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Abstract

Social propagation is a fundamental and prevalent process taking place in social networks,
where due to the peer influence of social network users, behaviors of a few influential users
can spread widely in a network. Leveraging the social propagation effect lies at the core
of mining the marketing values of social networks, and has been extensively studied in
the past decade. Most existing studies aim at identifying influential users in a social net-
work, the first step of making good use of propagation in applications like viral marketing
and computational advertising. However, in many deeper marketing applications, such as
personalized pricing in promotional campaign planning and real-time recommendation of
influential bloggers, effectively exploiting social propagations faces many unsettled and chal-
lenging algorithmic problems.

In this thesis, we investigate some crucial algorithmic problems in leveraging the propa-
gation effect of social networks in social marketing. In particular, we first discuss how to
efficiently monitor top influential users in a rapidly evolving social network. Then we in-
vestigate how to spend a budget wisely to motivate influential users to trigger large-scale
propagations for marketing purposes. We also study how to schedule an effective propaga-
tion to maximize the interaction activities of users influenced, which aims at the marketing
effect after the propagation is finished. Our work provides powerful algorithmic tools to
solve these problems effectively, which at the same time are efficient and can deal with large
networks containing millions or even tens of millions of vertices in a single machine. We
conclude this thesis by discussing some future directions in mining social propagations.

Keywords: social propagations; social marketing; dynamic networks; influence spread; bud-
get allocation; influence maximization; activity maximization
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“Either mathematics is too big for the human mind or the human
mind is more than a machine.”

— Kurt Friedrich Godël
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Chapter 1

Introduction

Due to the booming of online social network services, our world today is unprecedentedly
connected. Social networks like Facebook and Twitter even connect billions of people all
around the world together. In social networks, social propagation is a fundamental and
prevalent process taking place all the time. Social propagation has been extensively studied
in social science research [61, 60, 31, 6], where the conclusion is that people’s opinions
and behaviors are often affected by their families, friends, and colleagues. As a result, a
behavior (e.g., adopting a product, sharing an article) or an opinion (e.g., a political point
of view, an attitude to a new technology) may spread in a social network like a virus. For
example, social-behavioral research [74] showed that social influence plays a prominent role
in many self-organized phenomena such as herding in cultural markets, the spread of ideas
and innovations, and the amplification of fears during epidemics.

The propagation effect makes social networks full of business values, especially in mar-
keting applications. One classic example is how Hotmail became hot. When Hotmail first
started, the email provider added a link of signing up Hotmail for free at the end of every
email sent out. Such a simple strategy helped Hotmail gain 8 million users in only 1.5 years
in the 1990s, which was astonishing at that time. How to effectively and efficiently leverage
the power social propagations lies at the core of mining marketing values of social networks.

1.1 Motivation

Motivated by the great business value of social propagations, computational social prop-
agation/influence analysis became an important research area in data mining in the past
decade. The aim is to use algorithmic techniques to take advantage of social propagations in
business applications like marketing. In computational social propagation analysis research,
Kempe et al. [54] first proposed to model social influence propagations as stochastic pro-
cesses taking place in social networks. Following this seminal work [54], numerous studies
had been made in exploring social propagations in marketing applications.
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Most existing studies [35, 21, 19, 10, 103, 71, 36, 109, 83, 77, 70] aim at identifying
a set of influential users to maximize the total influence spread and assume that the un-
derlying network where social propagations take place is static. However, considering the
highly dynamic nature of real social networks and the needs of many deeper marketing ap-
plications, effectively exploiting social propagations faces many unsettled and challenging
algorithmic problems. Below, we list some important application scenarios where existing
social propagation mining techniques cannot provide satisfactory solutions.

Scenario I: Dealing with Fast-Evolving Social Networks. To effectively utilize social
propagations, we need to pay attention to influential users who have the ability to trigger
large scale propagations. A big challenge is that computing users’ influence is usually a
#P-hard problem [35, 21, 19]. Although there are some techniques that can approximate
users’ influence in polynomial time [10, 71, 55], all these techniques work on static networks.
It is well known that real social networks evolve rapidly [2], thus, re-running algorithms for
approximating users’ influence [10, 71, 55] every time when the network changes is not
practical. How to efficiently track influential users with good quality guarantees in a highly
dynamic social network poses a new challenge.

Scenario II: Budget Allocation for Influence Maximization. When we want to
promote a product through a social network, we need to spend money to motivate influential
users to trigger a large scale propagation of adopting our product. Most existing studies [35,
10, 103, 83, 70] consider how to select some users to offer free samples of the product, whom
are called the initial adopters, to maximize the influence spread. However, free samples may
not be the most effective way to entice potential customers. Sometimes by offering discounts
to users we can have more initial adopters using the same budget. Suppose we know the
purchase probability curves of social network users, given a budget on the total discounts
that we can offer, how do we allocate personalized discounts to social network users in order
to maximize the influence spread?

Scenario III: Optimizing Post-Propagation Marketing Effect. The result of a so-
cial propagation is a subgraph induced by the set of users who are influenced. Almost all
existing studies [35, 21, 19, 10, 103, 71, 36, 109, 83, 77, 70] use influence spread, which is
the expected number of users in the propagation induced subgraph, as the objective for
optimization. However, the famous Metcalfe’s Law [95] suggests that edges matter in decid-
ing the value of a network. In marketing applications, connections/edges of the propagation
induced subgraph capture the post-propagation effect. For example, if users influenced in
a propagation are densely connected to each other, they may interact a lot on the prod-
uct/topic of the propagation to further enhance the marketing effect. In a social network,
what users should we choose as the initial adopters of our propagation if we hope the
post-propagation effect is maximized?

2



1.2 Overview of Contributions

In this thesis, to tackle the problems mentioned above that cannot be solved by existing
studies in mining social propagations, we conduct extensive research to solve three criti-
cal problems in social propagation aware marketing. In particular, we make the following
contributions.

• Tracking Influential Vertices in Fast-Evolving Social Networks. We design
an incremental algorithm to maintain a number of poll samples by which we can
approximate users’ influence. When the network is only slightly updated, instead of
re-generating all poll samples from scratch, our incremental algorithms only retrieve
and update a few poll samples. Our algorithm also dynamically adjusts the number
of poll samples maintained, such that we always can extract top influential users
with provable quality guarantees. Moreover, we devise an efficient data structure to
efficiently maintain user ranking based on users’ approximate influence.

• Budget Allocation for Maximizing Adoption of Promoted Product. Given
the purchase probability curves of the users in a social network, we formalize the con-
tinuous influence maximization (CIM) problem which aims at allocating personalized
discounts to users for maximizing influence spread. We devise an algorithmic frame-
work for the CIM problem, where any propagation models can be plugged into. We
also investigate the connections between CIM and traditional influence maximization.
To implement our algorithmic framework under the family of triggering models, we
propose principled algorithms that can effectively approximate the influence spread
function to avoid the “overfitting” issue caused by the #P-hardness of computing
influence spread.

• Maximizing Activity by Information Propagation. We formulate the Activ-
ity Maximization (AM) problem whose goal is to maximize the expected total edge
weights of the propagation induced subgraph. We first show that AM is a hard prob-
lem by investigating the intractability, the inapproximability and the non-modularity
of the AM problem. To solve the AM problem, we propose a Sandwich Approximation
scheme which enjoys a data-dependent approximation ratio.

1.3 Organization of the Thesis

The rest of this thesis is organized as follows. In Chapter 2, we briefly introduce influence
propagation models, the most important background knowledge of our research. We also
review state-of-the-art studies related to our research in Chapter 2. We present our research
of tracking top influential vertices in dynamic networks in Chapter 3. In Chapter 4, we
study the problem of how to wisely spend a predefined budget to motivate influential users
to trigger large-scale propagations for our marketing purposes. In Chapter 5, we consider

3



a new objective, the expected activities among active users, in designing algorithms for
scheduling effective social propagations. Finally, we conclude this thesis and discuss some
important directions in mining social propagations for business applications like marketing.

4



Chapter 2

Influence Propagation Models and
Related Work

In this chapter, we briefly introduce popularly adopted influence propagation models in
literature, which is the most important background knowledge of our research. We also
review state-of-the-art studies in social propagation mining that are closely related to our
work presented in this thesis.

2.1 Influence Propagation Models

To study and utilize social propagations from a computational perspective, we first need to
model how propagations happen in social networks. In literature, an influence propagation
is often modeled as a stochastic process taking place in a network [46, 99, 16, 9]. In this
section, we introduce two most popular stochastic propagation models, the Linear Threshold
(LT) model and the Independent Cascade (IC) model. Both the IC model and the LT model
are based on well-known studies of the diffusion phenomenon in marketing research [38, 39],
epidemiology [4], and behavior research in social science [45].

2.1.1 Linear Threshold Model

Consider a directed social/propagation network G = 〈V,E,w〉 where V is a set of vertices,
E ⊆ V ×V is a set of edges, and each edge (u, v) ∈ E is associated with an influence weight
wuv ∈ [0,+∞). Each vertex v ∈ V also carries a weight wv, which is called the self-weight
of v. Denote by Wv = wv +∑

u∈N in(v)wuv the total weight of v, where N in(v) is the set of
v’s in-neighbors.

We define the influence probability puv of an edge (u, v) as wuv
Wv

. Clearly, for v ∈ V ,∑
u∈N in(v) puv ≤ 1.
In the Linear Threshold (LT) model [54], given a seed set S ⊆ V , the influence propagates

in G as follows. First, every vertex u randomly selects a threshold λu ∈ [0, 1], which reflects
our lack of knowledge about users’ true thresholds. Then, influence propagates iteratively.
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Denote by Si the set of vertices that are active in step i (i = 0, 1, . . .) and S0 = S. In each
step i ≥ 1, an inactive vertex v becomes active if

∑
u∈N in(v)∩Si−1

puv ≥ λv

The propagation stops at step t if St = St−1. Let I(S) be the expected number of vertices
that are finally active when the seed set is S. We call I(S) the influence spread of S. Let
Iu be the influence spread of a single vertex u.

Kempe et al. [54] proved that the LT model is equivalent to a “live-edge” process where
each vertex v picks at most one incoming edge (u, v) with probability puv. Consequently, v
does not pick any incoming edges with probability 1−∑u∈N in(v) puv = wv

Wv
. All edges picked

are “live” and the others are “dead”. Then, the expected number of vertices reachable from
S ⊆ V through live edges is I(S), the influence spread of S.

It is worth noting that our description of the LT model here is slightly different from
the original [54]: we use a function of edge weights and self-weights of vertices to represent
influence probabilities. Representing influence probabilities in this way is widely adopted in
the existing literature [21, 44, 104, 103, 42].

2.1.2 Independent Cascade Model

A social/propagation network in the Independent Cascade (IC) model is also a weighted
graph G = 〈V,E,w〉. Let wuv represent the propagation probability of the edge (u, v),
which is the probability that v is activated by u through the edge in the next step after u
is activated. Clearly for the IC model, all wuv ∈ [0, 1].

In the IC model [54], given a seed set S ⊆ V , the influence propagates in G iteratively as
follows. Denote by Si the set of vertices that are active in step i (i = 0, 1, . . .) and S0 = S.
At step i + 1, each vertex u in Si has a single chance to activate each inactive neighbor v
with an independent probability wuv. The propagation stops at step t if St = ∅. Similar to
the LT model, the influence spread I(S) denotes the expected number of vertices that are
finally active when the seed set is S.

The “live-edge” process [54] of the IC model is to keep each edge (u, v) with a probability
wuv independently. All kept edges are “live” and the others are “dead”. Then, the expected
number of vertices reachable from S via live edges is the influence spread I(S).

2.1.3 Properties of Influence Spread

Some of our research considers the LT model and the IC model as the influence propagation
models, while some of our research can be applied to any influence propagation models whose
influence spread functions satisfy certain intuitive properties. Thus, we also introduce some
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intuitive properties of influence spread that are widely accepted in literature. Denoted by
I(S) the influence spread of the seed set S.

First, influence spread often is hard to compute, for example, computing the influence
spread I(S) is #P-hard for the LT model [21], the IC model [19], and many other triggering
models including the Continuous-Time Diffusion model [35]. We often use Monte Carlo
simulations [54] or reverse Monte Carlo simulations (also called the polling method) [10] to
approximate I(S).

Second, the influence spread function I(·) is monotone [54], which means I(S) ≤ I(T ) if
S ⊆ T . Second, I(·) is submodular [54], also known as “diminishing return”, which indicates
that I(S∪{u})− I(S) ≥ I(T ∪{u})− I(T ) for any S ⊆ T . These two properties are used to
design the greedy algorithm for influence maximization and prove its effectiveness [54]. These
two properties are very easy to be satisfied [73] and hold for many influence propagation
models including the LT model and the IC model.

Note that since our work is majorly for solving algorithmic challenges in social propa-
gation aware marketing, we assume that we have the full information of the propagation
network. There is a rich body of research investigating how to learn the propagation network
from data [29, 40, 42, 79, 93, 59, 91, 76].

2.1.4 Approximating Influence Spread by the Polling Sketch

Since computing influence spread is #P-hard under many influence propagation models [73],
how to efficiently approximate influence spread becomes an essential building block in in-
fluence analysis tasks [16, 9]. Recently, a polling-based method [10, 104, 103] was proposed
for approximating influence spread of triggering models [54] like the LT model and the IC
model. Here we briefly review the polling method for computing influence spread.

Given a social network G = 〈V,E,w〉, a poll is conducted as follows: we pick a vertex
v ∈ V in random and then try to find out which vertices are likely to influence v. We run a
Monte Carlo simulation of the equivalent “live-edge” process. The vertices that can reach v
via live edges are considered as the potential influencers of v. The set of influencers found
by each poll is called a poll sample (or RR (Reversely Reachable) set in [104, 103, 82]).

Let h1, h2, ..., hM be a sequence of poll samples generated byM independent polls. The
M poll samples form a polling sketch R = {h1, h2, ..., hM}. Denote by D(S) the degree of
a set of vertices S in the polling sketch, which is the number of poll samples containing at
least one vertex in S. By the linearity of expectation, it has been shown that nD(S)

M is an
unbiased estimator of I(S) [10, 103]. Thus, nD(S)

M is often used as the approximate influence
spread of the seed set S.

To bound the error of the approximate influence spread nD(S)
M , Tang et al. [103] proved

that the corresponding sequence x1, x2, ..., xM is a martingale [25], where xi = 1 if S∩hi 6= ∅
and xi = 0 otherwise. We have E[∑M

i=1 xi] = E[D(S)] = MI(S)
n . The following results [103]
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show how E[∑M
i=1 xi] is concentrated around MI(S)

n , even when variables x1, x2, ..., xM may
be weakly dependent due to the stopping condition on M.

Corollary 0.1 ([103]). For any ξ > 0,

Pr
[ M∑
i=1

xi −Mp ≥ ξMp
]
≤ exp

(
− ξ2

2 + 2
3ξ
Mp

)

Pr
[ M∑
i=1

xi −Mp ≤ −ξMp
]
≤ exp

(
− ξ2

2 Mp
)

where p = I(S)
n .

Besides Corollary 0.1, another powerful probability theory tool to analyze the quality
of a polling sketch is the Stopping Rule Theorem [28], which is based on the Stopping Rule
algorithm proposed by Dagum et al. [28]. Suppose we try to estimate the expectation of a
random variable Z distributed in the interval [0, 1] with µZ = E[Z] > 0. Let {Z1, Z2, Z3, ...}
be an infinite series of i.i.d. (independently and identically distributed) random variables
according to Z. Define Υε,δ = 4(e−2) ln 2

δ
ε2 and Υε,δ

1 = 1 + (1 + ε)Υε,δ. The Stopping Rule
algorithm (Algorithm 1) shows how to obtain an (ε, δ) estimation1 of µZ .

Algorithm 1 Stopping Rule Algorithm

1: Υε,δ
1 = 1 + (1 + ε)Υε,δ

2: M ← 0, A← 0
3: while A < Υ1 do
4: M ←M + 1; A← A+ ZM
5: end while
6: return µ̂Z ← Υ1/M

The following Corollary states the effectiveness of Algorithm 1.

Corollary 0.2 (Stopping Rule Theorem [28]). Let Z be a random variable distributed in
the interval [0, 1] with µZ = E[Z] > 0. Let µ̂Z be the estimate produced and let M be the
number of experiments that the Stopping Rule algorithm runs with respect to Z on the input
ε and δ. Then, (1) Pr{µ̂Z ≥ (1 − ε)µZ} ≥ 1 − δ

2 and Pr{µ̂Z ≤ (1 + ε)µZ} ≥ 1 − δ
2 , (2)

E[M ] ≤ Υε,δ
1 /µZ .

Obviously, the random variables x1, x2, ..., xM defined above are i.i.d. and distributed
in [0, 1]. In the following of this thesis, both Corollary 0.1 and Corollary 0.2 are frequently
applied to analyze the estimation errors of a given polling sketch R = {h1, h2, ..., hM} and
guide the algorithm designs in our work.

1An estimate µ̂ is an (ε, δ) estimation of µ if Pr{|µ̂− µ| ≥ εµ} ≤ δ.
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2.2 Related Work

In this section, we review state-of-the-art studies in social propagation mining that are
related to our research. We categorize related work into two groups, namely identifying
influential users, which is related to our work in Chapter 3, and optimization for viral
marketing, which is related to our work in Chapter 4 and Chapter 5.

2.2.1 Related Work in Identifying Influential Users

Domingos et al. [33] proposed to take advantage of peer influence between users in social
networks for marketing. Kempe et al. [54] formulated the problem using two discrete influ-
ence models, namely Independent Cascade model and Linear Threshold model. Since then,
influence computation, especially influence maximization, has drawn much attention from
both academia and industry [16, 35, 10, 103, 21, 44, 71, 92, 26, 71]. Chen et al. proved
that computing influence spread is #P-hard for both the Linear Threshold model [21] and
the Independent Cascade model [19]. Recently, a polling-based method [10, 103, 104] was
proposed for influence maximization under general triggering models. The key idea is to use
some poll samples [103, 104] to approximate the real influence spread of vertices. The error
of approximation can be bounded with a high probability if the number of poll samples is
large enough.

Extracting influential vertices in social networks is also an important problem in social
network analysis and has been extensively investigated [41, 1, 111, 14]. In addition to the
marketing value, influential individuals are also useful in recommender systems in online
web service [1, 111]. Due to the computational hardness of influence spread [21, 19], most
methods did not use influence models to measure a user’s influence, but adopted measures
like PageRank which can be efficiently computed.

