flair from T1, T2 and T1c respectively. The decision as to which network should be chosen
for this problem is hard, since each unimodal network would provide trade-offs in terms
synthesis quality, especially in tumorous areas where individual sequences do not provide
full information. This decision problem is mitigated in multi-input models (MM-Synthesis
and MI-GAN), but there still exists the computational overhead during training time in
order to train multiple models for each output sequence (total 4 for both MM-Synthesis
and MI-GAN). MM-GAN on the other hand, is completely multimodal and only requires
training for just one model, which provide computational savings during training time by
eliminating the need for training multiple models (if number of sequences C=4, then 12
models in case of unimodal, 4 models in case of multi-input multi-output architectures).
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Chapter 4

Conclusions and Future Work

We propose a multi-modal generative adversarial network (MM-GAN) capable of synthesiz-
ing missing MR pulse sequences using combined information from the available sequences.
Most approaches so far in this domain had been either unimodal, or partially multi-modal
(multi-input, single-output). We present a truly multi-modal method that is multi-input
and multi-output, generalizing to any combination of available and missing sequences. The
synthesis process runs in a single forward pass of the network regardless of the number of
sequences missing, and the run time is constant w.r.t number of missing sequences.

The first variant of our proposed MM-GAN, called MI-GAN outperformed the uni-
modal version pGAN in all three metrics (Table 3.1). We also show that MM-GAN outper-
forms the best multimodal synthesis method REPLICA [22], as well as MM-Synthesis [5] in
multi-input single-input synthesis of T2flair sequence (Table 3.2), and produces objectively
sharper and more accurate results. In another set of experiments, we train our method on
BraTS2018 dataset to set up a new benchmark in terms of MSE, PSNR and SSIM (Tables
3.6 and 3.7), and show qualitative results for the same (Figure 3.3). MM-GAN performance
degrades as a function of number of missing sequences in Table 3.8 but exhibits robustness
in maintaining high PSNR and SSIM values even in harder scenarios. We also investigate
the performance improvement imparted by our proposed components (imputation type,
implicit conditioning, use of curriculum learning), and show that they outperform models
trained with respective baseline approaches (Tables 3.3, 3.4). Finally, we show that our
method is capable of filling in details missing from the original ground truth sequences, and
also capable of improving quality of the synthesized sequences (Figure 3.4).

Although our approach qualitatively and quantitatively performs better than all other
competing methods, we note that it has problems in synthesizing the enhancing subregion
in T1c sequence properly. This, however, is expected since T1c sequence contains highly
specific information about the enhancing region of the tumor that is not present in any
other sequences. An inherent limitation of all synthesis methods stems from the fact that
MR sequences provide both redundant and unique information. This creates challenges for
all synthesis methods, unimodal and multimodal alike. Unimodal methods provide a one-
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to-one mapping between sequences, but each such model (12 total for 4 sequences) would
raise tradeoffs between the synthesis accuracy. For instance, in the experiments given in
subsection 3.2, we found that synthesizing T2flair from DWI tends to be more accurate (MSE
0.2109) than synthesizing from T1 (MSE 0.2813) or T2 (MSE 0.2799). This reinforces the fact
that there are some inherent characteristics to each sequence, which can only be faithfully
synthesized if another sequence that more or less captures similar characteristics is present.
The sequences provide complementary visual information for a human reader, though there
are underlying correlations imperceptible to the naked eye, since they all originate due to
common underlying physics and from the same subject. Multi-input methods like ours can
exploit the correlations between available sequences, and synthesize the missing sequence by
leveraging information from all input sequences. This is evident from the quantitative results
in Tables 3.2, 3.6, 3.7, 3.8, and summarized in Table 3.8 where more available sequences
allow better synthesis of missing ones. For future work, we note that the inherent design of
our method is 2D, and an extension of the work which can take either 2.5D or 3D images
into account may perform better both quantitatively and qualitatively.

Another area of investigation would be to explore the up-scaling capabilities of the MM-
GAN, where given a low-quality ground truth scan with missing scan areas, the method can
generate a higher quality version with filled in missing details. It would also be interesting to
test MM-GAN by deploying it as part of the pipeline for downstream analysis, for example
segmentation. This natural placement in the pipeline would allow the downstream methods
to become robust to missing pulse sequences. Compared to HeMIS [3] and PIMMS [4],
this can be another approach to make segmentation algorithms robust to missing pulse
sequences.
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