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Abstract

Positron emission tomography (PET) is a popular imaging technique that produces a 3D
image volume capturing functional processes within the body. In cancer studies, PET is
increasingly used for diagnosis and evaluation of tumor extension, treatment planning and
disease follow-up. Although PET has several limitations, including low spatial resolution and
relatively low signal-to-noise ratio, it remains the modality of choice for its high sensitivity
to tracer uptake in lesions. With the adoption of PET imaging, accurate segmentation and
quantification of metabolic activities, specially tumor activities, is crucial and challenging
because of the large variations of shape and intensity of tumor uptake patterns. In this the-
sis, we make two main contributions on automated tumor lesion detection and segmentation
in PET. To automate segmentation, it is important to distinguish between normal active
organs and activity due to abnormal tumor growth. In our first contribution, we propose a
deep learning method to localize and detect normal active organs in 3D PET. Our method
adapts the object detection deep convolutional neural network architecture of YOLO to
detect multiple organs in 2D slices and aggregates the results to produce semantically la-
beled 3D bounding boxes. We evaluate our method on 479 18F-FDG PET scans and show
promising results compared to the state-of-the-art organ localization methods. The second
contribution addresses the challenge of creating accurate ground truth segmentation maps
for training machine learning approaches for tumor delineation. We propose a fully convo-
lutional network model to automatically delineate tumor regions in PET (i.e., indicates the
border of cancerous lesions) while relying on weak bounding boxes annotations. To achieve
this, we propose a novel loss function that dynamically combines a supervised component,
designed to leverage the training bounding boxes, with an unsupervised component, inspired
by the Mumford-Shah piecewise constant level-set image segmentation model. The model is
trained end-to-end with the proposed differentiable loss function and is validated on a public
clinical of 57 PET scans of head and neck tumors. Using only bounding box annotations
as supervision, our model achieves results competitive with state-of-the-art supervised and
semi-automatic segmentation approaches.

Keywords: Positron emission tomography, cancer, tumor, organ, objectd etection, object
localization, Segmentation, Weak annotation, Deep Learning, Fully convolutional network
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Chapter 1

Introduction

1.1 Background and Motivation

PET is a nuclear medicine imaging modality that provides functional information for the
purpose of diagnosis, staging and monitoring cancerous lesions in radiation therapy [3]. In
contrast to magnetic resonance imaging (MRI) and computed tomography (CT), imaging
modalities that capture the body’s structural or morphological properties, in PET image,
properties of biological function and processes within the body is captured. Hence, it im-
proves cancer treatment and early disease detection.

PET is a minimally invasive imaging procedure that has a wide range of practical and
research applications [4]. In therapy response assessment, after injecting radiotracers into
the patient’s body, different tumor features, such as the semi-quantitative parameter stan-
dard uptake value (SUV), are measured in the context of radiotracer analysis. Radiotracers
are biologically relevant material, like glucose, which are labelled with rapidly decaying
positron emitting radioisotopes (or radionuclides), such as carbon-11, nitrogen-13, oxygen-
15 and fluoride-18. Fluorodeoxyglucose (FDG) is a glucose analogue that is a very common
radiotracer used in clinical practice. FDG is taken up by cells that are requiring much glu-
cose such as the brain, kidneys and rapidly growing tumor cells. For this reason, it is widely
used for the study of cancer metabolism in the body [5].

A schematic of a whole-body 3D PET scanner is shown in Figure 1.1 [2]. PET imaging
scanners usually are integrated with low dose x-ray CT images. The trade-off between image
quality, acquisition time and injected radiation dose vary for different PET scanner. Figure
1.2 shows the 2D visualization of a 3D PET image in cancer screening applications. A
thorax tumor mass and metastases to left supraclavicular lymph nodes are visible in head
and neck area because of the 18 F-FDG radiotracer uptake in cells that shows the level of
tissue heterogeneity within this area. [6].

Image intensity is defined by SUV, resampled discrete quantities of FDG concentration
corrected by the injected dose and patient weight. Therefore, intensity resolution in PET
images is dependent on the SUV range. Even with high-resolution scanners, PET data often
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Figure 1.1: An example of a 3D whole-body PET scanner [2].

do not contain sufficient resolution to extract features and meaningful patterns for data
analysis purposes. Quantitative analysis of SUV facilitate distinguishing between normal
and abnormal levels of uptake such that the SUV value above a particular threshold is
considered to be suggestive of malignancy, whereas lesions with SUV less than this threshold
are considered to be benign.

In recent years, many studies proposed the use of FDG-PET image analysis techniques
to detect and segment cancerous lesions due to quantification of tumor metabolic activity
from the segmented tumor volume and radiation therapy treatment plans. This, in turn,
requires more reliable, accurate and reproducible PET image tumor delineation [7]. As it is
mentioned above, the important challenge in designing lesion segmentation techniques from
PET images is handling the low signal to noise ratio and the low resolution of these images.

Different methods have been proposed for delineating lesions in PET images and can
be categorized into five major groups. (i) The methodology of the first group is based on
selecting either fixed or adaptive thresholds of the maximum standardized uptake values
(SUVmax). However, this approach often performs poorly when applied to real clinical data
as lesions generally have irregular shapes, values may vary depending on the reconstruction
method used to acquire the PET image, and the images generally suffer from heteroge-
neous radio-tracer distributions [8, 9]. (ii) The second group consists of graph optimization
methods which leverage user input to guide the segmentation algorithm or refines its re-
sult. Seed-guided region-growing methods belong to this group. Relying on manual input
not only burdens users with time-consuming tedious interactive steps, but also gives rise
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Thorax tumor mass

Supraclavicular 
lymph nodes

Figure 1.2: 2D visualization of a 3D 18 F-FDG PET image. The arrows refer to thorax
tumor mass and metastases to left supraclavicular lymph nodes.

to inter- and intra-rater variability in the analysis results [10, 11]. (iii) The third category
are energy-minimization segmentation methods, which are designed to locate and identify
the boundaries of the target objects in PET images [12, 13]. Active contour-based models
based on the Mumford-Shah functional [14] are examples of this category. These models
typically require an initial contour or surface to start the optimization-based segmenta-
tion and the setting of different parameters to define the objective function. In addition to
sensitivity to initialization and parameter setting, the execution time of these method on
novel images tend to be slow to take into account the computational optimization steps.
(iv) Another category encompasses statistical and machine learning-based methods, which
estimate the segmentation of a novel test image based on the learned statistics of labeled
training data [15, 16]. (v) The final category includes joint segmentation methods that in
addition to PET, they take advantages of other modalities like CT and MRI. It has been
shown that the fused images reduce uncertainty and are more suitable for visual percep-
tion [17, 18]. Among the mentioned approaches, machine learning based methods achieved
high performance in terms of accuracy and time. Although the long training time is typically
a drawback here, but the more critical inference time, e.g., segmenting a novel image, is
generally much smaller than the run-time of energy-minimization methods. One of the key
challenges, however, with supervised machine learning techniques (especially deep learning)
is their reliance on the availability of a large set of training data.
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1.2 Thesis Contributions

The purpose of this thesis is to investigate computerized PET image methods that ad-
dress some of the aforementioned limitations of current quantitative analysis and automatic
segmentation of cancerous lesion in the Head and Neck area. Such limitations cause some
variation in overall tumor volume estimation and, subsequently, the radiotracer uptake
measurement. Hence, we identified two major problems to tackle in order to boost the
performance of PET quantitative analysis.