In a few applications, the underlying networks are evolving all the time [63, 64, 2].
Rather than re-computing from scratch, incremental algorithms are more desirable in graph
analysis tasks on dynamic networks. Maintaining PageRank values of vertices on an evolving
graph was studied in [5, 85]. Hayashi et al. [47] proposed to utilize a sketch of all shortest
paths to dynamically maintain the edge betweenness value. The dynamics considered by
the above work is a stream of edge insertions/deletions, which is not suitable for influence
computation. The dynamics of influence network is more complicated, because besides edge
insertions/deletions, influence probabilities of edges may also evolve over time [62].

Aggarwal et al. [3] explored how to find a set of vertices that has the highest influence
within a time window [t0, t0 + h]. They modeled influence propagation as a non-linear
system which is very different from triggering models like the Linear Threshold model or
the Independent Cascade model. The algorithm in [3] is heuristic and the results produced
do not come with any provable quality guarantee.
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Chen et al. [22] investigated incrementally updating the seed set for influence maximiza-
tion under the Independent Cascade model. They proposed an algorithm which utilizes the
seed set mined from the former network snapshot to efficiently find the seed set of the cur-
rent snapshot. An Upper Bound Interchange heuristic is applied in the algorithm. However,
the algorithm in [22] is costly in processing updates, since updating the Upper Bound vector
for filtering non-influential vertices takes O(m) time where m is the number of edges. More-
over, the SP1M heuristic [57], which does not have any approximation quality guarantee,
was adopted in [22] for estimating influence spread. Thus, the set of influential vertices,
even when the size of the seed set is set to 1, does not have any provable quality guarantee.

Independently and simultaneously2 Ohsaka et al. [84] studied a related problem, main-
taining a number of poll samples over a stream of network updates under the IC model
such that (1− 1/e− ε)-approximation influence maximization queries can be achieved with
probability at least 1 − 1

n . Our work in Chapter 3 is different from [84] in the following
aspects. First, the problems are different. The problem tackled in [84] is influence maxi-
mization, while our problem is tracking influential individuals. Second, [84] only studied
the IC model while in our work we addressed both the IC and the LT models. Moreover,
our algorithm is theoretically sound and was strictly implemented to fulfill the theoretical
guarantee in experiments, while it is not the case in [84]. To enable theoretical guaran-
tees for the algorithm in [84], one has to collect enough poll samples until the cost of all
poll samples (i.e., the number of edges traversed when generating those poll samples) is
4(1 + ε)(1 + 1

k )km logn
ε2 [10]3. This number is very large under reasonable settings of k and

ε, for example, k = 50 and ε = 0.4. Thus, in the experiments of [84], the demanded cost is
empirically set to 32(m+ n) logn for any k and ε, which means the experiments of [84] are
not strictly implemented to fulfill the theoretical analysis.

2.2.2 Related Work in Optimization for Viral Marketing

Domingos et al. [33] proposed to take advantage of peer influence between users in social
networks for marketing. The essential idea is that, by targeting on only a small number of
users (called seed users), it is possible to trigger a large cascade of users purchasing a specific
product through a social network. Consequently, the technical challenge is to find a small
set of users who can trigger the largest cascade in the network. Kempe et al. [54] formu-
lated the problem as a discrete optimization problem, which is well known as the influence
maximization problem. Since then, influence maximization has drawn much attention from
both academia and industry [19, 20, 21, 44, 35, 104, 103, 82].

2Early versions of our work in Chapter 3 can be found at https://arxiv.org/abs/1602.04490

3In [84] the number was incorrectly set as Θ( (m+n) logn
ε3 ), which is based on an early version of [10]. The

latest version of [10] corrects this number to be 4(1 + ε)(1 + 1
k

)km logn
ε2 .
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Most influence maximization algorithms are designed for triggering models [54]. Among
these algorithms, a polling-based method [10] has the lowest worst-case time complexity,
O((k + l)(n+m) log2 n/ε3). Tang et al. [104, 103] further improved the method to make it
run in O((k + l)(n + m) logn/ε2) expected time. The empirical studies showed that their
improved algorithms are orders of magnitude faster than the other influence maximization
algorithms. Lei et al. [62] proposed a method that learns the propagation probabilities
while running the viral marketing campaigns. Another line of algorithmic viral marketing
research is budgeted influence maximization [109, 83]. Under such problem settings, every
user in a social network is associated with a threshold value that indicates the amount of
money a company needs to spend to persuade her/him to be an initial adopter. One key
problem of this setting is how to obtain users’ threshold values. Singer [97] proposed a
mechanism that can elicit users’ true threshold values if they are rational agents. Chen et
al. [16] provided a comprehensive survey on influence maximization algorithms.

Farajtabar et al. [37] modeled social events using multivariate Hawkes processes, and
developed a convex optimization framework for determining the required level of external
incentives (the money spent on users) in order for the network to reach a desired activity
level. Although the objective function in [37] is flexible since it only requires that the ob-
jective is a concave utility function, both the properties explored in [37] and the algorithm
proposed are only suitable for multivariate Hawkes processes rather than a general prop-
agation model. Descriptive propagation models, such as the independent cascade model
and the linear threshold model [54], the two most widely used models, cannot fit in the
framework [37].

Eftekhar et al. [36] discovered that sometimes instead of targeting on very few individual
users, persuasion attempts on groups of users, for example, displaying advertisements to
them, may lead to a wider range of cascades in social networks. The motivation of persuasion
on groups is that by spending less money on a targeted individual a company can target at
much more users and, as a result, in expectation such a strategy may bring in more initial
adopters [106]. Eftekhar et al. [36] assumed that the probability that a user is persuaded to
be a seed user is given and fixed, once the user is targeted. A more realistic strategy is that
we can adjust the resource spent on a specific individual to manipulate the probability the
user becomes a seed user, which is the subject studied in Chapter 4.

Demaine et al. [30] studied the problem of influencing people with partial derivatives
(discounts). The output of the method in [30] is similar to ours, which is an n-dimensional
vector C ∈ [0, 1]n, where n is the number of vertices. But the problem setting of [30] is
very different from ours. First, [30] is based on the Linear Threshold model, while our
work does not assume any specific propagation model. In Chapter 4, all theoretical results
are applicable to submodular and monotonic propagation models, and the Linear Threshold
model is just one of them. Our implementation in Section 4.6 can be applied to any triggering
models whose reverse propagation can be simulated. Also, the Linear Threshold model is
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just one of these models. Second, in [30], a discount c offered to any user u is equivalent to
reducing u’s threshold θu by c, that is, making θu a random variable in [0, 1− c], no matter
what u is. While in reality, how much the discount c affects a user u’s threshold should
depend on u’s purchase probability curve, which is a personalized property of u. Thus, [30]
actually does not utilize the purchase probability curves of users.

Kempe et al. [55] investigated the general marketing strategies whose problem setting is
similar to ours. A major difference in the problem setting is that [55] assumes that all seed
probability functions (please refer to Section 4.2 for the definition) have the “diminishing
return” property, which means all seed probability functions are concave or near-concave. In
Chapter 4, we do not assume this “diminishing return” property. Instead, a seed probability
function can be in any arbitrary shape, even convex. Moreover, the method in [55] is based
on discretizing the budget, which means a discount offered to a user is discrete (finitely
many), while we provide a totally continuous solution.

An important issue that [55] did not discuss is the complexity of computing the expected
influence spread of a given budget allocation plan. Kempe et al. [55] just assumed an oracle to
return this value when needed. Moreover, Kempe et al. [55] did not conduct any experiments
of the budget allocation problem. In Chapter 4, we proved that unfortunately, computing the
expected influence spread of a budget allocation plan is usually #P-hard, which poses a big
challenge in implement an efficient budget allocation algorithm. To address this challenge,
we devise a polling based algorithm where the idea is to generate a polling sketch to obtain
an approximate influence spread function. We also identify the “overfitting” issue caused
by the #P-hardness of computing the expected influence spread. Our solution in Chapter 4
provides principled implementations of our algorithms under specific propagation models
to avoid the “overfitting” issue.

Although influence maximization has its root in viral marketing, it may still be imprac-
tical under many real-life scenarios. To fill this gap, a series of extensions to the influence
maximization problem were studied. For example, Goyal et al. [43] proposed a data based
approach to influence maximization based on a credit distribution model. Instead of max-
imizing the influence spread under some propagation models with respect to some learned
parameters, they tried to find influential vertices from the action log data directly. Chen
et al. [18] considered the time-delay aspect of influence diffusion and studied the influ-
ence maximization with time-critical constraint. Similarly, the spatial factor of influence
diffusion is considered and influence maximization on Euclidean space has been studied
as well [100, 50, 112]. Tang et al. [101] studied the problem of maximizing the influence
spread and the diversity of the influenced crowd simultaneously. Bhagat et al. [7] argued
that product adoption should be distinguished from influence spread in viral marketing,
as influence spread is essentially used as “proxy” for product adoption. Wang et al. [110]
distinguished the information coverage and information propagation, and proposed a new
optimization objective that includes the values of the informed vertices. All these exten-

12



sions were from the perspective of vertices and tried to exploit the values of vertices as
separate individuals in different diffusion models and different problem settings. They did
not consider activity strengths on edges in their objectives. In contrast, our problem in
Chapter 5 captures the interactions among vertices and enables different (often orthogonal)
applications of information diffusion.
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Chapter 3

Tracking Influential Vertices in
Dynamic Networks

In this chapter, we tackle a challenging problem inherent in a series of applications: tracking
the influential vertices in dynamic networks. Specifically, we model a dynamic network as
a stream of edge weight updates. This general model embraces many practical scenarios
as special cases, such as edge and vertex insertions, deletions as well as evolving weighted
graphs. Under the popularly adopted Linear Threshold model and Independent Cascade
model, we consider two essential versions of the problem: finding the vertices whose influ-
ences passing a user specified threshold T and finding the top-k most influential vertices.
Our key idea is to adopt the polling sketch to approximate influence spread of each vertex.
We developed efficient algorithms to update the poll samples and determine proper sample
sizes for the two versions of tracking influential vertices. In addition to the thorough theo-
retical results, our experimental results on five real network data sets clearly demonstrate
the effectiveness and efficiency of our algorithms.

3.1 Introduction

More and more applications are built on dynamic networks and need to track influential
vertices. For example, consider cold-start recommendation in a dynamic social network –
we want to recommend to a new comer some existing users in a social network. A new user
may want to subscribe to the posts from some users in order to obtain hot posts (posts
that are widely spread in the social network) at the earliest time. Clearly for such a new
user we should recommend her some influential users in the current network. Traditional
Influence Maximization cannot find those influential users we want here because it is for
marketing in which all seed users have to be synchronized to spread the same content, while
in reality online influential individuals often produce and spread their own contents in an
asynchronized manner. The influential users we want are those who have high individual
influence spread.
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More often than not, the underlying network is highly dynamic, where each vertex is a
user and an edge captures the interaction from a user to another. User interactions evolve
continuously over time. In an active social network, such as Twitter, Facebook, LinkedIn,
Tencent WeChat, and Sina Weibo, the evolving dynamics, such as rich user interactions
over time, is the most important value. It is critical to capture the most influential users in
an online manner. To address the needs, we have to tackle two challenges at the same time,
influence computation and dynamics in networks.

Influence computation is very costly, technically #P-hard under most influence models.
Most existing studies have to compromise and consider the influence maximization problem
only on a static network. Here, influence maximization in a network is to find a set of vertices
S such that the combined influence of the vertices in the set is maximized and S satisfies
some constraints such as the size of S is within a budget. The incapability of handling
dynamics in large evolving networks seriously deprives many opportunities and potentials in
applications. Also note that influence maximization is very different from finding influential
individuals, for the reason that the best k-vertices set S does not necessarily consist of the k
most influential individual vertices because influence spreads of different individual vertices
may overlap.

Although influence maximization and finding influential vertices are highly related since
they both need to compute influence in one way or another, these two problems serve very
different application scenarios and face different technical challenges. For example, influence
maximization is a core technique in viral marketing [33]. At the same time, influence max-
imization is not useful in the cold-start recommendation scenario discussed above, since a
user is interested in being connected with individual users of great potential influence and
may follow them in interaction.

To the best of our knowledge, our study is the first to tackle the problem of tracking in-
fluential individual vertices in dynamic networks. Specifically, we model a dynamic network
as a stream of edge weight updates. Our model is general and embraces many practical
scenarios as special cases. Under the popularly adopted Linear Threshold model and Inde-
pendent Cascade model, we consider two essential versions of the problem: (1) finding the
vertices whose influences passing a user specified threshold; and (2) finding the top-k most
influential vertices. Our key idea is to maintain a number of poll samples so that we can
approximate the influence of vertices with provable quality guarantees.

Although recently there is some progress in influence computation in dynamic net-
works [22, 3, 84], these studies are either heuristic methods or hard to be strictly imple-
mented to fulfill the theoretical guarantees. Thus, computing influence spread in a dynamic
network with practical and provable quality guarantees still is a challenging problem.

To tackle the novel and challenging problem of finding influential vertices in dynamic
networks, we make several technical contributions. We develop an efficient algorithm that
incrementally updates the existing poll samples against network changes. We also design
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methods to determine the proper sample sizes for the two versions of the problem so that
we can provide solutions with strong quality guarantees and at the same time be efficient
in both space and time. In addition to the thorough theoretical results, our experimental
results on five real data sets clearly demonstrate the effectiveness and efficiency of our
algorithms. The largest data set used contains over 41 million vertices, 1.5 billion edges and
0.3 billion edge updates.

The rest of this chapter is organized as follows. We model the dynamics of a social
network and propose a framework of updating poll samples in a dynamic network in Sec-
tion 3.2. In Section 3.3, we present methods updating existing poll samples against a stream
of edge weight updates. In Section 3.4, we tackle the problem of tracking vertices whose
influence spreads pass a user-defined threshold. In Section 3.5 and Section 3.6, the problem
of finding the top-k influential vertices is settled. We devise an efficient data structure to
maintain vertex ranking in Section 3.7. We report the experimental results in Section 3.8.
We conclude this chapter in Section 3.9.

3.2 Influence in Dynamic Networks

In this section, we first model influence in dynamic networks. Then by adopting the polling
sketch to approximate users’ influence spreads, we propose a framework of updating poll
samples against a dynamic network. For readers’ convenience, Table 4.1 lists the frequently
used notations in this chapter.

3.2.1 Dynamic Networks

Real online social networks, such as the Facebook network and the Twitter network, change
very fast and all the time. Relationships among users keep changing, and influence strength
of relationships also varies over time. Lei et al. [62] pointed out that influence probabilities
may change due to former inaccurate estimation or evolution of users’ relations over time.
However, the traditional formulation of dynamic networks only considers the topological
updates, that is, edge insertions and edge deletions [5, 85, 47]. Such a formulation is not
suitable for realtime accurate analysis of influence.

According to the LT model reviewed in Section 2.1.1, the change of influence probabilities
along edges can be reflected by the change of edge weights. For the IC model, since the
weight of an edge is the propagation probability, the updates on edge weights are updates
on propagation probabilities. Therefore, we model a dynamic network as a stream of weight
updates on edges.

A weight update on an edge is a 5-tuple (u, v,+/−,∆, t), where (u, v) is the edge updated,
+/− is a flag indicating whether the weight of (u, v) is increased or decreased, ∆ > 0 is
the amount of change to the weight and t is the time stamp. The update is applied to
the self-weight wu if u = v. Clearly, edge insertions/deletions considered in the existing
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Table 3.1: Frequently used notations.

Notation Description
G = 〈V,E,w〉 A social network, where each edge (u, v) ∈ E is associated with an

influence weight wuv
wuv weight of the edge (u, v) (LT model); propagation probability of the

edge (u, v) (IC model)
n = |V | The number of vertices in G
m = |E| The number of edges in G
N in(u) The set of in-neighbors of u
wu Self-weight of u
Wu Wu = wu +∑

v∈N in(u)wvu, the total weight of u
puv puv = wuv

Wu
, the probability that v is influenced by its neighbor u (LT

Model)
Iu The influence spread of vertex u
Ī The average influence spread of individual vertices
M The number of random poll samples

R = R1 ∪R2 A polling sketch which is a set of poll samples. R is divided into two
disjoint partitions R1 and R2.

D1(u) The degree of u ∈ V in R1, which is the number of poll samples
containing u in R1. Similarly we can also define D2(u) and D(u).

Dk1 The k−th highest D1(u) value for u ∈ V
T Influence threshold set by users
I∗ Influence spread of the most influential individual vertex
Ik Influence spread of the k−th most influential individual vertex

literature [5, 85, 47, 22] can be easily written as weight increase/decrease updates. Moreover,
vertex insertions/deletions can be written as edge insertions/deletions, too.

Example 1. A retweet network is a weighted graph G = 〈V,E,w〉, where V is a set of
users. An edge (u, v) ∈ E captures that user v retweeted from user u. We can set wuv
according to the propagation model adopted as follows.

LT Model: The edge weight wuv is the number of tweets that v retweeted from u.
The self-weight wv is the number of original tweets posted by v. The weights reflect the
influence in the social network. By intuition, if v retweeted many tweets from u, v is likely
to be influenced by u. In contrast, if most of v’s tweets are original, v is not likely to be
influenced by others.

IC Model: The edge weight wuv is the probability that v retweets from u, which can be
calculated according to v’s retweeting record in the past [93, 42].

An essential task in online social influence analysis is to capture how the influence
changes over time. For example, one may want to consider only the retweets within the
past ∆t time. Clearly, the set of edges E may change and the weights wuv and wv may
increase or decrease over time. The dynamics of the retweet network can be depicted by a
stream of edge weight updates {(u, v,+/−,∆, t)}.
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Algorithm 2 Framework of Updating Poll Samples
1: retrieve poll samples affected by the updates of the graph
2: update retrieved poll samples
3: if the current poll samples are insufficient then
4: add new poll samples
5: else
6: if the current poll samples are redundant then
7: delete the redundant poll samples
8: end if
9: end if

3.2.2 Updating Poll Samples Against Edge Updates

Given a dynamic network like the retweet network in Example 1, how can we keep track
of influential users dynamically? In order to know the influential vertices, the critical point
is to monitor influence of users. To solve this problem, we adopt the polling sketch for
approximating influence spread described in Section 2.1.4, and extend it to tackle dynamic
networks. The major challenge is how to maintain a number of poll samples over a stream
of edge updates, such that all poll samples maintained are randomly generated according
to the current snapshot of the network. We propose a framework for updating poll samples
that addresses various tasks of tracking influential vertices.

The framework is shown in Algorithm 2, which contains two building blocks, namely
updating existing poll samples (line 2) and deciding a proper sample size (line 3 and line 6).
In Section 3.3, we discuss how to efficiently update the existing poll samples. How to decide
if our current poll samples are insufficient, redundant or in proper amount depends on the
specific task of tracking influential vertices. In Sections 3.4 , we discuss how to decide a
sample size for tracking vertices with influence greater than a threshold. In Section 3.5 and
Section 3.6, we settle the sample size issue for tracking top-k influential vertices.

3.3 Updating Existing Poll Samples

In this section, we propose incremental algorithms for updating existing poll samples over
a stream of edge weight updates under both the LT model and the IC model. Denote by
Pr(h | G) the probability of generating a poll sample h from a given propagation graph
G. The idea of our incremental algorithm is to ensure that after updating poll samples at
any time t, the probability that a poll sample h appearing in our polling sketch is always
Pr(h | Gt), where Gt is the social network at time t.

3.3.1 Updating under the LT Model

First, we have a key observation about random poll samples for the LT model.

Fact 1. A random poll sample of the LT model is a simple path.
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Reverse Propagation 

Figure 3.1: A random path. vi is the previous vertex of vi−1.

Rationale. In the equivalent “live-edge” selection process of the LT model, each vertex
selects at most one incoming edge as a live edge. In the polling process, a random poll sample
is the set of vertices that can be reversely reachable from a randomly picked vertex v via
live edges. Thus, the vertices in a random poll sample together form a simple path.

Fig. 3.1 illustrates a random poll sample. The end point v1 is picked in random at the
beginning of the polling process. Then the path is generated by reversely propagating from
v1. The reverse propagation ends at vl because vl picks one of the vertices already in the
path as its previous vertex. Note that the situation that vl does not pick any previous
vertices can be regarded as vl picks itself as the previous vertex.

For a random poll sample, suppose the starting vertex is vl, we also store the previous
vertex picked by vl, which is useful in our algorithm for updating random poll samples
maintained. Clearly the space complexity of a poll sample is O(L) where L is the number
of vertices in the poll sample. We maintain an inverted index on all random poll samples so
that we can access all the random poll samples passing a vertex. Moreover, we assume that
the whole graph is stored and maintained in a way allowing random access to every vertex
and its in-neighbors. It is not difficult to verify that the expected number of vertices of a
poll sample is Ī, the average individual influence in the network. Thus, the expected space
cost of M poll samples and the inverted index is O(MĪ + n).

When there is an edge weight update (u, v,+/−,∆, t) at time t, our incremental algo-
rithm works as follows. Denote by wtuv the edge weight of (u, v) and W t

v the total weight of
v at time t. We first update the edge weight of (u, v) and the total weight of v in the graph.
Then, we consider the following two cases.

1. If the update is a weight increase (u, v,+,∆, t), we retrieve all poll samples passing
v using the inverted index. For each poll sample retrieved, with probability ∆

W t
v
it is
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rerouted from v. If a poll sample is rerouted, the previous vertex of v is set to u and
we keep reversely propagating until no new vertices can be reversely reached.

2. If the update is a weight decrease (u, v,−,∆, t), we retrieve all poll samples passing v
where the previous vertex of v is u. Each retrieved poll sample is rerouted from v with
probability ∆

wt−1
uv

. If a poll sample is rerouted, we choose u′ among the in-neighbors

of v at time t as the previous vertex of v with probability wt
u′v
W t
v
. We keep reversely

propagating until no new vertices can be reversely reached.

When rerouting random poll samples, we use random access to obtain the vertices and the
in-neighbors of them in the graph. We also update the inverted index.

The update operations are similar to Reservoir Sampling [107]. The following Theorem
demonstrates the correctness of our incremental updating algorithm.

Theorem 1. At any time t, after our incremental maintenance of the poll samples under
the LT model as described in this section, the probability of a poll sample h appearing in
our polling sketch is always Pr(h | Gt).

Proof. To prove the theorem, we only need to prove that at any time t, the probability that
v selects its in-neighbor u is pptuv = wtuv

W t
v
.

We only need to consider the basic case where, at time t, there is at most one edge
weight update. A general case of multiple weight updates can be simply treated as a series
of the basic case.

We prove by induction. Apparently, at time 0, when the network has no edges, the
theorem holds. Assume when t = k−1 (k ≥ 1), the probability that v selects its in-neighbor
u is ppk−1

uv = wk−1
uv

Wk−1
v

. When t = k, three possible situations may arise.

Case 1: There is no update on any incoming edges of v. In such a case, for each u that is
an in-neighbor of v, ppkuv = ppk−1

uv = wk−1
uv

Wk−1
v

= wkuv
Wk
v
.

Case 2: An edge weight increase (u, v,+,∆, k) happens at time t = k. So, wkuv = wk−1
uv +∆

and W k
v = W k−1

v + ∆. For u, we have

ppkuv = ppk−1
uv (1− ∆

W k
v

) + ∆
W k
v

= wk−1
uv

W k−1
v

W k
v −∆
W k
v

+ ∆
W k
v

= wkuv
W k
v

For any other in-neighbor u′ of v, at time t = k,

ppku′v = ppk−1
u′v (1− ∆

W k
v

) = wk−1
u′v

W k−1
v

W k
v −∆
W k
v

= wku′v
W k
v
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Case 3: An edge weight decrease (u, v,−,∆, t) happens at time t = k. Note that wkuv =
wk−1
uv −∆ and W k

v = W k−1
v −∆. For u,

ppkuv = ppk−1
uv [(1− ∆

wk−1
uv

) + ∆
wk−1
uv

wkuv
W k
v

]

= wk−1
uv

W k−1
v

[ w
k
uv

wk−1
uv

+ wkuv
wk−1
uv

∆
W k
v

] = wk−1
uv

W k−1
v

wkuv
wk−1
uv

W k−1
v

W k
v

= wkuv
W k
v

For any in-neighbor u′ of v other than u,

ppku′v = ppk−1
u′v + ppk−1

uv

∆
wk−1
uv

wku′v
W k
v

= wk−1
u′v

W k−1
v

+ wk−1
uv

W k−1
v

∆
wk−1
uv

wku′v
W k
v

= wku′v
W k−1
v

W k
v + ∆
W k
v

= wku′v
W k
v

By treating v as also an in-neighbor of v itself and thus wv is wvv, we can prove the case
when the weight update is on wv.

Suppose we haveM poll samples in the polling sketch maintained. The expected number
of poll samples needed to be retrieved is MIt−1

v
n �M for an update (u, v,+/−,∆, t), where

It−1
v is the influence spread of v at time t − 1. Only a small fraction of the retrieved poll
samples need to be updated. Specifically, the expected number of poll samples updated is
MIt−1

v ∆
nW t

v
� M for a weight increase update (u, v,+,∆, t), and MIt−1

v ∆
nW t−1

v
� M for a weight

decrease update (u, v,−,∆, t). Clearly the cost of incremental maintenance is much less
than re-generating M poll samples from scratch.

3.3.2 Updating under the IC Model

The idea of updating poll samples under the IC model is similar to [84]. We briefly introduce
the idea in this section.

Rather than a simple path, a random poll sample in the IC model is a random connected
component. Fig. 3.2 illustrates an example. Suppose the start point (the randomly picked
vertex at the beginning of a poll) of a poll sample is v1, then each vertex in this poll sample
can be reversely reachable from v1 via live edges.

For a random poll sample, we not only record the vertices in it but also all live edges
among those vertices. We categorize live edges into two classes, namely BFS edges and
cross edges. When a poll sample is being generated by reversely propagating from the start
point in a breadth-first search manner, if a live edge (vi, vj) makes vi propagated for the
first time, (vi, vj) is labeled as a BFS edge; otherwise it is labeled as a cross edge. For each
vertex in a poll sample, we use an adjacent list to store all live edges pointing to it. We
also treat every vertex as a string and keep all vertices in a poll sample in a prefix tree
for fast retrieving a vertex and the address of its adjacent list of live edges. The major
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Figure 3.2: A random poll sample of the IC model is a random connected component.

difference of our data structure for storing a poll sample to the one in [84] is we do not store
the propagation probabilities on live edges in a poll sample, while [84] does. We only store
propagation probabilities in the graph data structure. This is obviously an improvement in
space because the propagation probability of an edge is only stored once in our method.

Like the LT model, for the IC model, we also maintain an inverted index on all random
poll samples so that we can access all poll samples containing a vertex. Since in the “live-
edge” process of the IC model, every edge is picked independently, when there is an update
(u, v,+/−,∆, t) at time t, status (“live” or “dead”) of edges other than (u, v) in poll samples
stay the same. Thus, we have the following incremental maintenance,

1. If the update is a weight increase (u, v,+,∆, t), we retrieve all poll samples passing v
using the inverted index. For each poll sample retrieved, if (u, v) is not a live edge of
it, we add (u, v) as a live edge to it with probability ∆

1−wt−1
uv

. After adding (u, v), if u
does not belong to this poll sample at time t− 1, we further extend this poll sample
by reversely propagating from u in a breadth-first search manner.

2. If the update is a weight decrease (u, v,−,∆, t), we retrieve all poll samples passing v.
If a retrieved poll sample contains a live edge (u, v), with probability ∆

wt−1
uv

we remove
(u, v). If (u, v) is removed, we traverse from the start point v1 via live edges other than
(u, v) of this poll sample to find all vertices reversely reachable from v1 and all live
edges among them. Then, this poll sample is updated to one containing only those
vertices and live edges we find.

Similar to the LT model, after updating the poll samples, we also update the inverted
index. Clearly, our incremental maintenance ensures that, for each edge (u, v) at time t, if v
is a vertex of a poll sample, the probability that (u, v) is a live edge of this poll sample is wtuv.
So the same as the LT model, our incremental maintenance ensures that the probability of
a poll sample h appearing in our polling sketch is always Pr(h | Gt) at any time t.
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Theorem 2. At any time t, after our incremental maintenance of the random poll samples
under the IC model as described in this section, the probability of a poll sample h appearing
in our polling sketch is always Pr(h | Gt).

In our incremental maintenance, we need to find out if an edge (u, v) is a live edge in
a poll sample. Suppose the number of vertices in a poll sample is L. Because normally the
length of a vertex id is a constant, given an edge (u, v), using the prefix tree we can find
the address of v’s adjacent list in O(1) time. Then a linear search is performed to find out if
(u, v) is a live edge. In practice propagation probabilities are often small and ∑u∈N in(u)wuv

is often a small constant. Therefore, in practice the average complexity of the linear search
is O(1) and in total we only need O(1) time to decide if (u, v) is a live edge in a poll
sample. Moreover, the space complexity of the poll sample is O(L) in practice since every
vertex only has a constant number of live edges pointing to it. Similar to the LT model,
maintaining M poll samples and the inverted index under the IC model takes O(MĪ + n)
space in expectation, where Ī is the average individual influence.

For the second situation when a live edge (u, v) is deleted, it is not always necessary
to traverse from the start point, which takes O(L) time if there are L vertices in the poll
sample. It is easy to see that removing cross edges does not change the connectivity of
vertices in a poll sample. Thus, if the removed live edge is labeled as a cross edge, we do
not need to further update the poll sample.

Similar to LT model, under IC model, if we have M poll samples in the polling sketch
maintained, the expected number of poll samples needed to be retrieved is MIt−1

v
n �M for

an update (u, v,+/−,∆, t) and only a small fraction of the retrieved poll samples need to be
updated. The expected number of poll samples containing a live edge (u, v) is MIt−1

v wt−1
uv

n and
the expected number of poll samples that do not contain (u, v) as a live edge is MIt−1

v (1−wt−1
uv )

n .
Therefore, when there is an update on the edge (u, v), no matter it is weight increase or
weight decrease, the expected number of poll samples needed to be updated is MIt−1

v ∆
n �M .

Clearly the cost of incremental maintenance is much less than re-generatingM poll samples
from scratch.

3.4 Tracking Threshold-based Influential Vertices

A natural problem setting of finding influential vertices is to find all vertices whose influence
spread is at least T , where T is a user-specified threshold. In this section, we discuss how
to use random poll samples to approximate the desired result.

Before our discussion, we clarify that our problem is not Heavy Hitters [27] even when
we treat the influence spread of a vertex as the “frequency/popularity” of an element. First,
the definitions of “frequency” are different and have dramatically different properties. In
Heavy Hitters, a stream of items is a multiset of elements and the frequency of an element is
its multiplicity over the total number of items. Thus, the sum of frequencies of all elements
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is 1, which means there are at most 1/φ elements with frequency passing a threshold φ.
In our problem, if we define the “frequency” of a vertex v as Iv/n, the value of ∑v∈V

Iv
n

is not necessarily 1. Actually one can easily prove that computing ∑v∈V Iv is #P-hard
because computing Iv is #P-hard. As a result, normalizing Iv is difficult. Thus, given any
influence threshold T < n, we cannot have an upper bound on the number of vertices that
have influence greater than T . Also, the input of our problem is a stream of edge updates
but not a stream of insertion/deletion of vertices (elements). Moreover, the influence of a
vertex is not a simple aggregation of weights on the associated edges. In terms of technical
solutions, it is hard to use a sublinear space to convert an update of edge weight to a list
of insertions/deletions of vertices. As illustrated in Section 3.3, we need both the graph
and poll samples to decide which vertices should be increased/decreased in frequency by an
edge update. This is very different from the settings of Heavy Hitters where only a sublinear
space is allowed, while the graph itself already takes space Ω(n). We also need to access a
number of poll samples, while in Heavy Hitters only counters of elements are allowed to be
kept in memory.

Due to the #P-hardness of computing influence spread under the LT model [21], it is not
likely that we can find in polynomial time the exact set of vertices whose influence spread is
at least T . Thus, we turn to algorithms that allow controllable small errors. Specifically, we
ensure that the recall of the set of vertices found by our algorithm is 100% and we tolerate
some false positive vertices. Moreover, the influence spread of those false positive vertices
should take a high probability to have a lower bound that is not much smaller than T . We
set the lower bound to T − εn, where ε controls the error.

According to Corollary 0.1, the larger M , the more accurate the unbiased estimator
nD(u)

M . Thus, the intuition of deciding M is to make sure that, for each u, nD(u)
M is large

enough when Iu ≥ T , and small enough when Iu ≤ T − εn.
We first show that nD(u)

M is not likely to be too much smaller than T if Iu ≥ T and M
is large enough.

Lemma 1. WithM random poll samples, if Iu ≥ T , with probability at least 1−exp(−Mε2n
8T ),

nD(u)
M ≥ T − εn

2 .

Proof. If Iu ≥ T , we have

Pr{nD(u)
M

≤ T − εn

2 } = Pr{nD(u)
M

≤ (1−
Iu − T + εn

2
Iu

)Iu}

≤ exp
{
−
M(Iu − T + εn

2 )2

2nIu

}
(Iu−T+ εn

2 )2

Iu
is non-decreasing with respect to Iu when Iu ≥ T . Thus,

Pr{nD(u)
M

≤ T − εn

2 } = exp(−Mε2n

8T )
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Similarly, if Iu ≤ T − εn, the probability that nD(u)
M is abnormally large is pretty small

when M is large.

Lemma 2. With M random poll samples, if Iu ≤ T − ε, with probability at least 1 −
2exp(−Mε2n

12T ), nD(u)
M ≤ T − εn

2 .

Proof. We prove that if Iu ≤ T − εn, Pr{nD(u)
M − Iu ≥ εn

2 } ≤ 2exp(−Mε2n
12T ). Note that

nD(u)
M − Iu ≤ εn

2 is a sufficient condition for nD(u)
M ≤ T − εn

2 when Iu ≤ T − εn.
First, suppose T ≥ 3εn

2 , which means εn
2 ≤ T − εn. There are two possible cases.

Case 1: εn
2 ≤ Iu ≤ T − εn. Then,

Pr{|nD(u)
M
− Iu| ≥

εn

2 } = Pr{|MD(u)
M
− MIu

n
| ≥ εM

2 }

≤ 2exp{−1
3
MIu
n

ε2n2

4I2
u

} ≤ 2exp(−Mε2n

12T )

Case 2: Iu ≤ εn
2 . Then,

Pr{nD(u)
M
− Iu ≥

εn

2 } = Pr{MD(u)
M
− MIu

n
≥ εM

2 }

≤ exp{− 1
(2 + 2

3) εn2Iu

MIu
n

ε2n2

4I2
u

}

≤ exp{−3Mε

16 } ≤ 2exp(−Mε2n

12T )

Second, if T ≤ 3εn
2 , for all Iu ≤ T − εn, Iu ≤ εn

2 . Then, all Iu ≤ T − εn fall into Case 2
above and the lemma still holds.

Because exp(−Mε2n
8T ) ≤ 2exp(−Mε2n

12T ), by applying Boole’s inequality (that is, the Union
Bound), with probability at least 1− 2n · exp(−Mε2n

12T ), every nD(u)
M satisfies the conditions

in Lemmas 1 and 2. Therefore, we have the following theorem on the sample size M for
finding vertices whose influence spread is at least T .

Theorem 3. By setting the number of random poll samples M = 12T
nε2 ln 2n

δ , with probability
at least 1− δ the following conditions hold for every vertex u.

1. If Iu ≥ T , then nD(u)
M ≥ T − εn

2

2. If Iu < T − εn, then nD(u)
M < T − εn

2

One nice property of M in Theorem 3 is that, given n, T , ε and δ, M is a constant.
Therefore, when we track vertices of influence spread at least T in a dynamic network, no
matter how the network changes, the sample size M remains the same. Moreover, based
on Theorem 3, every time when a query of influential vertices (where the threshold is T ) is
issued, we return S = {u | D(u)

M < T
n −

ε
2} as the set of influential vertices.
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Algorithm 3 Sampling Sufficient Poll Samples for Top-K Influential Individuals with Ab-
solute Errors
Input: G = 〈V,E,w〉, ε, δ and R which is a set of random poll samples
Output: R = R1 ∪R2

1: while |R1| < 48×4ε
ε2 ln 2n

δ do
2: Sample a random poll sample and add to R1
3: end while
4: x← |R1|ε2

48 ln 2n
δ

5: while D∗1
|R1| ≥ x− ε do

6: Sample a random poll samples and add to R1
7: x← |R1|ε2

48 ln 2n
δ

8: end while
9: Adjust the size of R2 to make |R2| = |R1|

10: return R = R1 ∪R2

3.5 Tracking Top-k Influential Vertices with Absolute Errors

Another useful problem setting is to find the top-k influential vertices, where k is a user-
specified parameter.