First, automatic lesion detection from PET scans is a challenging task due to the fact
that both normal and abnormal regions in PET images have relatively high uptake of
the radiotracer (commonly 18F-FDG) injection and result in voxels with similar appear-
ance characteristics [19]. So, the presence of normal activity from healthy organs can alter
the automatic localization of lesions resulting in less accurate segmentation or detection
results or the need for additional forms of information (e.g., access to CT or manual post-
processing). Therefore, for proper interpretation of PET images, it is important to detect
the non-pathological active organs and exclude them from subsequent calculations when
assessing cancer progression or treatment efficacy [20]. The first contribution of this the-
sis is on developing an efficient deep learning based method to automatically localize and
classify normal active organs in 3D PET scans. By localization, similar to the state of the
art methods introduced for organ localization in structural image modalities like CT, we
particularly mean detecting organs in images and predicting a bounding box enclosing each
organ. Our method encompasses training an object detection deep network with 2D PET
image slices and aggregating result to estimate organ-labelled bounding boxes labels around
active organs. We argue that the ability to automatically detect normal active regions in
PET scans can facilitate lesion detection from PET images without the need for CT scans
or post-processing steps.

Second, most of the recent successes of applying machine learning and deep learning
for medical image analysis tasks (e.g., classification, detection or segmentation) can be
attributed to supervised learning, for which a relatively large annotated set of trainig images
must be made available. However, it is well-known that existing annotated medical imaging
data sets are scarce and the effort involved in collecting them (especially ones with high
quality annotated dense label-fields, i.e., segmentation masks) can be insurmountable [12].
It is also known that some annotations are easier and faster to collect than others. For
instance, localizing lesions with bounding boxes or seeds (via one or a few mouse clicks)
is less laborious than delineations. In this work, we contribute to developing a method to
leverage such weak annotations in the context of PET lesion segmentation, where a deep
learning model is trained to delineate lesions in 3D PET images from only bounding box
annotations around the lesions of interest.
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The second and third chapters of this thesis describe the details of the first and second
contribution, respectively, which are based on the following published works:

• Saeedeh Afshari, Aïcha BenTaieb and Ghassan Hamarneh. Automatic localization of nor-
mal active organs in 3D PET scans, Computerized Medical Imaging and Graphics,
Volume 70, Pages 111-118, 2018. doi:10.1016/j.compmedimag.2018.09.008.

• Saeedeh Afshari, Aïcha BenTaieb, Zahra Mirikharaji and Ghassan Hamarneh. Weakly Su-
pervised Fully Convolutional Network for PET Lesion Segmentation, In SPIE Medical
Imaging, 2019.
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Chapter 2

Automatic Localization of Normal
Active Organs in 3D PET Scan

2.1 Overview

Localization of anatomical structures in medical images is important for various clinical
image interpretation applications. It can improve other medical image processing steps like
segmentation. In case of PET image modality, to quantify metabolic activity and assess-
ing tumor progression or treatment efficacy, detecting and parsing normal organ activi-
ties as a pre-processing step contributes efficiently to boost the accuracy of tumor detec-
tion/segmentation tools. Also, it helps to monitor organ activity concentration in dosimetry
and therapeutic applications [21]. While CT contains valuable information useful for the
detection and segmentation of organs, it often comes with additional costly steps such as
the registration of CT and PET volumes. In this work, we adapt and extend an object
detection deep CNN architecture (YOLO [22]) to locate, via 3D bounding boxes, and rec-
ognize all active organs in PET images by assigning a semantic (or anatomical) label to
each organ (i.e., brain, heart, bladder, left and right kidneys). Our method is the first end
to end trainable system that addresses the problem of organ localization in large 3D PET
volumes and can handle a variable number of organs, i.e., it can gracefully ignore organs
not visible within the field-of-view of a given PET image because we rely on the YOLO
ability of detecting multiple organs visible in 2D slices of 3D PET volume. Next, we review
some of the most related works to our method.

2.2 Related Work

Existing research on single or multi-organ localization approaches can be broadly categorized
into two groups: (i) Atlas-based methods, which rely on a computationally intensive voxel-
based image registration technique. (ii) machine learning-based (ML) methods, which rely
on training an algorithm to learn the discriminatory image characteristics of different organs.
Machine learning methods themselves may be divided into (ii-a) classical learning methods
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that require extracting hand-crafted features and using them as input to train a subsequent
classification or regression model; and (ii-b) deep learning methods that do not require
hand-crafted features but typically require choosing or designing deep architectures and
providing relatively larger training datasets.

The majority of previous works on organ localization in 3D volumes like Zhou et al. [23],
Criminisi et al. [24], Gauriau et al. [25], and Wang et al. [26], focused on structural imaging
modalities, such as CT scans and leverage ML models involving hand-crafted features and
machine learning classifiers. For example, Zhou et al. [23] is based on Haar-like features
and training ensembles of 2D location detectors. Similarly, Criminisi et al. [24] used visual
features to train a multivariate regression forest. Gauriau et al. [25] encoded global spatial
relationships between organs and their shape representations as prior knowledge to train
random forest regressors. Wang et al. [26] proposed a fuzzy hierarchy model to encode
anatomic information to predict the optimal pose of organs. These methods may not be
applicable to functional nuclear medicine imaging, such as PET scans. For instance, in
case of non-active organs, they should be capable to handle missing organs. Also, lack of
sufficient differentiable visual and appearance features in PET images may result in weak
performance of the proposed method for CT scans.

Recently, Convolutional Neural Networks (CNN) were also used to obtain 3D bounding
boxes around organs in CT scans. Lu et al. [27] used CNN in a dual learning architecture to
model local and global context for organ localization, trained on 2D slices from 3 orthogonal
views (axial, coronal, sagittal) to localize organs in 3D CT volumes. de Vos et al. [1],
proposed to feed each 2D orthogonal view image to a CNN which returns the binary label
for the presence or absence of each target organ in the input image. Then, the binary
predictions were aggregated to obtain 3D bounding boxes. de Vos et al. [1] was extended
to use a single CNN able to handle all the orthogonal views using spatial pyramid pooling
[28].