Denote by Ik the influence spread of the k-th most influential vertex. Extracting top-k
influential individual vertices equals extracting all vertices whose influence spread is at least
Ik. Again, due to the #P-hardness of influence computation, we probably have to tolerate
errors in the result when designing algorithms. Similar to Section 3.4, we hope the result
returned by our algorithm contains all real top-k vertices, and for each false-positive vertex
returned, its influence spread is no smaller than Ik − εn with a high probability.

Unlike the task in section 3.4, we do not know the threshold Ik in advance, which makes
the top-k tack more challenging. Thus, the intuition of our idea to solve the problem is that,
if we have enough samples, we can bound Ik within a small range. Thus, in the following of
this section, we first give a method of how to decide a proper sample size, then introduce
how to extract influential vertices based on the current polling sketch for the top-k task. At
last, we prove the effectiveness and efficiency of our method.

3.5.1 Deciding a Proper Sample Size

We first split the polling sketch R into two disjoint parts, R1 and R2. Thus, R = R1 ∪R2.
Then we use R1 to decide the size of R, and R2 to extract influential vertices. The reason
of doing so will be illustrated in Section 3.5.3.

Denote by D∗1 the greatest D1(u) value in the polling sketch. Our method uses D∗1 as
the signal to decide if the current sample size is proper or not. Specifically, Algorithm 3
describes how to ensure that we have enough poll samples, and Algorithm 4 helps us delete
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Algorithm 4 Deleting Redundant Poll Samples for Top-K Influential Individuals with
Absolute Errors
Input: G = 〈V,E,w〉, ε, δ and R which is a set of random poll samples
Output: R = R1 ∪R2

1: while D∗1
|R1| < x− ε ∧ |R1| > 48×4ε

ε2 ln 2n
δ do

2: h← the last poll sample of R1
3: Delete h from R1
4: if D∗1

|R1| ≥ x− ε ∨ |R1| < 48×4ε
ε2 ln 2n

δ then
5: Add h back to R1
6: break
7: end if
8: end while
9: Adjust the size of R2 to make |R2| = |R1|

10: return R = R1 ∪R2

Algorithm 5 Collecting Top-k Influential Individual Vertices with Absolute Errors
Input: R = R1 ∪R2 maintained by Algorithm 3 and Algorithm 4
Output: A set of influential vertices S
1: return S ← {u | D2(u)

|R2| ≥
Dk2
|R2| −

ε
2}

redundant poll samples. In Section 3.7, we will introduce how to efficiently maintain the
value of D∗1 such that we can retrieve D∗1 in O(1) time.

Suppose there is an infinite series of poll samples {h1, h2, h3, ...}, where every hi is
independently and randomly generated. What our algorithms do can be considered as keep
adding poll samples to the polling sketch R1 from {h1, h2, h3, ...}, until the first time when
D∗1
|R1| < x− ε, where x = |R1|ε2

48 ln 2n
δ

.

3.5.2 Extracting Influential Vertices

We use R2 to collect influential vertices for the top-k task. Denote by Dk2 the k-th greatest
D2(u) for all u ∈ V . We return all vertices u such that D2(u) is greater or just slightly
smaller than Dk2 . Algorithm 5 describes our method for collecting influential vertices.

3.5.3 Proofs of Effectiveness and Efficiency

We prove the effectiveness and efficiency of our algorithms in this section. We show that
by maintaining R = R1 ∪ R2 using Algorithm 3 and Algorithm 4, R2 has enough poll
samples to let Algorithm 5 extract influential vertices with a good quality guarantees. We
also analyze that with high probability, the size of R is not too large.

First, if we have enough poll samples in R2, nD2(u)
|R2| will not deviate from its expectation

Iu too much for all u ∈ V . Denote by I∗ the greatest individual influence of all vertices.
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Lemma 3. If there are M2 = |R2| ≥ 48I∗
nε2 ln 2n

δ poll samples in R2, then with probability at
least 1− δ, |nD2(u)

|R2| − Iu| ≤
εn
4 , for all u ∈ V .

Proof. Suppose we have M2 poll samples in R2. We need to consider two possible cases to
apply the Martingale Inequalities in Corollary 0.1.

Case 1: If Iu ≥ εn
4

Pr{|nD2(u)
M2

− Iu| ≥
εn

4 } ≤ 2exp{−1
3
ε2n2

16I2
u

M2Iu
n
} ≤ 2exp(−M2nε

2

48I∗ )

Case 2: If Iu ≤ εn
4

Pr{|nD2(u)
M2

− Iu| ≥
εn

4 } = Pr{nD2(u)
M2

− Iu ≥
εn

4 }

≤ exp(−3
8
εn

4Iu
M2Iu
n

)

= exp(−3M2ε

32 ) ≤ 2exp(−M2nε
2

48I∗ )

When M2 = 48I∗
nε2 ln 2n

δ , 2exp(−M2nε2

48I∗ ) = δ
n . Applying the Union bound, we have that with

probability at least 1− δ, for all u ∈ V , |nD2(u)
|R2| − Iu| ≤

εn
4 .

Based on Lemma 3, we prove that if R2 has enough poll samples, then the set of
influential vertices extracted by Algorithm 5 has a provable quality guarantee.

Lemma 4. If there are M2 ≥ 48I∗
nε2 ln 2n

δ poll samples in R2, then with probability at least
1− δ the set of influential vertices S = {u | D2(u)

|R2| ≥
Dk2
|R2| −

ε
2} returned by Algorithm 5 can

achieve: (1) For all u ∈ V , if Iu ≥ Ik, then u ∈ S; and (2) For all u ∈ V , if Iu < Ik − εn,
then u /∈ S.

Proof. First, according to Lemma 3, with probability at least 1−δ, we have |nD2(u)
|R2| −Iu| ≤

εn
4

for all u ∈ V .
When |nD2(u)

|R2| − Iu| ≤
εn
4 for all u ∈ V , we can infer that Ik

n −
ε
4 ≤

Dk2
M2
≤ Ik

n + ε
4 . That

is because there are at least k vertices u such that D2(u)
M2
≥ Ik

n −
ε
4 and there are at most k

vertices v such that D2(v)
M2
≥ Ik

n + ε
4 .

If Iu ≥ Ik, we have D2(u)
M2
≥ Iu

n −
ε
4 ≥

Ik

n −
ε
4 ≥

Dk2
M2
− ε

2 . Thus, when Iu ≥ Ik, u ∈ S.
If Iu ≤ Ik − εn, we have D2(u)

M2
≤ Iu

n + ε
4 ≤

Ik

n −
3ε
4 ≤

Dk2
M2
− ε

2 . Thus, when Iu < Ik − εn,
u /∈ S.

Now the problem is if R2 has at least 48I∗
nε2 ln 2n

δ poll samples. We prove that if the size
of the polling sketch R = R1 ∪ R2 is maintained by our Algorithm 3 and Algorithm 4,
with high probability, the number of poll samples in R2 is not only at least 48I∗

nε2 ln 2n
δ poll

samples, but also very close to 48I∗
nε2 ln 2n

δ .
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Lemma 5. After applying Algorithm 3 to adjust the sample size of R = R1 ∪ R2, with
probability at least 1− o( 1

n23 ), |R2| ≥ 48I∗
nε2 ln 2n

δ .

Proof. Since |R2| = |R1|, we only need to prove that when D∗1
|R1| < x − ε for the first time,

Pr{|R1| < 48x
ε2 ln 2n

δ } ≤ o(
1
n23 ).

Suppose u is a vertex with the maximum influence, which means Iu = I∗. If R1 has
48x
ε2 ln 2n

δ < 48I∗
nε2 ln 2n

δ poll samples, then xn < I∗. Applying Corollary 0.1, we have

Pr{ D
∗
1

|R1|
≤ x− ε | xn < I∗} ≤ Pr{D1(u)

|R1|
≤ x− ε}

= Pr{D1(u)
|R1|

≤ (1− ε

x
)x}

≤ Pr{nD1(u)
|R1|

≤ (1− ε

x
)I∗}

≤ exp(−
( εx)2|R1|I∗

2n ) ≤ exp(−
( εx)2|R1|x

2 )

Since Algorithm 3 requires that |R1| ≥ 48×4ε
ε2 ln 2n

δ , exp(− ( ε
x

)2|R1|x
2 ) ≤ ( δ

2n)24.
Algorithm 3 fails to collect enough poll samples for R1 if the condition D∗1

|R1| ≤ x − ε
holds when xn < I∗. Apparently, Algorithm 3 checks if D

∗
1

|R1| ≤ x − ε for at most 48
ε2 ln 2n

δ

times. Therefore, applying the union bound, the failure probability of Algorithm 3 is at
most 48

ε2 ln 2n
δ × ( δ

2n)24 = o( 1
n23 ).

Combining Lemma 5 and Lemma 4, we have the effectiveness of Algorithm 5 shown in
Theorem 4.

Theorem 4 (Effectiveness of Algorithm 5). With probability at least 1− δ− o( 1
n23 ), the set

of influential vertices S returned by Algorithm 5 can achieve: (1) For all u ∈ V , if Iu ≥ Ik,
then u ∈ S; and (2) For all u ∈ V , if Iu < Ik − εn, then u /∈ S.

Lemma 6. After applying Algorithm 4 to adjust the sample size of R = R1 ∪ R2, with
probability at least 1− o( 1

n14 ), |R2| ≤ 48 max (4εn,I∗+2εn)
nε2 ln 2n

δ .

Proof. Similar to the proof of Lemma 5, we only need to prove that with high probabil-
ity, |R1| ≤ 48 max (4εn,I∗+2εn)

nε2 ln 2n
δ . To prove that, it is sufficient to show that if R1 has

48(I∗+2εn)
nε2 ln 2n

δ poll samples, the test if D
∗
1

|R1| ≤ x− ε probably will pass.
Let ε′ = ε

x . Note that Algorithm 4 ensures that x ≥ 4ε and ε′ ≤ 1
4 . Thus,

1−ε′
2 ≤ 1− 2ε′.

Let M1 = 48(I∗+2εn)
nε2 ln 2n

δ . We have two possible cases for all u ∈ V .
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Case 1: If (1−ε′)xn
2 ≤ Iu ≤ (1− 2ε′)xn

Pr{D1(u)
M1

≥ x− ε} = Pr{nD1(u)
M1

≤ [1 + (1− ε′)xn− Iu
Iu

]Iu}

≤ exp(−1
3

[(1− ε′)xn− Iu]2
I2
u

M1Iu
n

)

≤ exp(− ε′2M1x

3(1− 2ε′)) ≤ exp(−16 ln 2n
δ

) = ( δ2n)16

Case 2: If Iu ≤ (1−ε′)xn
2

Pr{D1(u)
M1

≥ (1− ε′)x} = Pr{nD1(u)
M1

≤ [1 + (1− ε′)xn− Iu
Iu

]Iu}

≤ exp(−3
8

[(1− ε′)xn− Iu]
Iu

M1Iu
n

)

≤ exp(−3(1− ε′)M1x

16 )

≤ exp(
9 ln 2n

δ

2ε′2 ) ≤ exp(−18 ln 2n
δ

) = ( δ2n)18

Applying the Union Bound, we have that, with probability at least 1−n( δ
2n)16, D∗1 ≤ x− ε

when R1 has 48(I∗+2εn)
nε2 ln 2n

δ poll samples.

Combining Lemma 5 and Lemma 6, we have the following Theorem to bound the sample
size ofR = R1∪R2 maintained by Algorithm 3 and Algorithm 4. Note that sample size ofR
reflects the efficiency of our method, since the time complexity of our method is proportional
to the number of poll samples maintained.

Theorem 5 (Sample Size Maintained by Algorithm 3 and Algorithm 4). If we use Al-
gorithm 3 and Algorithm 4 to maintain the sample size of R = R1 ∪ R2, with proba-
bility 1 − o( 1

n14 ), we have |R| = 96x
ε2 ln 2n

δ ≥
96I∗
nε2 ln δ

2n random poll samples, and xn ≤
max (4εn, I∗ + 2εn).

Remark 1. One may ask why do we need R2 because why not apply Theorem 4 on R1

to extract influential vertices. The answer is that probabilistic support (implication) is not
transitive1 [96]. Even by Lemma 5 we know that R1 has at least 48I∗

nε2 ln 2n
δ poll samples

with high probability, we cannot establish the conditions in Lemma 3 for R1. To apply
Lemma 3 on R1, we should not have prior knowledge about D∗1 in R1 because the sample
spaces are actually different. Lemma 3 holds for R2, whose sample space is all possible
M2 = |R|1 random poll samples {h1, h2, ..., hM2}, while the sample space of R1 requires
that D

∗
1

|R1| ≥ x− ε.

1Suppose A implies B with probability 1−δ1, and B implies C with probability 1−δ2. A flawed argument
using the transitivity is that by applying the union bound, A implies C with probability 1− δ1 − δ2.
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Remark 2. A nice property of Algorithm 3 and Algorithm 4 is that the sample size main-
tained is proportional to the value of I∗ as proved in Theorem 5. This is different from
other studies [89, 90, 87] dealing with similar issues in mining frequent itemsets from sam-
pled transactions 2. Instead of estimating the greatest frequency of itemsets, [89, 90, 87]
just use a trivial upper bound 1 as the maximum frequency. In a real dataset, no matter
it is a transaction database or a social network, the maximum itemset frequency or the
highest influence spread is normally much smaller than 1 or n, the total number of vertices.
Thus, the sample size in [89, 90, 87] is actually much greater than needed. Our method that
estimates I∗ first exploits of the unique property (the value of I∗) of every dataset.

3.6 Tracking Top-k Influential Vertices with Relative Errors

One drawback of the algorithm described in Section 3.5 is that the error ε controlled by the
algorithm is an absolute error. Since the k-th greatest influence spread Ik is not known to
us in advance, it is possible that we do not set ε properly to make εn very close to or even
greater than Ik. Moreover, in a dynamic social network, the value of Ik often changes as the
network updates. In such cases, controlling a predefined absolute error ε in the algorithms in
Section 3.5 may be meaningless to us sometimes. Thus, in this section, we develop algorithm
that controls a relative error ε, which means the smallest influence spread in the returned
set of users is at least Ik(1− ε).

Similar to Section 3.5, in this section, we first describe how to decide a proper sample
size and how to extract influential users given the current polling sketch, then we prove
the effectiveness and efficiency of our method. We also illustrate the advantages of our new
algorithm to the algorithm in Section 3.5.

3.6.1 Deciding a Proper Sample Size

Similar to Section 3.5, we also divide the polling sketch R into two disjoint partitions R1

and R2. We use R1 to control the sample size of R and use R2 to extract influential vertices.
In our method, Dk1 , the k-th greatest D1(u) for u ∈ V , is used as the signal to decide if

the current sample size is proper or not. How to efficiently maintain and retrieve the value
of Dk1 will be illustrated in Section 3.7. Algorithm 6 describes our algorithm for controlling
the sample size of R, where Υε, δ

n
1 = 1 + (1 + ε)4(e−2) ln 2

δ
ε2 as defined in Section 2.1.4. What

Algorithm 6 does is to always maintain the invariant that Dk1 = dΥε, δ
n

1 e.

2One may link finding influential vertices with finding frequent itemsets remotely due to the intuition
that a vertex frequent in many poll samples is likely influential.
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Algorithm 6 Adjusting Sample Size for Top-K Influential Individuals with Relative Errors
Input: G = 〈V,E,w〉, ε, δ and R which is a set of random poll samples
Output: R = R1 ∪R2

1: while Dk1 < dΥ
ε, δ
n

1 e do
2: Sample a random poll sample and add to R1
3: end while
4: while Dk1 > dΥ

ε, δ
n

1 e do
5: Delete the last poll sample from R1
6: end while
7: Adjust the size of R2 to make |R2| = |R1|
8: return R = R1 ∪R2

Algorithm 7 Collecting Top-k Influential Individual Vertices with Relative Errors
Input: R = R1 ∪R2 maintained by Algorithm 6
Output: A set of influential vertices S

1: return S = {u | D2(u) ≥ T = 1−ε
1+εΥ

ε, δ
n

1 }

3.6.2 Extracting Influential Vertices

Similar to Section 3.5.2, when extracting influential vertices from R, we use D2(u) to decide
if u should be returned or not. Algorithm 7 shows our method.

3.6.3 Proofs of Effectiveness and Efficiency

We prove the effectiveness and efficiency of our algorithms in this section. We show that by
maintaining R = R1∪R2 using Algorithm 6, R2 has enough poll samples to let Algorithm 7
extract influential vertices with a good quality guarantees. Unlike Section 3.5, we prove that
with high probability, the smallest influence spread of vertices returned by Algorithm 7 is
only smaller than Ik by a relative ratio. We also analyze the size of R, and compare it to
the sample size maintained by Algorithm 3 and Algorithm 4 in Section 3.5.

First, we prove that when Dk1 = dΥε, δ
n

1 e for the first time, we could use nΥε,
δ
n

1
|R1| to get a

good estimation of Ik, which is unknown to us in advance.

Lemma 7. For R1 maintained by Algorithm 6, we have (1) Pr{ Ikn ≥
Υε,

δ
n

1
(1+ε)|R1|} ≥ 1 − δ

2

and (2) Pr{ Ikn ≤
Υε,

δ
n

1
(1−ε)|R1|} ≥ 1− δ

2 .

Proof. Let VL = {u | u ∈ V, Iu ≤ Ik} and VU = {u | u ∈ V, Iu ≥ Ik}. Since Ik is the k-th
largest individual influence spread, we have |VL| ≥ n− k + 1 and |VU | ≥ k. Let M1 = |R1|.
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First, suppose R1 has M1 <
nΥε,

δ
n

1
(1+ε)Ik . For any vertex u ∈ VL, M1 <

nΥε,
δ
n

1
(1+ε)Ik ≤

nΥε,
δ
n

1
(1+ε)Iu .