Few works targeted organ localization from PET images only (without requiring regis-
tered CT scans). Guan et al. [29] developed an automatic system to detect and segment hot
spots (metabolically active regions in the body) in PET scans. However, they do not discrim-
inate normal from abnormal activity values which limits the applicability of their work in
the context of lesion detection. Bi et al. [30] attempted to specifically classify normal active
organs from PET scans by applying an adaptive patch-based region classification to classify
uptake regions in PET images obtained by automatic thresholding method (i.e., PERCIST).
Their method [30], rely on hand-crafted texture features extracted from PET and registered
CT patches with different scales. Then, Bi et al. [31] used CNN-based encoded features of
multi-scale super-pixel regions to train binary classifiers for labeling normal uptake regions
(organs) and abnormalities. Their result illustrates the benefits of using learned deep CNN
features for classification. Fischer et al. [32] also tackled the problem of organ localization in
PET images. They selected hundreds of visual features with an exhaustive search method
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and used them to train regression forests. While these works tackle a similar problem, they
rely on hand-crafted features and complex pipelines with extensive pre-processing steps
(e.g., pre-processing using CT scans [20]).

In contrast to previous works on multi-organ localization in 3D volumes, our proposed
method does not rely on 3 orthogonal views of 3D volume, and extensive pre-processing
steps and feature extraction strategies. We report various comparisons of our approach to
related state of the art methods and demonstrate improvement in evaluated measurements.
The details of our proposed method are presented in the following section.

2.3 Method

Our approach localizes existing organs in each coronal slice of a PET scan and then aggre-
gates the localized objects across all coronal slices (Figure 2.1). We chose the coronal slice
orientation as multiple coronal slices expose various major organs and capture the spatial
relationships between them (Figure 2.2). To perform a per-slice multiple organ localization,
we adapted the YOLO deep CNN architecture (tiny version) [22], which has proven highly
successful for object recognition tasks in non-medical computer vision. The YOLO network
is a fully convolutional architecture (i.e., no fully connected layers) which consists of 3x3
convolution kernels (except for a 1x1 kernel at the last convolutional layer), batch normal-
ization to avoid overfitting after each convolutional block, leaky ReLU as the activation
function for the middle layers and max-pooling layers. As shown in Figure 2.1, the network
has four types of convolutional blocks with different layers (i.e., convolution layer with the
kernel size of 3x3 or 1x1, and max-pooling layer with the kernel size of 2x2 and stride of 2
or 1). We modified the last layer of the original architecture to handle 5 classes of organs.
[22].

In YOLO, all features from the entire image are used to predict each object class with
the bounding box around it. The input image is divided into a S × S grid. The cell that
includes the predicted object’s center is representing that detected object. Each cell also
predicts B number of bounding boxes and confidence scores for those boxes which shows
how much confident the model is about the box that enclose an object. The confidence score
is defined as:

C = Pr(Object)× IOUpredtruth (2.1)

Pr(object) is the probability of an object existence in the box, and IOU is the intersection
between the predicted box and the ground truth box.

For each box, 5 numbers are predicted by the network, x and y, the coordinates of
the center of the box, and W and H, the relative width and height of the box to the
input image, and finally confidence score C. The class probability of each detected object
is predicted conditionally by each grid cell. It gives us class-specific confidence scores for
each box representing the probability of that class appearing in the box and how well the
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* * * * * ** *** ****

Brain Heart

RK Bladder

Figure 2.1: Proposed method overview. 2D coronal PET slices (left) are input to the YOLO
model. * indicate convolutional blocks with different kernel sizes. Organs detected in suc-
cessive 2D slices with confidence score C>0.5 are aggregated into an organ-specific 3D
bounding box with dimensions W×H×D and centroid coordinates (x,y,z).

predicted box fits the object.

Pr(Classi|Object)× Pr(Object)× IOUpredtruth = Pr(Classi)× IOUpredtruth (2.2)

We modified the architecture to take as input resized coronal 2D PET slices and to
detect up to 5 different organ classes: brain, heart, bladder, and left and right kidneys. We
initialized the YOLO model using weights tuned for the PASCAL VOC dataset and then
fine-tuned the model on coronal slices manually-labelled with bounding boxes. At test time,
each coronal slice of a novel PET scan is fed into the trained YOLO model which returns
a vector containing the coordinates of the 2D bounding boxes of multiple organs visible in
the slice. Without any specific aggregation strategy, all the predicted 2D bounding boxes
can be used to define a 3D bounding box that we refer to that as original YOLO.

For aggregation, we (i) collected all the bounding boxes that share the same semantic
label (i.e., localizing the same organ) and their associated localization confidence scores;
(ii) excluded any 2D bounding box whose confidence score is below 50%; (iii) computed a
weighted, by confidence score, average 2D bounding box (X center, Y center, Width, and
Height) for each organ over the predicted bounding boxes in successive slices; and, finally,
to obtain 3D localizations, we (iv) set the Z center of the 3D bounding box to the mean z
value of the successive slices containing the organ and set the 3D bounding box Depth to
be equal to the z span of the same slices.
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It has been shown that YOLO learns general representations of objects and its detection
process is extremely fast . Hence, when generalizing from natural images to other domains,
it outperforms other object detection methods, including R-CNN. It also is proven to predict
less false positives on an image background [33]. Due to these reasons, we choose to adapt
this network. However, there are other versions and newer networks for object detection
task in natural images that are worth trying them in our data in the future work.

2.4 Material

We applied our method on 479 18F-FDG PET scans of 156 patients (QIN-HEADNECK)
obtained from the public collection of head and neck cancer from the Quantitative Imaging
Network of the US National Cancer Institutes [34] in compliance with all ethical clearance
policies. The number of scans per patients varied from 1 to 7. The intra-patient scans are
visually quite different in terms of organ activities, scan resolution and the field of view. The
scan size varied between 128×128×74 and 168×168×545 voxels, with voxel sizes ranging
between 3.39 and 4.68 mm along x and y, and 2 to 5 mm along z. The 479 scans were split
as follows: 79 patients were used for training; and 77 different patients were used for testing.
To feed to YOLO, all slices were resized to YOLO default input size 416×416.

To create ground truth bounding boxes, we used tight 3D bounding boxes drawn by an
expert around the 5 normal organs of interest (or a subset thereof when some organs were
out-of-view, i.e., not all organs are present in every PET scan). The organs of interest are
the brain, heart, bladder, and left and right kidneys. The sizes of bounding boxes ranged
from 32×45×61 mm3 to 160×150×120 mm3 (Figure 2.2). After training, our model detects
normal organ activity in a novel test PET scan and gives the location of each organ as a
3D bounding box.

2.5 Experiments

We trained the network for 60 epochs and adopted the hyper-parameters used in the original
YOLO: initial learning rate = 0.0001, decay = 0.0005 and momentum = 0.9. The size of the
minibatch was set to 50 images. We implemented our method using Keras. We evaluated
the performance of our approach for the object recognition (i.e., organ label) and 3D object
localization (bounding boxes) tasks. Sample qualitative results are shown in Figure 2.3. We
calculated the following performance metrics commonly used in other works for assessing
the quality of anatomical structure detection and localization.