Based on the Stopping Rule Theorem (Corollary 0.2), for any u ∈ VL we have

Pr{D1(u) < dΥε, δ
n

1 e |M1 <
nΥε, δ

n
1

(1 + ε)Ik } > 1− δ

2n

Applying the union bound, we have

Pr{∀u ∈ VL,D1(u) < dΥε, δ
n

1 e |M1 <
nΥε, δ

n
1

(1 + ε)Ik } > 1− δ

2

which means when M1 <
nΥε,

δ
n

1
(1+ε)Ik , D

k
1 < dΥε, δ

n
1 e because there are at most |V \ VL| ≤

k − 1 vertices with degree at least dΥε, δ
n

1 e. Thus, when Dk1 = dΥε, δ
n

1 e for the first time,

with probability at least 1 − δ
2 we have M1 ≥

nΥε,
δ
n

1
(1+ε)Ik . Therefore, for R1 maintained by

Algorithm 6, we have Pr{ Ikn ≥
Υε,

δ
n

1
(1+ε)|R1|} ≥ 1− δ

2 .

Similarly, we can obtain that when R1 has M1 ≥
nΥε,

δ
n

1
(1−ε)Ik poll samples, we have

Pr{∀u ∈ VU ,D1(u) ≥ dΥε, δ
n

1 e |M1 ≥
nΥε, δ

n
1

(1− ε)Ik } > 1− δ

2

which means when R1 has M1 ≥
nΥε,

δ
n

1
(1−ε)Ik poll samples, Dk1 ≥ dΥ

ε, δ
n

1 e because there are at

least |VU | ≥ k vertices with degree at least dΥε, δ
n

1 e. Thus, when Dk1 = dΥε, δ
n

1 e for the first

time, with probability at least 1 − δ
2 we have M1 ≤

nΥε,
δ
n

1
(1−ε)Ik . Therefore, for R1 maintained

by Algorithm 6, we have Pr{ Ikn ≤
Υε,

δ
n

1
(1−ε)|R1|} ≥ 1− δ

2 .

Note that Pr{ Ikn ≥
Υε,

δ
n

1
(1+ε)|R1|} ≥ 1 − δ

2 implies Pr{|R1| ≥
nΥε,

δ
n

1
(1+ε)Ik } ≥ 1 − δ

2 . Recall that

in our algorithm, we make |R2| = |R1|. Thus, Pr{|R2| ≥
nΥε,

δ
n

1
(1+ε)Ik } ≥ 1 − δ

2 . We show that

when |R1| ≥
nΥε,

δ
n

1
(1+ε)Ik , the estimated influence nD2(v)

|R2| of each vertex v does not deviate from
its expectation Iv too much.

Lemma 8. For |R2| ≥
nΥε,

δ
n

1
(1+ε)Ik poll samples in R2, with probability at least 1 − δ

2 , we
have (1) for every v such that Iv ≥ Ik, nD2(v)

|R2| ≥ (1 − ε)Ik; and (2) for every v such that
Iv ≤ (1− 2ε)Ik, nD2(v)

|R2| ≤ Iv + εIk.
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Proof. Let M2 = |R2|. First, when M2 ≥
nΥε,

δ
n

1
(1+ε)Ik , we have

M2 ≥
n(1 + ε)4(e− 2) ln 2n

δ

(1 + ε)ε2Ik ≥
8n ln 2n

δ

3ε2Ik

Applying the Martingale inequalities in [103] (see Appendix), we have

1. If Iv ≥ Ik, Pr{nD2(v)
M2

≥ (1− ε)Ik} ≤ ( δ
2n)4/3 ≤ δ

2n ; and

2. If Iv ≤ (1− 2ε)Ik, Pr{nD2(v)
M2

≤ Iv + εIk} ≤ δ
2n .

By applying the Union bound, the Lemma is proved.

Based on Lemma 7 and Lemma 8, we have the following theorem that shows the effec-
tiveness of our algorithm.

Theorem 6 (Effectiveness of Algorithm 7). With probability at least 1−2δ, Algorithm 7 re-
turns a set of vertices S such that (1) all real top-k vertices are included, and (2) minu∈S Iu ≥
(1− 4ε

1+ε)Ik ≥ (1− 4ε)Ik.

Proof. Based on Lemma 7 and Lemma 8, when Dk1 = dΥε, δ
n

1 e andM2 = M1, with probability
at least 1− 2δ, the following conditions hold.

1. Υε,
δ
n

1
(1+ε)M1

≤ Ik

n ≤
Υε,

δ
n

1
(1−ε)M1

;

2. For every v such that Iv ≥ Ik, D2(v)
M2
≥ (1− ε) Ikn ;

3. For every v such that Iv ≤ (1− 2ε)Ik, D2(v)
M2
≤ Iv

n + ε I
k

n .

Under these 3 conditions, obviously, if Iv ≥ Ik then D2(v) ≥ (1−ε)M2Ik

n ≥ 1−ε
1+εΥ

ε, δ
n

1 = T . If
Iv ≤ nT

M2
− εIk ≤ (1 − 2ε)Ik, then D2(v)

M2
≤ Iv

n + ε I
k

n ≤
T
M2

. Thus, if Iv ≤ nT
M2
− εIk, then

D2(v) ≤ T .
Now we prove nT

M2
− εIk is not much smaller than Ik, which means when we use T as

a filtering threshold, the influence spread of any false positive vertex is close to the true
threshold Ik. We have

nT

M2
− εIk = n(1− ε)Υε, δ

n
1

(1 + ε)M1
− εIk

≥ [ (1− ε)
2

1 + ε
− ε]Ik

= (1− 4ε
1 + ε

)Ik ≥ (1− 4ε)Ik

Our algorithm returns the set of vertices S = {u | D2(u) ≥ T}. Summarize the above
analysis, we have that with probability at least 1 − 2δ, (1) if Iu ≥ Ik, u ∈ S, and (2)
minu∈S Iu ≥ (1− 4ε

1+ε)Ik ≥ (1− 4ε)Ik.
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Note that we prove minu∈S Iu ≥ (1 − 4ε)Ik is just for showing there is a relative error
bound. In practice, we use 4ε

1+ε to calculate the upper bound of relative error, since it is
tighter than 4ε.

We also can bound the sample size of R maintained by Algorithm 6 by using Lemma 7.

Theorem 7 (Sample Size Maintained by Algorithm 6). If we use Algorithm 6 to maintain

the sample size of R = R1 ∪ R2, with probability 1 − δ, we have 2nΥε,
δ
n

1
Ik(1+ε) ≤ |R| ≤

2nΥε,
δ
n

1
Ik(1−ε) ,

where Υε, δ
n

1 = 1 + (1 + ε)4(e−2) ln 2n
δ

ε2 .

Theorem 7 show that with high probability, the sample size of the polling sketchRmain-
tained by Algorithm 6 is Θ(n ln n

δ

ε2Ik
). It is worth noting that, according to Dagum et al. [28],

even when we know which vertex is the k-th most influential individual, to obtain an (ε, δ)-
estimation3 of Ik, at least Θ( ln 1

δ

ε2Ik
max{n − Ik, εIk}) poll samples are needed. Considering

that normally in a real social network Ik � n, the minimum number of poll samples to
achieve an (ε, δ)-estimation of Ik is Θ(n ln 1

δ

ε2Ik
), which is only smaller than our sample size

Θ(n ln n
δ

ε2Ik
) by at most a factor of lnn.

Comparison to Section 3.5 For the top-k tracking algorithm in Section 3.5, we set the
absolute error ε1n to the same value of the error in our method, which is less than 4εIk

according to Theorem 6 (suppose magically we know the value of Ik beforehand). Then
the number of poll samples is Θ( I∗

Ik
n ln n

δ

ε2Ik
), where I∗ is the maximum individual influence.

It is obvious that I∗ ≥ Ik and in real social networks, the gap between I∗ and Ik can be
large. Thus, our algorithm is normally more efficient than the top-k tracking algorithm in
Section 3.5, when the errors controlled by the two methods are the same in absolute value.

3.7 Maintaining Vertices Ranking Dynamically

In this section, we introduce how to maintain all vertices always sorted by their degrees
in a polling sketch R. We also devise an algorithm to efficiently maintain and retrieve the
value of Dk, the k-the greatest degree of vertices in R. Applying our algorithm on R1 in
the algorithms in Section 3.5 and Section 3.6 can help us efficiently decide if the current
sample size is proper or not.

To maintain all vertices sorted, the major idea is to group vertices with the same degrees
in R together. We adopt the data structure for maximum vertex cover in a hyper graph [10].
Fig. 3.3 shows the data structure, which is a doubly linked list where every node is a doubly
linked list. We call such a data structure a Linked List.

Vertices with the same degree in R are grouped together and stored in a doubly linked
list like in Fig. 3.3. Moreover, for those vertices, we create a head node which is the start of

3Îk is an (ε, δ)-estimation of Ik if Pr{|Îk − Ik| ≤ εIk} ≥ 1− δ.
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= 𝑑1 

Degree
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𝑣1 

𝑣2 

𝑣5 

𝑣3 𝑣4 

𝑣𝑖 

𝑣6 

𝑣𝑗 𝑣𝑛 

Figure 3.3: Linked List Structure, where d1 > d2 > d3 > ... > dmin

the linked list containing all vertices with the same given degree. Apparently, the number
of head nodes is the number of distinctive values of D(u) in R. We also maintain all head
nodes sorted in a doubly linked list. For each u ∈ V , we maintain its address in the doubly
linked lists structure and the corresponding head node.

When a poll sample is updated, a new poll sample is generated or an existing poll
sample is deleted, D(u) changes at most by 1 for each u ∈ V . Thus, every time when D(u)
is updated (increased or decreased by 1), we only need O(1) time to find the head node of
the linked list u should be in (if such a head node does not exist now, we can create it and
insert it into the doubly linked list of head nodes in O(1) time) and insert it to the next of
the head in O(1) time. If after an update, a head node has no vertices after it, we delete it
from the doubly linked list of head nodes in O(1) time.

Besides maintaining all vertices sorted by their degrees in R, we also need to maintain
the value of Dk against the updates of the network, because in our top-k tracking algorithms,
Dk is used as the signal4 to decide if the current sample size is proper.

We record Hk, the head node of the doubly linked list containing vertices whose degrees
in R are Dk. We also need a bias b which indicates there are k − b vertices u such that
D(u) > Dk. Suppose due to an update, D(u) is increases by 1. Let D(u)old be the value
before the update and D(u)new the value after the update. Denote by Hk.degree the degree
of vertices that Hk is their head node and Hk.num the number of such vertices. Let Hk.up

4In Section 3.5 the signal is D∗. Note that D∗ = Dk when we set k = 1.
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be the head node above it and Hk.down the head node below it. To update Hk and b, we
have two cases depending on D(u)old.

1. If D(u)old 6= Hk.degree, we do not need to update Hk or b; and

2. If D(u)old = Hk.degree, there are two subcases according to b. If b = 1 before the
update, we set Hk as Hk.up, and set b to the number of vertices in the linked list
whose head is the updated Hk. If b > 1 before the update, we do not update Hk but
we decrease b by 1.

Similarly, if D(u) of a vertex u decreases by 1, to update Hk and b, we have three cases
depending on D(u)old.

1. If D(u)old < Hk.degree or D(u)old > Hk.degree+1, we do not need to update Hk and
b;

2. If D(u)old = Hk.degree+ 1, we do not update Hk but we increase b by 1; and

3. If D(u) = Hk.degree, there are two subcases. If b = Hk.num before the update, we
set Hk as Hk.down and set b = 1. If b < Hk.num before the update, we do not update
Hk or b.

Clearly, the updates on Hk and b only take O(1) time when D(u) changes by 1 for a
vertex u. After the maintenance, Dk = Hk.degree.

When a poll sample is updated/inserted/deleted, D(u) changes at most by 1 for each u.
We need Ω(1) time to update its inverted index and only O(1) time to update the linked
list data structure, Hk and b. Thus, maintaining the Linked List and the value of Dk do
not increase the complexity of updating poll samples. Moreover, every time when we need
to know the value of Dk, we just need O(1) time to retrieve it.

3.8 Experiments

In this section, we report a series of experiments on five real networks to verify our algorithms
and our theoretical analysis. The experimental results demonstrate that our algorithms are
both effective and efficient.

3.8.1 Experimental Settings

We ran our experiments on five real network data sets that are publicly available on-
line (http://konect.uni-koblenz.de/networks/, http://www.cs.ubc.ca/~welu/ and
http://konect.uni-koblenz.de). Table 4.3 shows the statistics of the five data sets.

To simulate dynamic networks, for each data set, we randomly partitioned all edges
exclusively into 3 groups: E1 (85% of the edges), E2 (5% of the edges) and E3 (10% of the
edges). We used B = 〈V,E1 ∪E2〉 as the base network. E2 and E3 were used to simulate a
stream of updates.
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Table 3.2: The statistics of the data sets.

Network #Vertices #Edges Average degree
wiki-Vote 7,115 103,689 14.6
Flixster 99,053 977,738 9.9
soc-Pokec 1,632,803 30,622,564 18.8

flickr-growth 2,302,925 33,140,018 14.4
Twitter 41,652,230 1,468,365,182 35.3

For the LT model, for each edge (u, v) in the base network, we set the weight to be 1.
For each edge (u, v) ∈ E3, we generated a weight increase update (u, v,+, 1) (timestamps
ignored at this time). For each edge (u, v) ∈ E2, we generated one weight decrease update
(u, v,−,∆) and one weight increase update (u, v,+,∆) where ∆ was picked uniformly at
random in [0, 1]. We randomly shuffled those updates to form an update stream by adding
random time stamps. For each data set, we generated 10 different instances of the base
network and update stream, and thus ran the experiments 10 times. Note that for the 10
instances, although the base networks and update streams are different, the final snapshots
of them are identical to the data set itself.

For the IC model, we first assigned propagation probabilities of edges in the final snap-
shot, i.e. the whole graph. We set wuv = 1

in-degree(v) , where in-degree(v) is the number of
in-neighbors of v in the whole graph. Then, for each edge (u, v) in the base network, we
set wuv to 1

in-degree(v) . For each edge (u, v) ∈ E3, we generated a weight increase update
(u, v,+, 1

in-degree(v)) (timestamps ignored at this time). For each edge (u, v) ∈ E2, we gen-
erated one weight decrease update (u, v,−,∆ 1

in-degree(v)) and one weight increase update
(u, v,+,∆ 1

in-degree(v)) where ∆ was picked uniformly at random in [0, 1]. We randomly shuf-
fled those updates to form an update stream by adding random time stamps. For each
dataset we also generated 10 instances.

For the parameters of tracking vertices of influence at least T , we set ε = 0.0002,
δ = 0.001, and T = 0.001× n for the first four data sets. We set ε = 0.001, δ = 0.001, and
T = 0.005×n for the twitter data set. For the top-k influential vertices tracking task where
we control an absolute error, we set k = 50, δ = 0.001, and ε = 0.0005 for first four data
sets. We set k = 100, δ = 0.001, and ε = 0.0025 for the twitter data set. The reason we have
different parameter settings for the twitter data is that it has more influential vertices than
other networks. For the top-k influential vertices tracking task where we control a relative
error, we set k = 50, δ = 0.001, and ε = 0.1 which means the relative error rate controlled
by our algorithm is roughly 36.5% according to Theorem 6.

All algorithms were implemented in Java and ran on a Linux machine of an Intel Xeon
2.00GHz CPU and 1TB main memory.
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Table 3.3: Recall and Maximum Error of the Thresholding Task. The errors are measured
in absolute influence value. “w.h.p.” is short for “with high probability”.

wiki-Vote
Theoretical Value (w.h.p.) Ave.±SD (LT) Ave.±SD (IC)

Recall 100% 100%±0 100%±0
Max. Error 0.0002 ∗ 7115 = 1.423 0.758±0.033 0.814±0.013

Flixster
Theoretical Value (w.h.p.) Ave.±SD (LT) Ave.±SD (IC)

Recall 100% 100%±0 100%±0
Max. Error 0.0002 ∗ 99053 = 19.81 10.81±0.46 11.79±0.85

3.8.2 Thresholding Task

We report the experimental results of the thresholding task.

Effectiveness

First, we assess the effectiveness. A challenge in evaluating the effectiveness of our algorithms
is that the ground truth is hard to obtain. The existing literature of influence maximiza-
tion [54, 19, 44, 104, 103, 26] always use the influence spread estimated by 20,000 times
Monte Carlo (MC) simulations as the ground truth. However, such a method is not suitable
for our tasks, because the ranking of vertices really matters here. Even 20,000 times MC
simulations may not be able to distinguish vertices with close influence spread. As a result,
the ranking of vertices may differ much from the real ranking. Moreover, the effectiveness of
our algorithms has theoretical guarantees while 20,000 times MC simulations is essentially
a heuristic. It is not reasonable to verify an algorithm with a theoretical guarantee using
the results obtained by a heuristic method without any quality guarantees.

In our experiments, we only used wiki-Vote and Flixster to run MC simulations and
compare the results to those produced by our algorithms. We used 2,000,000 times MC
simulations as the (pseudo) ground truth in the hope we can get more accurate results.
According to our experiments, even so many MC simulations may generate slightly different
rankings of vertices in two different runs but the difference is acceptably small.

Table 3.3 reports the recall of the sets of influential vertices returned by our algorithms
and the maximum errors of the false positive vertices in absolute influence value. Ave.±SD
represents the average value and the standard deviation of a measurement on 10 instances.
Our methods achieved 100% recall every time as guaranteed theoretically. Moreover, the
real errors in influence were substantially smaller than the maximum error bound provided
by our theoretical analysis. One may ask why we do not report the precision here. We argue
that precision is indeed not a proper measure for our tasks when 100% recall is required.
Since we can only estimate influence spreads of vertices via a sampling method due to the
exact computation being #P-hard, if two vertices have close influence spreads, say Iu = 100
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and Iv = 99, it is hard for a sampling method to tell the difference between Iu and Iv.
Thus, if there are many vertices whose influence spreads are just slightly smaller than the
threshold, it is hard to achieve a high precision when ensuring 100% recall. Moreover, with
a high probability, our method guarantees that influence spreads of false positive vertices
are not far away from the real threshold. Such small errors are completely acceptable in
many real applications.

For the three large data sets, we did not run 2,000,000 times MC simulations to obtain
the pseudo ground truth since the MC simulations are too costly. Instead, we compare the
similarity between the results generated by different instances. Recall that the final snap-
shots of the 10 instances are the same. If the sets of influential vertices at the final snapshots
of the 10 instances are similar, at least our algorithms are stable, that is, insensitive to the
order of updates. To measure the similarity between two sets of influential vertices, we
adopted the Jaccard similarity.

Fig. 3.4 shows the results where I1, . . . , I10 represent the results of the first, . . . , tenth
instances, respectively. We also ran the sampling algorithm directly on the final snapshot,
that is, we computed the influential vertices directly from the final snapshot using sampling
without any updates. The result is denoted by ST. The results show that the outcomes from
different instances are very similar, and they are similar to the outcome from ST, too. The
minimum similarity in all cases is 87%.

Scalability

Fig. 3.5 shows the average running time with respect to the number of updates processed.
The average is taken on the running times of the 10 instances. The time spent when the
number of updates is 0 reflects the computational cost of running the sampling algorithm
on the base network.

For the LT model, our algorithm scales up roughly linearly. For the IC model, the
running time increases more than linear. This is due to our experimental settings. For the
LT model, the sum of propagation probabilities from all in-neighbors of a vertex is always
1, while in the IC model, at the beginning the sum of propagation probabilities from all
in-neighbors is roughly 0.9 but becomes 1 finally. Thus, the spreads of vertices change more
dramatically in the IC model than in the LT model.

3.8.3 Top-K Task

We report the experimental results of the task of tracking top-k influential vertices.

Effectiveness

We still use the two small datasets, wiki-Vote and Flixster to verify the provable quality
guarantees of our algorithms. Table 3.4 reports the recall of the sets of influential vertices
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Figure 3.4: Similarity among results in different instances. (Thresholding Task)

returned by our algorithms and the maximum errors of the false positive vertices in ab-
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Table 3.4: Recall and Maximum Error of the Top-k Task. “AE” denotes the method con-
trolling absolute errors and “RE” denotes the method controlling relative errors. “w.h.p.”
is short for “with high probability”.

wiki-Vote
Theoretical Value (w.h.p.) Ave.±SD (LT) Ave.±SD (IC)

Recall (AE) 100% 100%±0 100%±0
Max. Error (AE) 0.0005 ∗ 7115 = 3.558 1.854±0.080 1.872±0.090

Recall (RE) 100% 100%±0 100%±0
Max. Error Rate (RE) 36.5% 18.4%±0.97% 18.5%±1.17%

Flixster
Theoretical Value (w.h.p.) Ave.±SD (LT) Ave.±SD (IC)

Recall (AE) 100% 100%±0 100%±0
Max. Error (AE) 0.0005 ∗ 99053 = 49.53 27.77±0.87 27.17±0.56

Recall (RE) 100% 100%±0 100%±0
Max. Error Rate (RE) 36.5% 20.2%±0.90% 19.9%±0.51%

solute influence value. Again, our methods achieved 100% recall every time as guaranteed
theoretically, and the real errors in influence were substantially smaller than the maximum
error bound provided by our theoretical analysis.

We also use the three large datasets to test Jaccard similarities between results ob-
tained by running our algorithms on different instances. Fig. 3.6 and Fig. 3.7 show the
results. Again, the outcomes from different instances are very similar, because the mini-
mum similarity in all case is above 90%.

Efficiency

In Fig. 3.8, we report the average processing time of our algorithms with respect to the
number of edge updates, where the average is taken over the results of the 10 instances.
“RE IC” (RE is short for relative error) is our method in Section 3.6 under the IC model,
while “AE IC” (AE is short for absolute error) stands for the method in Section 3.5 under
the IC model.

In all cases, our methods controlling relative errors handles the whole update stream
in substantially shorter time than our methods controlling absolute errors. Our algorithms
under the LT model scales up roughly linearly. Under the IC model the running time
sometimes increases more than linear. Still, this is caused by our experimental settings of
the LT model and the IC model as illustrated in Section 3.8.2.

We also demonstrate the limitations of controlling maxu∈S Ik − Iu as an absolute error,
where S is the set of vertices mined by Algorithm 5. Fig. 3.9 shows how the value Ik varies
over time, and so does the theoretically maximum error maxu∈S Ik−Iu

n over time. The value
of Ikn is estimated by Dk1

|R1| .
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Figure 3.6: Similarity among results in different instances. (Top-k Task with Absolute Er-
rors)
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Figure 3.7: Similarity among results in different instances. (Top-k Task with Relative Errors)
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Figure 3.8: Scalability (Tracking Top-k Influential Vertices).

The maximum error of the algorithm RE is either only a little bigger or smaller than
the maximum error of the algorithm AE. Moreover, we find that the value of Ikn varies over
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Table 3.5: Running time (s) on static networks.

Dataset #Updates LT IC
Total ST Total ST

wiki-Vote 2.1× 104 11.3 2.3 29.3 8.2
Flixster 2.2× 105 266 28 522 85
soc-Pokec 6.4× 106 3165 311 4461 735

flickr-growth 7.8× 106 1908 201 3223 935
Twitter 3.0× 108 15369 375 19803 4770

time, especially under the IC model. In Fig. 3.9 (c), (d) and (e), sometimes the error of
the algorithm AE is even greater than Ik

n , which makes the result meaningless because all
vertices are returned as influential vertices. This demonstrates the advantage of our method
controlling relative errors over our method controlling absolute errors.

3.8.4 Comparison with Simple Heuristics and Static Algorithms

One may wonder if we can apply simple heuristics to extract influential vertices in a social
network. Thus, we adopted two simple heuristics, degree and PageRank, as baselines to
compared to our algorithms w.r.t. effectiveness. These two simple heuristics just use vertices’
degrees in the social network and PageRank values as proxies of influence spread. Note that
these two heuristics cannot solve the threshold based influential vertices mining problem
because they do not know the real or the approximate influence spread of each vertex.

To compare our algorithms with degree and PageRank heuristics, we report the recall
of the top ranked vertices obtained by each method on wiki-Vote and Flixster data sets in
Fig 3.10. Vertices ranking by 2,000,000 times Monte Carlo simulations is regarded as the
(pseudo) ground truth. The measure Recall@N is calculated by TPN

N , where TPN is the
number of vertices ranked top-N by both our algorithms and the ground truth. The results
show that the rankings of the top vertices generated by our algorithms constantly have very
good quality, while the two heuristics sometimes perform well but sometimes return really
poor rankings. Moreover, performance of a heuristic algorithm is not predictable.

By conducting the task of tracking top-k influential vertices with relative errors, we
test running time of the static algorithm (ST) that runs our sampling algorithm on every
snapshots of a dynamic network. Table 3.5 compares the running time of ST on the last
snapshot, and the total time (denoted by “Total”) that our algorithm generates a polling
sketch on the base network and deals with the whole update stream. In Table 3.5, the
running time of Total is at most 40 times longer than that of ST. Thus, if we re-generate
a polling sketch from scratch every time when the network updates, we probably can only
deal with tens of updates within the same time as Total spends on all updates. However,
the number of total updates is huge, tens of thousands or even hundreds of millions. This
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Figure 3.10: Recall@N

indicates that the non-incremental algorithm (re-generate a polling sketch from scratch
when the network updates) is not competitive at all.

3.8.5 Memory Usage with respect to Input Size

We also report the memory usage of our algorithm against the increase of the input graph
size. Since the task of mining top-k influential vertices with absolute errors usually requires
the most memory usage, we only report results of this task. We used the second largest
data set, flickr-growth network, to generate some smaller networks. Specifically, we sampled
20%, 40%, 60% and 80% vertices and extract the induced subgraphs. For each sample
rate, we sampled 10 subgraphs and for each subgraph we generated a base network and an
update stream as we described in Section 3.8.1. We ran the top-k influential vertices mining
algorithm on those generated data. Fig. 3.11 reports the average memory storing the input
graph and the average peak memory usage of the poll samples against the sample rate. The
results show that the size of sampled graph increases super-linearly while the memory of
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Figure 3.11: Memory Usage

poll samples increases roughly linearly as the sample rate increases. Fig. 3.11 also shows
that the average peak memory used by the poll samples increases sub-linearly as the input
graph size increases.

3.9 Conclusions

In this chapter, we proposed novel, effective and efficient polling-based algorithms for track-
ing influential individual vertices in dynamic networks under the Linear Threshold model
and the Independent Cascade model. We modeled dynamics in a network as a stream of
edge weight updates. We devised an efficient incremental algorithm for updating poll sam-
ples against network changes. For two interesting settings of influential vertices tracking,
namely, tracking vertices with influence above a given threshold and tracking top-k influ-
ential vertices, we derived the number of poll samples we need to approximate the exact
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set of influential vertices. We reported a series of experiments on five real networks and
demonstrated the effectiveness and efficiency of our algorithms.

There are a few interesting directions for future work. For example, can we apply similar
techniques to other influence models such as the Continuous-Time Diffusion Model [35]?
Since the Continuous-Time Diffusion model has an implicit time constraint, how to effi-
ciently update poll samples according to the time constraint is a critical challenge. Par-
allelizing our methods in large distributed systems is also an interesting future direction.
Moreover, how to deal with influence maximization queries in a dynamic social network is
worth exploring, since the theoretically sound method [84] is not practical due to the large
number of poll samples it needs.
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Chapter 4

Budget Allocation for Influence
Maximization

Imagine we are introducing a new product through a social network, where we know for each
user in the network the function of purchase probability with respect to discount. Then,
what discount should we offer to those social network users so that, under a predefined
budget, the adoption of the product is maximized in expectation? Although influence max-
imization has been extensively explored, surprisingly, this appealing practical problem still
cannot be answered by the existing influence maximization methods. In this chapter, we
tackle the problem systematically. We formulate the general continuous influence maximiza-
tion problem, investigate the essential properties, and develop a general coordinate descent
algorithmic framework as well as the engineering techniques for practical implementation.
Our investigation does not assume any specific propagation model and thus is general and
principled. At the same time, using the most popularly adopted triggering models as a
concrete example, we demonstrate that more efficient methods are feasible under specific
propagation models. Our extensive empirical study on four benchmark real world networks
with synthesized purchase probability curves clearly illustrates that continuous influence
maximization can improve influence spread significantly with very moderate extra running
time comparing to the classical influence maximization methods.

4.1 Introduction

Influence maximization [33, 54] is a critical technique in many social network applications,
such as viral marketing. The intuition is that, by targeting on only a small number of vertices
(called seed vertices), it is possible to trigger a large cascade of information spreading in a
social network. Technically, in a social network, influence maximization tries to identify a set
of vertices such that if the selected vertices are committed to spread a piece of information
to their neighbors, such as adopting a product, the expected spread in the social network

52



is maximized. There have been abundant studies on various models and computational
methods for influence maximization, which are reviewed in Chapter 2.

Imagine a company is introducing a new product through a social network by provid-
ing discounts to users in the network in the hope of maximizing the influence spread. The
total discount is constrained by a budget defined by the company. It is well known that
different users in a social network may have a different capability in spreading influence.
Consequently, the company naturally wants to offer different users different discounts. It is
reasonable to assume that the more discount a user is offered, the more likely the user may
adopt the product and spread the influence to her neighbors, which is also known in market-
ing research as the purchase probability curve being monotonic with respect to discount [58].
At the same time, different users may have different purchase probability curves. Given a
budget and the users’ purchase probability curves, what discounts should the company of-
fer to the users so that the expected influence spread is maximized? Apparently, this is an
interesting question that is asked again and again in various applications where influence
maximization is used. At the same time, unfortunately the existing influence maximization
techniques cannot answer the question.

Motivated by the practical demands, we investigate the questions about what discounts
we should offer to social network users. In general, given a social network, a budget, and,
for each user in the network, the seed probability function on discount (corresponding to
the purchase probability curve with respect to discount in the above motivation example),
the continuous influence maximization problem is to find the optimal configuration, which
consists of a discount rate for each user, that maximizes the influence spread in expectation.
We make several contributions in this chapter.

First, to the best of our knowledge, we are the first to systematically study the prob-
lem of continuous influence maximization that utilizes users’ purchase probability curves,
which has significant applications in practice. We show that the continuous influence max-
imization problem is a generalization of influence maximization, which focuses on discrete
configurations. Consequently, we investigate the hardness of the problem, and analyze sev-
eral essential properties of the problem. We do not assume any specific propagation model,
and thus all properties explored are general.

Second, we develop a general coordinate descent framework for the general continu-
ous influence maximization problem. Again, this algorithm does not assume any specific
propagation model. Such a coordinate descent algorithmic framework helps us prove some
interesting connections of the CIM problem to the traditional influence maximization prob-
lem.

Third, we devise practically efficient implementations of our CIM algorithm for specific
propagation models. We consider triggering models [54], which contain most popularly used
propagation models like the Independent Cascade model and the linear threshold model
in literature. We make an analogy of polling-based influence maximization algorithm [10]
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and machine learning, and develop effective algorithms also based on polling that avoid the
“overfitting” issue.

Last, we report an extensive empirical evaluation using four benchmark real social net-
work data sets with synthesized purchase probability curves. The largest data set has almost
4 million vertices and 70 million edges. The experiment results clearly show that continuous
influence maximization can significantly improve influence spread. At the same time, the
extra running time remains moderate.

The rest of the chapter is organized as follows. We formulate the problem of continuous
influence maximization in Section 4.2. In Section 4.3, we investigate the properties of the
expectation of influence spread. We present the general coordinate descent framework and
discuss how to find a good initial configuration for running the coordinate descent frame-
work in Section 4.4. We study in Section 4.5 the relationship between continuous influence
maximization developed in this chapter and the existing influence maximization problem.
In Section 4.6, we develop algorithms under the triggering models and carefully analyze
the “overfitting” issue and how to avoid it. We report an extensive empirical evaluation in
Section 4.7, and conclude the chapter in Section 4.8.

4.2 Problem Definition

A social network is a graph G = 〈V,E〉, where V is a set of users and E is a set of
relationships between users. Denote by n = |V | the number of users and m = |E| the
number of relationships, that is, edges.

An influence propagation model (propagation model for short) describes the process of
how influence is cascaded in a social network. Two most widely used propagation models are
the independent cascade model and the linear threshold model [54]. In an influence cascade
process, a cascade is started by a small number of users, whom we call seed users (or seeds
for short). We call the set of seed users the seed set, denoted by S. Every propagation
model has an influence function I : 2V → R, where I(S) is the expected size of the cascade
triggered by the seed set S and is also called the influence spread of S. Usually, I(S) is
assumed monotonic and submodular [54, 73], which capture the intuition about influence
spreading.

In this chapter, we are interested in customizing a discount for every user in a social
network to maximize influence cascading. With a discount of 0%, a user has to pay the full
price. With a discount of 100%, the product is free for the user. Please note that the notion
of discount here can also be used to model in general the cost that we would like to pay to
a user to turn the user into a seed.

Technically, a user u ∈ V is associated with a seed probability function pu : [0, 1]→ [0, 1],
which models the probabilistic distribution that u is attracted to become a seed user given
a discount between 0% to 100%. Denote by cu the discount we offer to u. Then, pu(cu) is the
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probability that u becomes a seed user given such a discount. In this chapter, we assume that
a seed probability function pu(·) has the following properties: (1) pu(0) = 0; (2) pu(1) = 1;
(3) pu(cu) is monotonic with respect to cu; and (4) pu(cu) is continuously differentiable.
Conditions (1) and (2) are also assumed in the classical influence maximization problem.

The existing marketing research [12, 98] estimates user purchase probability, where the
focus is on the adoption rate of the whole population rather than each individual, and esti-
mations are on specific goods. In reality, a user’s purchasing behavior may change over time
and on different types of goods [24]. Thus, the best way to decide a user’s seed probability
function (purchase probability curve) is to learn from data. Since seed probability functions
can take many different forms, it is crucial to design a general marketing method that can
handle all kinds of such functions.

We assume that different users become seed users independently. Denote by an n-
dimensional vector C = (c1, ..., cn) a configuration of discounts assigned to all users in
G. It is clear that, unlike the situation in the influence maximization problem, the seed
set S in our problem setting is probabilistic. Given a social network G = 〈V,E〉 and a
configuration C, the probability that a subset S ⊆ V of users is the seed set is

Pr(S;V,C) =
∏
u∈S

pu(cu)
∏

v∈V \S
(1− pv(cv)) (4.1)

For a specific propagation model with an influence function I(S), the expected influence
spread is

UI(C) =
∑
S∈2V

Pr(S;V,C)I(S) (4.2)

Now we define the continuous influence maximization problem (CIM for short) studied
in this chapter as follows. Given a social network G = 〈V,E〉, a budget B, a seed probability
function pu(cu) for every user u, and an propagation model with an influence function I(S),
find the configuration C that is the optimal solution to the following continuous optimization
problem.

maximize UI(C)

s.t. 0 ≤ cu ≤ 1, ∀u ∈ V∑
u∈V

cu ≤ B
(4.3)

We call a configuration satisfying the constraints in Eq. 4.3 a feasible configuration. Please
note that the budget B here is a safe budget in general. When discounts here are used to
model the costs committed to users, the budget models the total cost. When discounts are
explained as discount rates, the budget is the worst-case budget. We leave the exploration
of other forms of the budget constraint to future work, such as the expected budget under
the discount rate explanation.
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Table 4.1: Frequently used notations.

Notation Description
G = 〈V,E〉 Social network G, where V is the set of users and E is the set

of relationships
n = |V | The number of vertices in G
m = |E| The number of edges in G
pu(cu) The probability that u becomes a seed user if u is offered a

discount cu
C = (c1, c2, ..., cn) A configuration, where cu (0 ≤ cu ≤ 1) is the discount offered

to user u
Pr(S;V,C) The probability of a subset of users S ⊆ V is the seed set S

(Eq. 4.1)
UI(C) The expected influence spread caused by configuration C

(Eq. 4.2)
H = {h1, h2..., hmH} A polling sketch which contains mH poll samples

The classical influence maximization problem is a special case of the continuous influence
maximization problem, since it can be written in a similar way as follows.

maximize UI(C)

s.t. cu = 0 or cu = 1,∀u ∈ V∑
u∈V

cu ≤ B
(4.4)

We call a configuration satisfying the constraints in Eq. 4.4 an integer configuration. Ap-
parently, an integer configuration is also a feasible configuration.