Direct and fair comparison to other works is difficult because, first, there are limited
works that address the same task (i.e., detect and classify normal organs in PET). The clos-
est works to ours are the works from Bi et al. [30, 31], which do not detect but only classify
normal active organs after a thresholding step (Table 2.1). To the best of our knowledge,
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Figure 2.2: Reference bounding boxes drawn overlaid on coronal (top) and sagittal (bottom)
maximum intensity projection (MIP) views of 3 PET scans of 3 patients (3 columns). The
boxes surround the brain (red), heart (green), left and right kidneys (blue and white) and
bladder (purple).

Fischer et al. [32] is the only work that tackles similar task to ours, i.e., organ localization in
PET images by generating bounding box around detected organs but the technical details
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Figure 2.3: Examples of detected (yellow) and reference 3D bounding boxes (other colors)
for 3 PET scans from the coronal (top) and sagittal (bottom) plane in MIP views. The
predicted class label is shown at the top right corner of the box. RK and LK correspond to
the right and left kidneys.
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of the method are not clear in cited reference [32]. Second, other works like the ones listed
in Table 2.4 that use a related learning-based approach for organ localization are mainly
applied to CT images (not PET). Finally, another challenge is in finding the right evaluation
metric to compare different works. Most works report localization accuracy in mm that can
not be compared to directly since it is dependent on the dataset voxel size. Nonetheless, we
perform the following comparison:
1. We identified two baseline works that our method can be compared to Bi et al. [30]
and Bi et al. [31]. While we were not able to apply the method directly to our dataset (as
the code was not released and the different steps involved in the algorithm were not easily
generalizable to new datasets), we report the accuracy of these works on similar organs and
indirectly compare our classification performance to them in Table 2.2.
2. We also identified the work of de Vos et al. [1], as the closest work to ours when it
comes to organ localization. Although the method was applied to CT, we implemented it
and evaluated it on our PET dataset. In a nutshell, the work of de Vos et al. [1] involves
three convolutional networks trained on each orthogonal view (axial, sagittal, coronal) in-
dependently, to predict the presence of each organ in 2D slices of a 3D CT volume and then
combines the prediction results from successive slices to create 3D bounding boxes around
the organs (Table 2.1 and 2.3).
3. Along with these prior works, we also compared our method to the original YOLO to
evaluate the benefits of our proposed aggregation strategy (Table 2.1 and 2.3).
4. To compare different works, we reported the original results from several previous works
[23, 24, 25, 26, 27, 1, 32] on the same organs of interest (Table 2.4).

2.6 Results

The localization and classification performance of all models are reported in terms of wall
distance, centroid distance error in millimeter (mm), precision, recall and F1-score in Table
1- 4. Note that for a fair comparison in Table 2.4, the centroid distance error is also re-
ported in terms of minimum and maximum number of voxels. For several works [26, 1], we
calculated this metric approximately based on the reported voxel size in the dataset used.
Similarly, for the wall distance error, we reported the mean number of voxels over 6 walls
of a 3D bounding box. We calculated the approximate mean number of voxels error in wall
distance for some compared works [24, 25, 1, 32]. We discussed our results in the discussion
section.

Organ Detection Performance. To evaluate the object-level detection of the proposed
method and compared methods, we calculated precision, recall and F1 scores over our test
set (Table 2.1 and 2.2). On average, we observed high precision and recall scores (75-100%)
when detecting organs using our proposed method. In fact, while using YOLO allows us to
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efficiently capture the context within each coronal slice, it results in noisy organ predictions
(YOLO in Table 2.1).

Organ YOLO 2D ConvNets PROPOSED
P R F1 P R F1 P R F1

Brain 0.78 0.98 0.86 0.97 0.96 0.96 0.82 1.00 0.90
Heart 0.84 0.84 0.75 0.79 0.89 0.84 0.86 0.96 0.90
Bladder 0.86 0.93 0.86 0.89 0.94 0.91 0.98 1.00 0.98
RK 0.75 0.78 0.66 0.80 0.81 0.80 0.83 0.95 0.88
LK 0.69 0.74 0.57 0.73 0.84 0.78 0.75 0.94 0.83

Table 2.1: Per-organ detection accuracy for the original YOLO model, 2D ConvNets [1], and
our proposed extension to YOLO. P, R, and F1 stand for Precision, Recall and F1-score.

Methods train-test images Brain Heart Bladder RK LK
Bi et al. (2015) [30] 40 (5-fold) 0.93 0.87 0.81 0.97 0.93
Bi et al. (2017)[31] 40 (LOO) 0.85 0.92 0.93 0.95 0.89

Proposed 254 - 225 0.90 0.90 0.98 0.88 0. 83

Table 2.2: Classification performance (F1-score) for different organs reported in previous
works. LOO stands for Leave One Out cross validation approach.

Centroid and Wall Distance. For each correctly detected organ in all test scans, we
calculated the distance between the center of the predicted 3D bounding box and the center
of the reference bounding box. In addition, we calculated the average wall distance over the
6 walls of the bounding boxes for each organ. On average across all patients and organs, our
method achieves 10.3 mm error in terms of centroid distance and 17.9 mm error in terms
of wall distance (Table 2.3). Note that these results are obtained from low-resolution PET
images (see Figure 2.2) for which localization is more challenging than regular CT images.

Organ 2D ConvNets Proposed
Centroid (mm) Wall (mm) Centroid (mm) Wall (mm)

Brain 7.23 ± 11.56 11.64 ± 12.88 6.1 ± 5.0 12.6 ± 7.7
Heart 13.60 ± 18.72 18.92 ± 19.01 10.4 ± 9.1 19.7 ± 12.4
Bladder 9.49 ± 15.63 14.73 ± 47.97 8.5 ± 6.3 15.1 ± 9.1
RK 18.36 ± 25.98 25.87 ± 24.61 13.1 ± 10.6 19.2 ± 13.0
LK 19.5 ± 28.52 27.38 ± 25.92 13.4 ± 11.7 23.48 ± 14.3

Table 2.3: Average and standard deviation of 3D Euclidean distances between the centroid
and walls of predicted and reference 3D bounding boxes for each organ.

Intersection Over Union (IOU) in 3D space We show in Figure 2.4 examples of the
predicted bounding boxes for different organs with their corresponding 3D IOU scores which
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Method Modality Voxel size Organ Centroid Centroid Wall Wall(mm× mm× mm) (mm) (minvoxel-maxvoxel) (mm) (meanvoxel)

Zhou et al. (2012) [23] CT 0.6×0.6×2-5
Heart - 1 - 19 - -
RK - 1 - 19 - -
LK - 1 - 34 - -

Criminisi et al. (2013) [24] CT 0.5-1×0.5-1×1-5
Heart - - 13.4 10.1
RK - - 13.6 10.2
LK - - 16.1 12.1

Gauriau et al. (2014) [25] CT 0.5-1×0.5-1×0.5-3 RK - - 7.3 6
LK - - 6.8 5.3

Wang et al. (2015) [26] CT 1.2×1.2×4
Bladder 9.9 2.4 - 8.25 - -
RK 8.3 2.1 - 6.9 - -
LK 12.9 3.2 - 10.7 - -

de Vos et al. (2016) [1] CT 0.55-0.87×0.55-0.87×1 Heart 7 7 - 12.7 4 5.1
Lu et al. (2016) [27] CT 2×2×2 RK - 3.9 (mean) - -

Fischer et al. (2014) [32] PET 5×5×5

Brain - - 15.4 3.1
Liver - - 13.0 2.6

Bladder - - 15.9 3.2
RK - - 11.1 2.2
LK - - 13.4 2.7

Proposed PET 3.3-4.7×3.3-4.7×2-5

Brain 6.1 0.5 - 1.4 12.6 2.8
Heart 10.4 1.4 - 2.4 19.7 4.5
Bladder 8.5 0.7 - 2.1 15.1 3.5
RK 13.1 1.2 - 3.5 19.2 4.4
LK 13.4 1.5 - 3.6 23.48 5.4

Table 2.4: Results reported in previous works for organ localization accuracy on different
datasets and various metrics.

is the 3D extension of 2D IOU. We obtained an average of 72% IOU for the brain, 55%
for the bladder, 52% for the heart, 48% for the right kidney and 43% for the left kidney.
On average, we observed that the detection of some organs is sensitive to the quality of the
annotations when the context (anatomy and shape information) is not sufficient. This can
explain the lower localization results obtained for kidneys.

Run-time Using non-optimized Python code, training our model took around 5 hrs on
a Titan X GPU. At test time, locating and labeling all organs took only 19 seconds per
168×168×487 PET scan. Comparing to the 2D ConvNet method [1] that the test step
running time for the same volume size and localizing 5 organs is ∼14 seconds, we reduced
the training time and the space required for storing the network parameters by a factor of
∼15 (training 3 independent CNNs for localizing 5 organs of interest, separately for each
one) . Note that our runtime is significantly faster than the previous work of Fisher et al. [32]
on PET images who reported a 2-minute runtime per scan. We chose to rely on a per-frame
organ detection using an efficient 2D detection model and to combine this model with a
simple yet accurate 3D aggregation strategy. This allowed us to process large 3D volumes in
a reasonable amount of time but also to use larger spatial resolutions when processing the
2D input images. Processing large 3D volumes with a 3D convolutional network architecture
would require significantly larger models, datasets and longer training time.
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Figure 2.4: Examples of detected 3D bounding boxes for different organs with the corre-
sponding 3D IOU scores. A coronal (top row) and (bottom row) sagittal view is shown.

2.7 Discussion

The results in Table 2.1 show that on average our method outperforms other works [1] and
original YOLO. In fact, we show in Table 2.1 that the method of de Vos et al. [1], 2D
ConvNets, shows better performance in classifying only the brain in 3D PET images (i.e.,
15% higher precision than our proposed method), whereas our method improves the results
on the other 4 organs, i.e. heart, bladder, right and left kidneys with 7%, 9%, 3%, 2% increase
in precision accuracy for each organ respectively. Note also that our proposed method only
uses coronal slices which requires less computational effort than feeding multiple slices as
proposed in de Vos et al. [1].

The improvement observed in terms of classification performance of our method as
shown in Table 2.1, could be due to filtering the noisy per-slice detections with the proposed
aggregation strategy (described in section 2). We note that the brain and the bladder were
consistently detected by our method likely due to their high FDG uptake values. Finally, we
also indirectly compare our work to Bi et al. [30, 31] in Table 2.2 in terms of classification
F1-score. Note that the comparison is indirect as it is on different datasets (the dataset
used in Bi et al. [30, 31] is private and not public as ours so we were not able to apply our
method to this data or use the authorsâĂŹ method on our dataset either as this previous
work involves multiple steps that are not trivial to replicate without available code). Our
method shows comparable performance to both methods with noticeable improvements in
classification accuracy of the bladder in the relatively larger dataset.

We also compared our method to the original YOLO network without using our pro-
posed aggregation strategy to eliminate low confidence predictions and observed lower clas-
sification accuracy for such setting. In fact, our aggregation approach shows that it can
complement and improve the results of YOLO by eliminating some of the false positive
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predictions and we were able to integrate the 3D context to refine the detection results
(+26% F1 score).

In Table 2.3, the mean and standard deviation of absolute centroid and wall distances
between the automatically obtained and reference bounding boxes are reported for the
proposed method and 2D ConvNets method [1]. The proposed method obtained lower error
(3.33 mm on average) in terms of the distance between the center of the predicted and the
ground truth bounding boxes for all the target organs.

We observed that the detection and localization of left and right kidneys (75-83 %
precision detection, and 13 mm centroid and 19.2 - 23.5 mm wall distance error) is the
lowest result compared to all other organs of interest which we hypothesize is due to the
noisy annotation in kidneys and heterogeneous FDG uptake in different regions of kidneys
causing fragmented kidney masks. Such fragmentations increase the complexity of detection
of these organs.

Although our method had relatively greater mean wall distance than 2D ConvNets, it is
worth mentioning that this slightly higher error (less than 1mm) in predicting six walls of
the 3D bounding boxes is due to the lack of context and difficulties in identifying anatomical
boundaries from a single view compared to the results of having information from multiple
views of an organ in 3D volumes. Empirically, we observed that using multiple views as op-
posed to only coronal views improved the wall distance results for 3 organs only (i.e., brain,
heart, and bladder). Also, using multiple views did not improve the detection performance
in terms of centroid distance, precision and recall on our dataset. From these observations,
we concluded that using only coronal views allowed us to achieve competing results while
reducing the total training computation time by a factor of 3 (slice orientations)× 5 (organs).

Clinical Application. Automatic localization of organs in PET images contributes to a
diverse set of clinical applications. It provides context information for clinical tasks like
identifying sites of abnormal metabolism, disease monitoring, and tumor tracking during
therapy for an early assessment of treatment response and plans for future therapy as it
is suggested in PET Response Criteria in Solid Tumors (PERCIST) guideline [35]. Among
standard methods to differentiate involved regions in FDG PET/CT studies, thresholding
uptake values is more common and vastly used in qualitative and quantitative assessments of
metabolic activities in PET. One of the limitations of such standard methods is background
normal FDG excretions which make image interpretation problematic. Therefore, detecting
and discriminating normal uptakes facilitates lesion detection models and improves their
results by describing statistics and spatial features of normal active regions from abnormali-
ties. Our method potentially can be used as a preprocessing step for highlighting normal and
active organs in 3D PET images that contributes to tumor response assessment approaches
qualitatively and quantitatively. Furthermore, our method is applicable where registering
multi-modality images (i.e., PET-CT, PET-MRI) is required. It can provide complemen-
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tary information regarding organs and their anatomical location and size. Also, in retrieving
images or part of images (cropping) in PET data collection, our method can be applied to
obtain information associating to different target body parts automatically and save manual
efforts significantly. For example, in head and neck cancer dataset, the focus is on head and
neck area which can be retrieved from 3D scans of different scales automatically instead of
identifying and cropping target areas by an expert.