In the rest of the chapter, for the sake of clarity, we also call the classical influence max-
imization problem discrete influence maximization (DIM for short). Table 4.1 summarizes
the frequently used notations.

4.3 Expected Influence Spread

The CIM problem is to optimize the expected influence spread UI(C). In this section, we
discuss the computation of UI(C) and the monotonicity of UI(C), which prepare us for the
solution development in the next sections.

4.3.1 Computing UI(C)

Given G = 〈V,E〉, an influence function I(S), and a seed probability function pu(cu) for
every u ∈ V , how can we obtain UI(C)? It is known that, for many popular propagation
models, computing I(S) is #P-hard [19, 21]. What is the hardness of computing UI(C)?
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Theorem 8 (Complexity). Given a configuration C, the problem of computing UI(C) =∑
S∈2V Pr(S;V,C)I(S) is #P-hard if computing I(S) is #P-hard.

Proof. We prove by a simple reduction from computing I(S). For any S, we can make
a configuration C such that cu = 1 if u ∈ S and cu = 0 otherwise. Clearly we have
UI(C) = I(S). Thus, if computing I(S) is #P-hard, so is computing UI(C).

Since UI(C) is the expectation of I(S) over the random variable S, we can use Monte
Carlo simulations to estimate UI(C). Because every user becomes a seed user independently,
randomly generating a seed set S based on Pr(S;V,C) is equivalent to simply adding each
user u to S independently with probability pu(cu). We have the following result.

Theorem 9 ((ε, δ) estimation). Suppose we have an influence spread oracle that can re-
turn the influence spread I(S) of a given seed set S. By calling the influence spread oracle

n2 ln 2
δ

2ε2(
∑

u∈V pc(cu))2 times, we can have an (ε, δ) estimation [72] of UI(C).

Proof. Recall that UI(C) = ∑
S∈2V Pr(S;V,C)I(S). ∀S ∈ 2V , we have 0 ≤ I(S) ≤ n. We

can estimate UI(C) by a Monte Carlo method. By applying the Hoeffding bound, we have

Pr(|ÛI(C)− UI(C)| ≥ εUI(C)) ≤ 2e−
2R2ε2UI2(C)

Rn2 ,

where R is the number of MC simulations. Since UI(C) ≥∑u∈V pu(cu), to achieve the goal
that Pr(|ÛI(C)− UI(C)| ≥ εUI(C)) ≤ δ, we can set R ≥ n2 ln 2

δ

2ε2(
∑

u∈V pu(cu))2 .

As mentioned before, computing I(S) is #P-hard for some influence functions. The good
news is that there exists a FPRAS1 [72, 68] for estimating I(S). We prove that if I(S) can
be estimated efficiently, so is UI(C). Similar to influence maximization where the number of
seeds B is assumed to be Ω(1), we assume that the expected number of seeds ∑u∈V pu(cu)
is also Ω(1). Moreover, as we will analyze in Corollary 13.3, if the expected number of seeds∑
u∈V pu(cu) is too small, such a configuration cannot make a high influence and we are not

interested in it if we try to maximize UI(C).

Theorem 10 (FPRAS estimation). For an influence function I(·), if there is a FPRAS
for estimating I(·), there is a FPRAS for estimating UI(·).

Proof. If there is a FPRAS for estimating I(S), in O(POLY( nε′ ln 1
δ′ )) time we can ob-

tain an (ε′, δ′) approximation of I(S). If we set δ′ = δ1
O(POLY( n

ε′ ln 1
δ1

)) , the time we need is

O(POLY( nε′ ln
O(POLY( n

ε′ ln 1
δ1

))
δ1

)) = O(POLY( nε′ ln 1
δ1

)).

1An FPRAS (Fully Polynomial Randomized Approximation Scheme) is an algorithm which returns an
(ε, δ) estimation of the desired value in time polynomial to n (size of input), 1

ε
and ln 1

δ
.
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According to Theorem 9, if we can access the value of I(S), we can have an (ε′, δ1)
approximation of UI(C) by calling the oracle O(POLY( nε′ ln 1

δ1
)) times. Suppose R =

O(POLY( nε′ ln 1
δ1

)), and we have R randomly generated seed sets {S1, ..., SR}. Let ÛI(C) =∑R
i=1 I(Si), Î(Si) be the estimation of I(Si) obtained by the FPRAS in O(POLY( nε′ ln 1

δ1
))

time, and ̂̂
UI(C) = ∑R

i=1 Î(Si). Clearly, Pr{|ÛI(C) − UI(C)| > ε′UI(C)} < δ1, and
Pr{| ̂̂UI(C) − ÛI(C)| > ε′ÛI(C)} < δ1 (by Union Bound). Applying the union bound,
we have that Pr{| ̂̂UI(C)− UI(C)| < ε′(2 + ε′)UI(C)} > 1− 2δ1.

Setting ε′(2 + ε′) = ε and 2δ1 = δ, which means ε′ =
√

1 + ε − 1 and δ1 = δ
2 , we

can obtain an (ε, δ) approximation of UI(C) in O(POLY( nε′ ln 1
δ1

)) × O(POLY( nε′ ln 1
δ1

)) =
O(POLY( nε′ ln 1

δ1
)) time. Note that 1

ε′ = 1√
1+ε−1 =

√
ε+1+1
ε ≤ 3

ε = O(1
ε ), and ln 1

δ1
= O(ln 1

δ ).
So in O(POLY(nε ln 1

δ )) time we can have an (ε, δ) approximation of UI(C).

For the two most popular propagation models, namely the independent cascade model
and the linear threshold model [54], computing I(S) has FPRAS [55]. Thus, UI(C) under
these two models can be efficiently estimated.

Corollary 10.1. Computing UI(C) under both the Independent Cascade model and the
Linear Threshold model admits a FPRAS, assuming

∑
u∈V pu(cu) ∈ Ω(1).

In summary, the results in this subsection establish that, as long as I(S) can be com-
puted/estimated efficiently (that is, in polynomial time), UI(C) can also be estimated
efficiently. This strong relation makes comparing two different configurations C1 and C2

computationally feasible, since we can efficiently estimate UI(C1) and UI(C2) accurately.

4.3.2 Monotonicity of UI(C)

Eq. 4.3 contains an inequality constraint ∑u∈V cu ≤ B. According to the assumption
that pu(cu) is monotonic with respect to cu, we can show that the inequality constraint∑
u∈V cu ≤ B can be substituted by an equation constraint ∑u∈V cu = B.

Lemma 9. Given configurations C1 = (c1
1, ..., c

1
n) and C2 = (c2

1, ..., c
2
n), if there exists u

(1 ≤ u ≤ n) such that c1
u ≥ c2

u, and ∀v ∈ V \ {u}, c1
v = c2

v, then UI(C1) ≥ UI(C2).

Proof. Because pu(cu) is monotonic with respect to cu, we have pu(c1
u) ≥ pu(c2

u). Thus,
pu(c1

u)− pu(c2
u) = α ≥ 0. We have

UI(C) =
∑

S∈2V \{u}
Pr(S;V \ {u}, C)I(S)[1− pu(cu)] +

∑
S∈2V \{u}

Pr(S;V \ {u}, C)I(S ∪ {u})pu(cu)
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Therefore,

UI(C1)− UI(C2)

=
∑

S∈2V \{u}
Pr(S;V \ {u}, C1)I(S ∪ {u})α −

∑
S∈2V \{u}

Pr(S;V \ {u}, C2)I(S)α

=
∑

S∈2V \{u}
αPr(S;V \ {u}, C2)[I(S ∪ {u})− I(S)]

Due to the monotonicity of I(S), I(S ∪ {u}) − I(S) ≥ 0 and UI(C1) − UI(C2) ≥ 0.
Thus, we have UI(C1) ≥ UI(C2).

For two configurations C1 = (c1
1, ..., c

1
n) and C2 = (c2

1, ..., c
2
n), we write C1 � C2 if ∀u,

c1
u ≥ c2

u. By the transitivity of ≥ and Lemma 9, we have the following immediately.

Theorem 11 (Monotonicity). If C1 � C2, then UI(C1) ≥ UI(C2).

According to Theorem 11, it is obvious that the optimal C for CIM (Eq. 4.3) must use
up the budget B. Thus, CIM can be rewritten as follows.

maximize UI(C)

s.t. 0 ≤ cu ≤ 1, ∀u ∈ V∑
u∈V

cu = B

(4.5)

4.4 A General Coordinate Descent Framework

In this section, we develop a coordinate descent algorithm to solve the continuous influence
maximization problem. Our algorithm is general, since we do not compose any constraints
on the specific form of the influence function I(S) and the seed probability function pu(cu).
We only assume that pu(cu) is monotonic and continuously differentiable.

4.4.1 Gradient

For a vertex u ∈ V , we can rewrite UI(C) as follows.

UI(C)

=
∑

S∈2V ∧u∈S
Pr(S;V,C)I(S) +

∑
S∈2V ∧u6∈S

Pr(S;V,C)I(S)

=
∑

S∈2V \{u}
Pr(S;V \ {u}, C)I(S)[1− pu(cu)]

+
∑

S∈2V \{u}
Pr(S;V \ {u}, C)I(S ∪ {u})pu(cu)

=pu(cu) ·
∑

S∈2V \{u}
Pr(S;V \ {u}, C)[I(S ∪ {u})− I(S)] + const
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where const is a constant with respect to cu. Given a graph G = 〈V,E〉 and influence
function I(S), for a vertex u ∈ V , Pr(S;V \ {u}, C), I(S) and I(S ∪ {u}) are constants
with respect to cu. Therefore, using a vertex u ∈ V we can rewrite the objective function
UI(C) into a linear function of pu(cu), where cu is the only variable.

Assuming that pu(cu) is continuously differentiable, we can take the partial derivative
of UI(C) with respect to cu, that is,

∂UI(C)
∂cu

= p
′
u(cu)

∑
S∈2V \{u}

Pr(S;V \ {u}, C)[I(S ∪ {u})− I(S)] (4.6)

In this way, we can compute the gradient of UI(C) with respect to a specific configuration C.
The gradient information will be used in the coordinate descent algorithm to be developed
next.

4.4.2 A Coordinate Descent Algorithm

The coordinate descent algorithm is an iterative algorithm. In each iteration, we pick only
two variables ci and cj , and fix the rest n− 2 variables. We try to increase the value of the
objective function UI(C) by changing only the values of ci and cj .

As stated in Eq. 4.5, ∑u∈V cu = B. Thus, when we fix cu for all u ∈ V \ {i, j},∑
u∈V \{i,j} cu is a constant. Let B′ = B−

∑
u∈V \{i,j} cu = ci+cj . In other words, cj = B′−ci.

Combining the other constraints 0 ≤ ci ≤ 1 and 0 ≤ cj ≤ 1 in Eq. 4.5, we have an equivalent
constraint max(0, B′ − 1) ≤ ci ≤ min(1, B′).

Thus, in each iteration, increasing UI(C) can be achieved by solving the following op-
timization problem.

maximize UI(C) with respect to ci and cj = B′ − ci
s.t. max(0, B′ − 1) ≤ ci ≤ min(1, B′)

(4.7)

To solve the above optimization problem, we further rewrite UI(C) by fixing cu for all
u ∈ V \ {i, j} and setting cj = B′ − ci. That is,

UI(C) =
∑

S∈2V \{i,j}
Pr(S;V \ {i, j}, C)

{
[1− pi(ci)][1− pj(B′ − ci)]I(S)

+ [1− pi(ci)]pj(B′ − ci)I(S ∪ {j})

+ [1− pj(B′ − ci)]pi(ci)I(S ∪ {i})

+ pi(ci)pj(B′ − ci)I(S ∪ {i, j})
}

(4.8)
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In Eq. 4.8, except for pi(ci) and pj(B′ − ci), all terms can be regarded as constants.
Therefore, we have a new form of UI(C) with respect to ci and cj = B′ − ci as follows.

UI(C) =(A1 +A2 −A3 −A4)pi(ci)pj(B′ − ci)

+ (A3 −A1)pi(ci) + (A4 −A1)pj(B′ − ci) + const,
(4.9)

where

A1 =
∑

S∈2V \{i,j}
Pr(S;V \ {i, j}, C)I(S)

A2 =
∑

S∈2V \{i,j}
Pr(S;V \ {i, j}, C)I(S ∪ {i, j})

A3 =
∑

S∈2V \{i,j}
Pr(S;V \ {i, j}, C)I(S ∪ {i})

A4 =
∑

S∈2V \{i,j}
Pr(S;V \ {i, j}, C)I(S ∪ {j})

(4.10)

In Eq. 4.9, UI(C) only has one variable ci. We take the derivative of UI(C), that is,

dUI(C)
dci

=(A1 +A2 −A3 −A4)[p′i(ci)pj(B′ − ci)

− pi(ci)p
′
j(B′ − ci)] + (A3 −A1)p′i(ci)

− (A4 −A1)p′j(B′ − ci)

(4.11)

Since pi(ci) and pj(B′−ci) are both continuously differentiable, the value ci ∈ [max(0, B′−
1),min(B′, 1)] that maximizes the objective function in Eq. 4.7 must be in one of the fol-
lowing three situations: (1) ci = max(0, B′ − 1); (2) ci = min(B′, 1); or (3) ci = x, where
x ∈ (max(0, B′ − 1),min(B′, 1)) and dUI(C)

dci |ci=x = 0. Thus, we only need to check these
three types of points and set ci to the one that results in the maximum value of UI(C) with
respect to ci and cj = B′ − ci.

Based on the above discussion, the pseudo-code of the coordinate descent algorithm for
solving the continuous influence maximization problem is given in Algorithm 8.

We do not assume any specific seed probability function pu(cu) and influence function
I(S). Thus, Algorithm 8 is a general framework for solving the continuous influence maxi-
mization problem.

In Line 3 of Algorithm 8, we do not specify which ci and cj should be picked. One
heuristic that may help here is to use the partial derivative ∂UI(C)

∂cu
as an indicator. For

example, we can pick a variable with a large partial derivative and another variable that
has a small partial derivative.

The convergence of Algorithm 8 is guaranteed by the following observations. First,
UI(C) ≤ n, where n is the number of vertices in the social network. Second, after each
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Algorithm 8 The Coordinate Descent Algorithm
Input: Budget B, social network G, seed probability function pu(cu), ∀u ∈ V , and influence

function (propagation model) I(S)
Output: Configuration C
1: Initialize C such that C satisfies constraints in Eq. 4.5
2: while not converge do
3: Pick two variables ci and cj
4: B′ ← ci + cj
5: Find all x ∈ (max(0, B′ − 1),min(B′, 1)) that

dUI(C)
dci |ci=x = 0

6: ci ← argmaxci∈{x,max(0,B′−1),min(1,B′)} UI(C)
7: cj ← B′ − ci
8: end while
9: return C

iteration in Algorithm 8, the updated configuration C ensures that the value of UI(C) is
at least as good as the previous one, that is, the value of UI(C) is non-decreasing.

Algorithm 8 approaches a stationary configuration as the limit, which is a necessary
condition for finding local optima [11]. Since the objective function UI(C) is not necessarily
convex or concave, even when the stationary point is a local optima, it may not be the global
optima (note that for non-concave functions, even finding a local maxima is NP-hard). At
the same time, because in each iteration the value of our objective cannot be decreased,
when taking a configuration C and applying Algorithm 8, we can always find a configuration
C ′ no worse than C.

4.4.3 Finding a Good Initial Configuration: Unified Discount Configura-
tion

To run Algorithm 8 effectively, we need a good initial configuration. A practical engineering
strategy to design discounts is to offer a unified discount to some users in a social network.
That means, for each vertex u in G, cu is either a predefined value c or 0. When c is fixed,
finding the optimal configuration C is to find the optimal set of users to offer each of them
discount c. Suppose we choose a set S of users to offer discounts, denote by Pr(S′;S, c) the
probability of generating a seed set S′ when the unified discount is c, that is,

Pr(S′;S, c) =
∏
u∈S′

pu(c)
∏

v∈S−S′
(1− pv(c)) (4.12)

We define UI(S; c) as the expected influence spread when we offer each user in S a
unified discount c. That is,

UI(S; c) =
∑
S′∈2S

Pr(S′;S, c)I(S′) (4.13)
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We observe the following nice property of UI(S; c) when c is fixed.

Theorem 12 (Monotonicity and submodularity). If I(S) is monotonic and submodular
with respect to S, then UI(S; c) is also monotonic and submodular with respect to S.

Proof. The monotonicity can be immediately proved using Theorem 11. Next, we show the
submodularity of UI(S; c).

Suppose we have two sets S1 and S2 such that S1 ∪ {v} = S2. Let u be a vertex such
that u /∈ S2. Then,

UI(S1 ∪ {u}; c)− UI(S1; c)

=
∑
S⊆S1

Pr(S;S1, c)
(
pu(c)I(S ∪ {u}) + (1− pu(c))I(S)

)
−
∑
S⊆S1

Pr(S;S1, c)I(S)

= pu(c)
∑
S⊆S1

Pr(S;S1, c)
(
I(S ∪ {u})− I(S)

)

We also have

UI(S2 ∪ {u}; c)− UI(S2; c)

=
∑
S∈2S1

Pr(S;S1, c)
(
pv(c)pu(c)I(S ∪ {u, v}) + pv(c)(1− pu(c))I(S ∪ {v}) +

pu(c)(1− pv(c))I(S ∪ {u}) + (1− pu(c))(1− pv(c))I(S)
)
−∑

S∈2S1

Pr(S;S1, c)
(
pv(c)I(S ∪ {v}) + (1− pv(c))I(S)

)

=
∑
S∈2S1

Pr(S;S1, c)
(
pu(c)pv(c)

(
I(S ∪ {u, v})− I(S ∪ {v})

)
+

pu(c)(1− pv(c))
(
I(S ∪ {u})− I(S)

))

Due to the submodularity of I(S), I(S∪{u, v})−I(S∪{v}) ≤ I(S∪{u})−I(S). Therefore,

UI(S1 ∪ {u}; c)− UI(S1; c)

≤
∑
S∈2S1

Pr(S;S1, c)
(
pu(c)pv(c)

(
I(S ∪ {u})− I(S)

)
+

pu(c)(1− pv(c))
(
I(S ∪ {u})− I(S)

))

= pu(c)
∑
S∈2S1

Pr(S;S1, c)
(
I(S ∪ {u})− I(S)

)
= UI(S1 ∪ {u}; c)− UI(S1; c)
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That is, we prove

UI(S1 ∪ {u}; c)− UI(S1; c) ≥ UI(S2 ∪ {u}; c)− UI(S2; c).