2.8 Conclusion

In this work, we propose an automatic system that can directly detect and localize organs
with normal activity. Our system consists of a deep neural network architecture specifically
designed to detect and localize anatomical structures with normal activity directly from
3D PET images. We process 2D slices and generate 3D bounding boxes using an efficient
aggregation strategy, which makes our method fast, reliable and efficient enough to be
easily utilized in more complex abnormality detection/segmentation pipelines. Although
we obtained promising results, we noticed in cases where very small lesions are close to
normal organs, our method might assign normal activity label to those abnormal regions.
We believe this limitation is due to the network not being trained to distinguish lesions from
normal activities. We plan to extend our work by combining our organ detection method
with previous PET lesion detection methods [21], i.e., to train the network to discriminate
between normal activities and pathologies, and not just segment each independently, making
our method more useful in clinical practice. Future works will also involve testing our
method on quantifying the size and activity of lesions proximate to these detected organs.
Furthermore, it would be interesting to explore applying our approach to localization of
other anatomical structures in other imaging modalities.
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Chapter 3

Weakly Supervised Segmentation
of Tumor Lesions in 3D PET Scan

3.1 Overview

Most of the success of machine learning and deep learning based medical image analysis
tasks (e.g., classification, detection or segmentation) so far can be attributed to super-
vised learning, for which a relatively large annotated set of images must be made available.
However, it is well-known that existing annotated medical imaging datasets are scarce and
the effort involved in collecting them (especially ones with high quality annotated dense
label-fields, i.e., segmentation masks) can be insurmountable [12]. It is also known that
some annotations are easier and faster to collect than others. For instance, localizing lesions
with bounding boxes or seeds is less laborious than delineations. In this work, we develop
a method to leverage such weak annotations in the context of PET lesion segmentation,
where a deep learning model is trained to delineate lesions in 3D PET images from only
bounding box annotations around the lesions of interest.

FDG-PET images are used for diagnosis, staging and monitoring cancerous lesions in
radiation therapy [3]. Medical image processing and analysis of PET images is used to
detect and localize cancerous lesions in order to quantify tumor metabolic activity from
segmented tumor volume and to design radiation therapy treatment plans. This, in turn,
requires more reliable, accurate and reproducible PET image tumor delineation [7]. An
important challenge in designing automatic lesion segmentation techniques in PET images
is handling the low signal to noise ratio and low resolution of these images.

Some segmentation techniques leverage anatomical information from CT scans registered
to PET, especially for tumors located near the lungs, where the air creates high contrast
in the tumor areas. Otherwise, using CT may cause over-estimations of tumor lesions [13].
Assuming CT scans are available (which cannot be guaranteed), PET-CT registration is
prone to error and, even with hybrid PET/CT scanners, the two modalities are not per-
fectly aligned because of patient movement or respiratory motion [8]. Further, certain tumor
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boundaries are difficult to see in CT due to similarities in Hounsfield units (HU) of tumor
lesions and surrounding tissues, so delineating tumors based on metabolic activity presented
in PET may be more reliable. In this work, we focus on head and neck lesion segmentation
only from PET.

3.2 Related Work

To address the need of annotation for training machine learning models, different weakly
supervised segmentation models that leverage bounding box annotations around objects
have been proposed for medical and non-medical segmentation tasks. For natural images,
deep convolutional neural network (CNN) models that exploit bounding box annotations
give excellent results in semantic segmentation tasks [36, 37, 38]. For medical image segmen-
tation, few works use CNN models to leverage bounding box annotation. One of the closest
works to ours is Rajch et al.’s [39], where the authors built a model similar to the popular
GrabCut algorithm by replacing the Guassian mixture model (GMM) with a CNN whose
network parameters are optimized by minimizing a conditional random field (CRF) energy
function. They applied their method to segment the brain and the lungs from MR images
using bounding box annotations. While our proposed approach aims at leveraging a similar
type of weakly supervised training data for medical image segmentation, our work has im-
portant differences: We are segmenting lesions in PET (not organs from MR); our method
is truly 3D whereas other works process 3D volumes as 2D slices, which results in loss of
context when segmenting 3D lesions; and our approach does not require user interaction at
inference time whereas other methods do.

Another closely related work to ours is Deep Level Set by Hu et al. [40]. At a high
level, both our method and their method combine a convolutional network with energy-
minimization based segmentation. In contrast, while our model is based on the 3D network
architecture, we formulate a different level-set energy as a regularization term in a new
loss function to segment target lesions in PET images in an unsupervised manner. This
regularization term allows us to train the model in a weakly supervised context (i.e., using
only bounding box annotations for training).

3.3 Method

To leverage weakly supervised data yet achieve 3D lesion delineation at test time without
any user-interaction, we propose a novel loss function that dynamically combines two loss
terms; one that is guided by the training bounding boxes, and the other designed to realize
Mumford-Shah-inspired piecewise constant segmentation within the box. We show compet-
itive results with other works on a challenging public dataset of PET lesions and compare
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our model to different baseline methods, experts’ delineations, and other semi-automatic
approaches.

Given a set of 3D PET training images and their corresponding bounding box annota-
tions, our goal is to optimize the parameters of an FCN in an end-to-end manner to identify
and segment all lesions of interest. Our model is trained with a new loss function:

L = βLMDice + λLMS (3.1)

where LMDice is the modified version of the Dice loss function, LMS is the Mumford-
Shah inspired term and β and λ are hyper-parameters balancing the contribution of each
term. The interaction between both terms of the loss function is controlled via these hyper
parameters and allows the network to first predict segmentations that are relatively close
to the real segmentation masks, and then refine them using the regularization term.

In segmentation tasks where the majority of voxels are background voxels, the Dice sim-
ilarity coefficient is often deployed as a loss function, LDice, to address this class imbalance
[41]:

LDice = 1− 2
∑N
i=1 pi · p̂i∑N

i=1 pi +
∑N
i=1 p̂i

(3.2)

where pi and p̂i, in order, are the ground truth label and prediction label (class probability)
for a voxel i, and N is the total number of voxels in the volume.

To encode the Mumford-Shah piecewise constant image model, commonly used with en-
ergy minimizing level-set segmentation, and train a deep network under weak supervision,
we modify LDice as follows.

Modified Dice loss term. Optimizing LDice when annotations are bounding boxes forces
the network to generate box-like masks, which is undesirable for a lesion segmentation task.
To generate segmentation masks instead of bounding boxes, we modify the denominator of
LDice by proposing a new term LMDice that penalizes the misclassified voxels inside and
outside of the box annotations in different ways. Outside the box, the classical Dice loss is
always applied (to discourage any false positive voxels). Inside the box, however, the loss is
dynamically modified such that the Mumford-Shah piecewise constant image model takes
effect, instead of the classical Dice, whenever sufficient voxels are labeled as foreground.
This dynamic loss behavior trains the network to use the weakly supervised labeling to
effectively localize lesions and the Mumford-Shah model to delineate them. In particular,
we set:

LMDice = 1− 2
∑
i pi · p̂i∑

i pi +
∑
i p̂i −M ·H(

∑
i
pi·p̂i∑
i
pi

)
(3.3)
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M =
∑
i=1

pi −
∑
i=1

pi · p̂i and H(x) =

1, x > α

0, x ≤ α
(3.4)

where H(x) is a Heaviside function shifted by hyper-parameter α. Note that LMDice is equal
to LDice as long as the fraction of voxels, inside the ground truth bounding box and classified
as foreground, is less than or equal to α. Otherwise, the denominator of LMDice becomes∑
i p̂i +

∑
i pi · p̂i, which means that voxels inside the box yet predicted as background are

not penalized; this is when LMS , described next, is most critical.

Mumford-Shah inspired loss term. In order to train our network to produce segmenta-
tion masks, inside the bounding box, that mimic results obtained using energy-minimizing
level-set methods that encode the Mumford-Shah piecewise constant image model (e.g.,
[42]), we define LMS as follows:

LMS = 1∑
i pi

(
ω1
∑
i

(|Ii ·Hε(φi)− C1| − |Ii ·Hε(φi)− C2|) · pi+

ω2
∑
i

(|Ii · (1−Hε(φi))− C2| − |Ii · (1−Hε(φi))− C1|) · pi

) (3.5)

where Ii is the input image intensity of the ith voxel. Hε(x) is the regularized Heaviside
function proposed in [42]:

Hε(x) = 1
2

(
1 + 2

π
arctan(x

ε
)
)
. (3.6)

We set ε to 0.03 as suggested in [40]. φ is the level-set function, which we obtain by linearly
shifting the prediction map values to be in the range [-0.5, 0.5] so as to encode the lesion
boundary as its zero level-set. Multiplying by pi (defined in (3.2)) confines LMS calculations
to the interior of the bounding box. Normalization by

∑
i pi is used to obtain similar con-

tribution to the loss from bounding boxes of different sizes. ωi are scalar weights, and C1

and C2, in order, are the average intensities of voxels inside and outside of the prediction
boundary, which are calculated by:

C1 =
∑
i Ii ·H(φi) · pi∑
iH(φi) · pi

and C2 =
∑
i Ii · (1−H(φi)) · pi∑
i(1−H(φi)) · pi

(3.7)

Neural Network Architecture. We adopt the U-Net architecture with contracting path
to efficiently exploit contextual information. U-Net demonstrated good performance when
the number of training images is limited [43]. We changed the 2D architecture of U-Net
to 3D FCN and reduced the total number of feature maps by a factor of 4 (Figure 3.1).
The size of the input image, the output segmentation mask, and the ground truth mask is
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set to 160× 160× 128. Scaled exponential linear units (Selu) are selected as the activation
functions in the middle layers and sigmoid function for the output layer. The model is
trained end-to-end with the proposed loss function in 3.1.
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Figure 3.1: U-Net architecture. The inputs are 3D PET volume (Head and Neck area) and
the single bounding box ground truth mask with the size of 160 × 160 × 128 voxels. The
output is the segmented lesions mask in the same size of the inputs.

Training procedure illustration. The proposed multi-loss handles error computation
different within and outside the bounding box annotation. In Figure 3.2, the interplay
between the proposed loss function terms is illustrated for different situations. When the
predicted segmentation mask (the green object) and the annotation bounding box drown in
blue do not overlap (a), the modified Dice loss calculates the segmentation error similar to
the original Dice loss function. As the segmentation mask moves closer to the bounding box
and overlap happens (b-e), the modified Dice term value decreases and becomes zero when
segmentation map locates in the box (d). At the same time, the Mumford-Shah loss term
starts calculating the segmentation error of miss-classified voxels inside the bounding box
till the network learns to segment the foreground lesions inside the bounding box annotation
(e).

3.4 Material

We applied our method to 57 FDG-PET scans of unique patients from the public collection
of head and neck cancer provided by the Quantitative Imaging Network of the US National
Cancer Institute [44]. From this dataset, a subset of 10 PET scans was utilized for the QIN
PET segmentation challenge [45]. On average, the dataset includes 3.8±2.5 lesions per PET
volume (ranging from 1 to 12) with the volume ranges from 1 to 13+ ml. The selected test
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(a) (b) (c) (d) (e)

Figure 3.2: An illustration of the proposed multi-loss function value during the training in
different situations. The upward arrows and downward arrows demonstrate high and low
values of the specified loss terms, respectively.

cases included different complexity levels (ranging from low to high) [46]. The PET images
vary in resolution from 128× 128 to 168× 168 and the number of axial slices ranged from
191 to 545. The average voxel size in this dataset is 3.5× 3.5× 3.1 mm.

We used the challenge test set and the provided delineation by experts (average over
experts’ delineations to reduce inter- and intra- variability) for evaluation of our model and
all other baselines reported in the results. We train the network on the remaining 47 cases.
The box annotations are coarse bounding boxes around all lesions for each image with an
average Dice similarity, with the ground truth delineations, of 28%± 11%.

Given the low resolution of PET images and the complexity of the task, we found the
following pre-processing steps necessary to accurately train our model and all baselines.
First, as this dataset only includes lesions in the head and neck area, we reduced the com-
putational cost by cropping all volumes inferior to the neck area such that we could process
the entire volumes (not patch-based, and not slices) with 3D networks. We normalized all
images to zero mean and unit variance and performed different data augmentation strategies
(i.e., random flipping left-right and superior-inferior orientation, and additional Gaussian
noise). We assume that flipping the 3D images increase the diversity of tumor shapes in the
training dataset and allows the model to be spatially invariant. After augmentation, the
total number of images in the training and validation set were 430 and 40, respectively.

3.5 Experiments

We compared our method with a fixed architecture CNN trained with fully supervised
ground truth delineations by experts (LFS) and a CNN trained with bounding box annota-
tion (LDice). The performance of these two networks can be considered as the upper bound
and the worst-case accuracy, respectively, that our method can achieve. In addition, we in-
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clude the result of training our model with only LMDice. We also tested using morphological
(M) operation (dilation and erosion) as a post-processing (LMDice+LMS+M) to show that
our result can be improved by separating boundaries of touching lesions and removing small
sized false positive predictions. Furthermore, we compare our results to those obtained when
active contours without edges level-sets method [42] is applied, as a post-processing step, to
the prediction output of LDice (LDice+LS). We also added the result of the semi-automatic
approach (SA) [46], which is a graph based optimization approach guided by a user pro-
vided approximate lesion center point and enables finding an optimal segmentation surface
of tumor lesions from PET images. To compare with experts performance, we include the
experts agreement by averaging Dice coefficient over all experts within each trial (Experts).

For training the network, all hyper-parameters are tuned on the validation set. For the
proposed loss function, ω1 and ω2 are selected empirically based on the strength of two
terms in equation 3.5 for the validation dataset, and are set to 1 and 3, respectively. β and
λ are set to 10 and 1, respectively, in order to emphasize the Dice loss. For the modified Dice
loss term, we used α = 0.1, which means at least 10% of the voxels inside the box are forced
to be predicted as tumor. We used stochastic gradient descent as the model optimizer and
set the momentum, weight decay, and learning rate to 0.9, 1e− 6 and 1e− 5, respectively.
The batch size is 1 and the maximum number of epochs is 100, which is limited by an early
stopping criteria when there is no improvement on validation loss after 20 epochs. We used
the trained network on box mask annotations to initialize the weights.

3.6 Results

To evaluate the performance of the proposed framework for segmentation, we adopted the
Dice similarity coefficient which is a volume-based measurement and unsigned distance error
(UDE) metrics, a surface-based measurement used in [45]. Let P and P̂ be binary volume
describing the reference segmentation and the predicted segmentation, respectively.
The volume error of segmentation is determined by the Dice coefficient with the below
equation.

Dicecoef (P, P̂ ) = 2
∣∣∣P ⋂ P̂

∣∣∣ / [|P |+ ∣∣∣P̂ ∣∣∣] (3.8)

The distance between a point x and a surface A is defined as:

d(x,A) = minx′∈A ‖x− x′‖ (3.9)

The mean unsigned distance error between two surface SP and SP̂ is evaluated as following:

UDEmean(SP , SP̂ ) =
[
d̄(SP , SP̂ ) + d̄(SP̂ , SP )

]
/
[
|SP |+

∣∣SP̂ ∣∣] (3.10)
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where
d̄(S1, S2) =

∫
x∈S1

d(x, S2)dx (3.11)

To compare different methods more efficiently, results on the test data set are summa-
rized in Figure 3.3 and two examples of successful and failed segmentation results for two
different 3D PET images are shown in Figure 3.4.

3.7 Discussion

Figure 3.3 shows that in the case of using our proposed multi loss function, i.e., LMDice+LMS

to train the model, the improvement of the Dice coefficient is approximately 30% greater
than the performance of the same model trained using the original Dice LDice. This improve-
ment is obtained because the network is not penalized to predict a box like segmentation
guided by the bounding box annotation when our modified Dice loss term is used and more-
over, our LMS loss term encourages the network to learn how to segment the foreground
voxels with high intensity values from the background voxels with low intensity values inside
the bounding box annotation. We also found that by applying morphological (M) operations
to our weakly supervised outputs, our performance of (LMDice+LMS +M) differs from the
results of the fully supervised (LFS) approach trained by the expert’s delineations by only
7% in Dice similarity. Furthermore, while our method does not need either user interaction
or ground truth segmentation masks, its performance is not very far from the performance
of the SA approach, in which a user selects a point in the center of each lesion of interest
(Dice similarity 68% and 82%, respectively). While it seems desirable for physicians to apply
more accurate semi-automated segmentation tool, for difficult circumstances (i.e., a large
clinical trial analysis), it may be costly and time consuming.

The mean UDE for the proposed method is 3.1 mm, which is comparable to the LFS
model with an error of 2 mm.

In Figure 3.4, for the first row, the proposed method is successful in delineating and
splitting the tumor lesions while in the second image, it fails to find and delineate all
lesions. The reason for missing to detect the small lesions would be the variability seen
in manually generated reference segmentations, and the inhomogeneity of tracer uptake in
these lesions.

3.8 Conclusion

Given the clinical importance of segmenting lesions from PET images (e.g., for radiation
therapy treatment planning or assessing treatment efficacy) and given the tedious task of
manually delineating datasets for training machine learning algorithms, we proposed a deep
learning lesions segmentation method that requires only weakly labeled data (in the form of
bounding boxes). We developed a novel multi-loss function with an adaptive Dice coefficient
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Figure 3.3: Mean Dice and Mean unsigned distance error (UDE) for different methods. The
error bars represent the standard deviation of the metrics for each method.

Figure 3.4: 2D (coronal and sagittal views) and 3D rendering of segmented lesions in two
test cases. Green and purple colors, in order, show the lesions segmented by the proposed
method and the average of ground truth lesions segmented by experts. In the first row, the
proposed method successfully segments the lesions (Dice similarity of 83%). In the second
row, our method fails to segment the lesions (Dice similarity of 31%)
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term and a Mumford-Shah piecewise constant model term. Our results validated that the
provision of training data in the form of bounding boxes is a viable option to careful expert
delineation. Future work will focus on testing the method on other types of cancer lesions.
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Chapter 4

Future Work

The first contribution of this thesis is on automating the detection and localization of
physiological FDG uptake and normal FDG excretion, as in the kidneys, bladder, brain
and heart, from 3D whole-body PET scans. The presence of these normal activities can
obscure sites of abnormal uptake and render image interpretation problematic. The proposed
method demonstrated promising results and improvement compared to the state of the art
methods. The second contribution, automatic lesion segmentation from weak annotations,
incorporated a joint, simultaneous detection and segmentation method of lesions in PET
scans.

Future work could focus on some these following directions:

• Extending the first contribution by examining the more recent advancements in the
rapidly developing field of deep learning based object detection, such as methods that
demonstrated better performance than YOLO for non-medical image analysis tasks
(e.g., object recognition in natural images).

• Extending the first conteribution by departing from aggregating slice-by-slice analysis
results and instead adopt an inherently 3D analysis of the volumetric PET data. For
example, comparing the accuracy and feasibility of the 3D extension of YOLO or any
other object detection networks would be interesting in the task of normal activity
detection and localization in 3D PET images.

• Investigating dedicated models that learn and perform lesion detection and segmen-
tation tasks separately, in sequence, as opposed to the hybrid approach of the second
contribution.

• Investigating the trade-off between fine-tuning (i.e., transfer learning) the prediction
models that were trained on large numbers of natural images vs retraining the models
from scratch on smaller sets of medical images.

29



• Examining various image augmentation techniques to artificially increase the num-
ber of training images [47, 48] or using physics based simulations to create reaslitic
artificial data [49, 50].

• Considering adopting techniques that request from the user to label only images or
slices that automated methods are uncertain about, e.g., active learning [51, 52].

• Extending the loss functions with other target object priors [53, 54, 55]

• Exploring training models even without bounding box or other annotations, i.e., lever-
aging unsupervised learning approaches similar to auto-encoders and clustering algo-
rithms.

• Increasing the number of test images for a stronger evaluation of the generalizabil-
ity of the models, and exploring possible extensions, especially for dealing with novel
datasets acquired with, e.g., different scanners, reconstruction methods, and radio-
tracers.

• Utilizing the dynamic aspect of PET images, in which a time activity curve is collected
at each pixel [56]

• Exploring extending the methods to analyze multi-modal (multi-channel) imaging
datasets, such as fused PET-CT images, to leverage the complementary information
provided by different modalities.
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