By a simple induction, we can show that, if S ⊆ T and u /∈ T , UI(S ∪ {u}; c)− UI(S; c) ≥
UI(T ∪ {u}; c)− UI(T ; c), which means UI(S; c) is submodular with respect to S.

The monotonicity and submodularity of UI(S; c) with respect to S imply that, when c is
fixed, we can apply a greedy algorithm to find a set of users Sc to offer discounts which can
cause influence spread at least (1− 1

e ) times of the influence spread caused by the optimal
set of users S∗c . In such a case, when the propagation model and seed probability function
for each user are given, some efficient influence maximization algorithms [65, 104, 103] can
be applied here.

One important problem is what unified discount rate c should we use. Since we have to
use up all budget due to the monotonicity of UI(C), to find the optimal c, we only need
to consider situations when c = B

dBe ,
B

dBe+1 , . . . ,
B
n , which means we only need to try O(n)

different values of c. To make the process of searching the optimal c even faster, we only try τ
different values in { B

dBe ,
B

dBe+1 , . . . ,
B
n }, where τ is a predefined constant. Algorithm 9 shows

the Unified Discount heuristic. The τ different values of c tested by Algorithm 9 distributed
roughly evenly in the range [Bn ,

B
dBe ]. The i-th possible value of c tested is around i

τ . We
usually set τ as a small constant like 20. In the following of this chapter, we will see that
setting a small τ can help avoid the “overfitting” issue. Moreover, our experimental results
will show that a small τ like 20 is enough to achieve a good performance in practice.

Algorithm 9 The Unified Discount Heuristic
Input: Budget B, social network G, seed probability function pu(cu), ∀u ∈ V , influence

function (propagation model) I(S) and τ
Output: Configuration C
1: C ← (0, 0, . . . , 0)
2: for i← 1 to τ do
3: c′ ← i/τ and k ← B/c
4: c← B/k
5: Apply the greedy algorithm to find Sc
6: Make C ′ = (c′1, c′2, . . . , c′n), where c′i = c if i ∈ Sc and c′i = 0 otherwise
7: if UI(C ′) > UI(C) then
8: C ← C ′

9: end if
10: end for
11: return C
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4.4.4 The Pool Setting

In real applications, instead of a complete purchase probability curve, sometimes we can
only access to the purchase probabilities of a user when she is offered certain discounts in a
prefixed discount pool P [116]. For example, for every user u ∈ V , we only have values of
pu(cu) when cu ∈ P = {5%, 10%, . . . , 100%}. We call this situation the Pool Setting of the
CIM problem. Correspondingly, we call the situation that we have the complete purchase
probability curves of all users the Curve Setting of the CIM problem.

Under the pool setting, we do not have the information of derivatives of purchase prob-
ability curves. We slightly modify Algorithm 8 by replacing Lines 5 and 6 by an exhaustive
search over cu ∈ [max(0, B′−1),min(1, B′)]∩P. Then, the termination condition in Line 2
indicating convergence becomes that we cannot find a pair of users i and j such that by
adjusting discounts allocated to them UI(C) can be further improved. To pick two variables
ci and cj to optimize in each iteration, one simple way is to use the Round-Robin method
where we try all possible O(n2) pairs of ci and cj in one batch, and keep iterating until the
objective UI(C) cannot be improved in a batch. In practice O(n2) may be too large to be
feasible. We can only consider vertices whose initial discounts are positive in iterations. In
such a case, in every batch we only need O(|S|2) pairs to optimize, where S contains all
vertices with positive initial discounts. As we will see in Section 4.6.3, restricting the size
of S is a good idea in practice because by doing so we can avoid the “overfitting” issue.
Therefore, |S|2 is usually not big in practice.

We also slightly modify the unified discount heuristic under the pool setting. Since we
can only set the unified discount c as one element from the discount pool P, it is possible
that B

c is not an integer so by offering the unified discount c we cannot use up the budget
B. In such a case we first greedily allocate c to bBc c users, and then allocate the rest budget
cl = B − bBc cc < c to the user in the rest users (who do not receive the unified discount c)
who can improve the influence spread the most 2.

Example 2. Fig. 4.1 is a toy example illustrating the differences between integer con-
figuration, unified discount configuration, and continuous configuration. In Figure 4.1, the
propagation model is the IC model and the propagation probabilities along edges are all set to
0.1. Suppose the seed probability functions for the vertices in this graph are all in the form of
pu(cu) = 2cu−c2

u, that is, the users are sensitive to discount. When B = 1, the optimal seed-
ing strategy for DIM is to choose vertex v1 as the single seed, which leads to the best integer
configuration is C1 = (1, 0, 0, 0, 0) and UI(C1) = 1.4. If we apply the unified discount strat-
egy by setting τ as 10, the best unified discount value is 0.2. Correspondingly the best unified
discount configuration is C2 = (0.2, 0.2, 0.2, 0.2, 0.2) and UI(C2) = 1.89216. If we apply the

2We assume cl is always in the discount pool P, which in reality is easy to be satisfied. For example, if
P = {1%, 2%, ..., 100%}, our assumption holds.
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Figure 4.1: An example illustrating the differences among integer configuration, unified
discount configuration and continuous configuration.

coordinate descent algorithm and set C2 = (0.2, 0.2, 0.2, 0.2, 0.2) as the initial value of config-
uration, we get a better continuous configuration C3 = (0.3831, 0.1542, 0.1542, 0.1542, 0.1542)
and UI(C3) = 1.93533.

4.5 CIM and DIM

In this section, we examine the relation between the continuous influence maximization
problem (CIM) studied in this chapter and the classical and well studied (discrete) influence
maximization problem (DIM). Surprisingly, our Coordinate Descent algorithm not only
provides us an algorithmic framework for the CIM problem, but also helps us derive relations
between CIM and DIM. All results in this section are obtained by utilizing our Coordinate
Descent algorithm as an essential building block.

Our first result is that, when the influence function I(S) and the seed probability func-
tion pu(cu) satisfy certain conditions, the continuous influence maximization problem and
the discrete influence maximization problem share the same optimal solution.

Theorem 13 (CIM and DIM). Given an influence function I(S) that is monotonic and
submodular, a budget B that is a positive integer, and a seed probability function pu(·) for
every vertex such that ∀u ∈ V,∀cu ∈ [0, 1], pu(cu) ≤ cu, the optimal objectives of CIM and
DIM are equivalent.

Proof. The major idea of our proof is to show that, for an arbitrary feasible configuration
C, there is an integer configuration C ′ such that UI(C ′) ≥ UI(C). As pu(cu) ≤ cu stated
in the theorem, we consider two cases.

First, we consider the situation where ∀u ∈ V, pu(cu) = cu. In such a case, UI(C) actually
can be regarded as a multilinear extension of the submodular influence spread function [13].
For any feasible configuration C, in Line 3 of Algorithm 8, if C contains a component ci
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that is not an integer, since B is an integer, C must contains another component cj (i 6= j)
such that cj is not an integer, either. Therefore, we can always pick non-integers ci and cj .
Then, we optimize over ci and cj by solving the optimization problem in Eq. 4.7. Due to
Eq. 4.9, we have

UI(C) =(A1 +A2 −A3 −A4)ci(B′ − ci)+

(A3 −A1)ci + (A4 −A1)(B′ − ci)

which is a quadratic form of ci and the coefficient of the quadratic term is −(A1 + A2 −
A3−A4). Since I(S) is submodular, we have I(S ∪{i, j})− I(S ∪{j}) ≤ I(S ∪{i})− I(S).
Thus, (A1 + A2 − A3 − A4) ≤ 0, which means UI(C) is a convex function with respect to
ci. Therefore, the value of x that makes dUI(C)

dci |ci=x = 0 is the global minimum. Since we
are interested in only the maximum, we can ignore the root of dUI(C)

dci = 0 completely. This
means that, after optimization, ci must be either max(0, B′ − 1) or min(B′, 1).

Let us examine the value of ci and cj after optimization under different situations of B′.
There are two possible cases.

• If B′ ≥ 1, then B′− 1 ≤ ci ≤ 1. After optimization over ci and cj , if ci = B′− 1, then
cj = 1. If ci = 1, then cj = B′ − 1.

• If B′ < 1, then 0 ≤ ci ≤ B′. After optimization over ci and cj , if ci = 0, then cj = B′.
If ci = B′, then cj = 0.

Thus, after optimization over ci and cj , at least one variable of ci and cj takes an
integer value. In other words, after one iteration we eliminate at least one non-integer cu.
Apparently, after at most n iterations we can make all cu’s integers. Since in every iteration
the objective function does not decrease, the final integer configuration C ′ can achieve
an influence spread no smaller than the initial configuration. Therefore, we only need to
consider integer configurations, which means CIM degenerates into DIM.

Second, we consider the situation when there exists at least one vertex u such that
pu(cu) < cu. In other words, we consider for each u, pu(cu) ≤ cu. Let p̄u(cu) be the seed
probability function such that for each u, p̄u(cu) = cu. Denote by UI(C) be the influence
spread using p̄u(cu) with respect to configuration C. For each u, due to the assumption
that p̄u(·) is continuous, we have c̄u such that pu(cu) = p̄u(c̄u) ≤ cu = p̄u(cu). Consider two
configurations C = (c1, . . . , cn) and C = (c̄1, . . . , c̄n). Clearly, C � C. Due to the mono-
tonicity of UI(C), we have UI(C) = UI(C) ≤ UI(C). As the first case, we already prove
that UI(C) has the same objectives in CIM and DIM when C is an integer configuration.
Note that for any integer configuration C, UI(C) = UI(C). Thus, the theorem holds in this
general case.
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Corollary 13.1. Given an influence function I(S) that is monotonic and submodular,
an integer budget B, if ∀u ∈ V,∀cu ∈ [0, 1], pu(cu) ≤ cu, then there exists an integer
configuration C that is optimal to CIM.

Theorem 13 also immediately indicates the complexity of the continuous influence max-
imization problem.

Corollary 13.2. If maximizing I(S) is NP-hard, and I(S) is monotonic and submodular,
then given a social network G = 〈V,E〉, a budget B and the seed probability function pu(cu)
for each u ∈ V , maximizing UI(C) over C is also NP-hard.

To further understand the significance of Theorem 13, we notice that the seed probability
function pu(cu) represents how user u is sensitive to discount cu. If ∀cu ∈ [0, 1] pu(cu) ≤ cu,
then user u is insensitive to discount. Theorem 13 indicates that, if all users in the network
are insensitive to discount, then we would better give free products to some seed users, that
is, setting cu = 1, to trigger a sizeable cascade propagation.

Utilizing the proof of Theorem 13, we have an upper bound of UI(C) given a configu-
ration C. Define an l-seed set a set of l seeds.

Corollary 13.3 (Upper Bound). Given an influence function I(S) that is monotonic and
submodular, and a discount configuration C. Suppose K = d∑u∈V pu(cu)e, then UI(C) ≤
I(S∗K) , where S∗K is the optimal K-seed set for DIM.

Proof. We prove this corollary by playing a trick of substituting seed probability functions.
Given C, we have the seed probability pu(cu) for every u ∈ V . We use notations in Sec-
tion 4.2, UI(C) and I(S), to denote the expected influence of a configuration C and the
influence of a seed set S under the setting that pu(cu) is the seed probability function of u
for every u ∈ V . Let C ′ = (p1(c1), p2(c2), . . . , pn(cn)) and with out loss of generality, assume∑
u∈V pu(cu) equals an integer K. Now, for every u ∈ V , we replace the seed probability

function of u by a new one, p′u(cu) = cu. Denote by ŨI(C ′) the expected influence of C ′, and
Ĩ(S) the influence spread of a seed set S, under the new seed probability function setting.
Clearly, ŨI(C ′) = UI(C). Also, Ĩ(S) = I(S) for every S ⊆ V . According to the proof of
Theorem 13, ŨI(C ′) is not optimal under the budget constraint B = ∑

u∈V p1(c1) = K

and ŨI(C ′) ≤ I ′(S∗K), where S∗K is the optimal K-seed set for the DIM problem. Thus,
UI(C) = ŨI(C ′) ≤ I ′(S∗K) = I(S∗K).

Given a budget B, we can solve the following optimization problem to get the maximum
expected number of seeds.

maximize
∑
u∈V

pu(cu)

s.t. 0 ≤ cu ≤ 1, ∀u ∈ V∑
u∈V

cu = B

(4.14)
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Since a seed probability function pu(cu) can be arbitrarily shaped, ∑u∈V pu(cu) can be
non-concave and non-convex. By assuming that the maximum of Eq. 4.14 is K, where K
is decided by seed probability functions of all vertices and B, we have a data dependent
approximation ratio of a DIM algorithm and our CIM algorithm (Algorithm 8).

Theorem 14 (Data-dependent approximation). Given an influence function I(S) that is
monotonic and submodular, and an integer budget B. Let K = maxC∈C d

∑
u∈V pu(cu)e,

where C = {C | 0 � C � 1, |C|1 = B}. If SB is a B-seed set that is α-optimal to the
DIM problem with budget B, then I(SB) ≥ αBKUI(C∗), where UI(C∗) = maxC∈C UI(C).
Moreover, if we take CB, the corresponding configuration to SB, as the initial value, then
Algorithm 8 is also αBK optimal.

Proof. Denote by S∗B and S∗K the optimal B-seed set and the optimalK-seed set for DIM. By
Corollary 13.3 and the monotonicity of I(S), we can immediately get that UI(C∗) ≤ I(S∗K).
We can run the greedy algorithm on S∗K to sort vertices in it. Suppose S∗K = {u1, u2, . . . , uK},
where ui is the i-th seed picked by the greedy algorithm. Let SBK = {u1, . . . , uB}. Due to
the submodularity of I(S) and the greedy algorithm, we have I(SBK) ≥ B

K I(S∗K). Obviously
I(S∗B) ≥ I(SBK). Thus, we have I(S∗B) ≥ B

K I(S∗K). Moreover, when we take CB, the corre-
sponding configuration of S∗B as the initial value for coordinate descent iterations, we can
find a configuration C◦ such that UI(C◦) ≥ UI(CB) = I(S∗B). Thus, Algorithm 8 is also
αBK -optimal.

Although under some conditions, CIM and DIM share the same optimal objectives, it
can be shown that in some situations it is not the case, particularly when some users are
sensitive to discount.

Example 3. Consider a social network G = 〈V,E〉 where E = ∅. In other words, G is
a graph of n isolated vertices. In the independent propagation model or the linear cascade
model, if the budget B = 1, and for each vertex u, the seed probability function pu(cu) = √cu,
then the optimal solution for discrete influence maximization is to pick an arbitrary vertex u
and the optimal influence spread is 1. However, the optimal solution to continuous influence
maximization is to assign 1

n discount to each vertex, and the optimal influence spread is
√
n. Thus, not only the optimal solution to discrete influence maximization is not optimal

to continuous influence maximization in some cases, but also such solutions to DIM can be
arbitrarily bad for CIM as the size of the network becomes very large.

It can be easily shown that CIM can always achieve an influence spread no smaller
than DIM. Given a budget B, one can first run a DIM algorithm to find a seed set of bBc
seeds. Then, by taking the corresponding integer configuration C of the seed set as the
initial configuration, after applying the coordinate descent algorithm, a configuration C ′

that UI(C ′) ≥ UI(C) can be found.
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4.6 Implementation of CIM under Triggering Models

All our discussion above assumes that we have an oracle that can return the exact I(S), the
influence spread of a given seed set S. However, under many propagation models, computing
I(S) is usually hard and often we can only have an approximation of I(S). This should be
considered in implementing our CIM algorithm under a specific propagation model.

In this section, we provide specific algorithms for continuous influence maximization
under triggering models [54], where the most widely used propagation models, such as the
Independent Cascade (IC) model [20, 19, 54, 104], the Linear Threshold (LT) model [54,
21, 44] and the Continuous-Time diffusion model [35] are all instances. We give a polling
based algorithm and discuss how to avoid the “overfitting” problem similar to the issue in
machine learning.

4.6.1 Practical Challenges for the Coordinate Descent Algorithm

We first discuss challenges in implementing our CIM algorithm under specific propagation
models. In the coordinate descent algorithm, we need to compute 3 coefficients, (A1 +A2−
A3 − A4), A3 − A1, and A4 − A1. Similar to UI(C), these three coefficients can only be
estimated by sampling techniques if computing I(S) is #P-hard. All the three coefficients
can be very close to 0. Consequently, estimating them may be very challenging.

To tackle the challenge, a practical trick is not to solve dUI(C)
dci |ci=x = 0. Instead, we can

estimate UI(C) directly by trying all possible values of ci ∈ [max(0, B′ − 1),min(B′, 1)].
This makes good sense in practice since a budget typically carries a minimum unit. For
example, if we want the absolute error of C to be up to 0.01, at most we only need to try
101 different values of ci because min(B′, 1)−max(0, B′ − 1) ≤ 1.

However, even the above trick may face serious challenges in some situations. A key
observation is that the gain obtained in an iteration of the coordinate descent algorithm is
limited.

Theorem 15 (Gain in an iteration). In the coordinate descent algorithm, let the configu-
ration before an iteration and that after the iteration be C and C1, respectively. Then, after
the iteration, we have

UI(C1)− UI(C)

≤ argmax
u∈V

∑
S∈2V \{u}

Pr(S;V \ {u}, C)
(
I(S ∪ {u})− I(S)

)
Proof. Suppose in this iteration ci and cj are picked for optimization. Clearly after op-
timization over ci and cj , if ci and cj change, then one of them increases and the other
decreases, because the sum of ci and cj remains a constant. Without loss of generality,
assume ci increases by α and pi(ci + α) − pi(ci) = β. Apparently, since 0 ≤ pi(ci) ≤ 1 and
pi(ci) is monotonic, β ≤ 1.
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Let C2 be a new configuration such that C2(j) = C1(j) + α and all other entries of C2

are identical to those in C1. Due to the monotonicity of UI(C), since C2 � C1, we have
UI(C2) ≥ UI(C1). Moreover,

UI(C2)− UI(C) = β
∑

S∈2V−{i}
Pr(S;V − {i}, C)

(
I(S ∪ {u})− I(S)

)
.

Therefore,

UI(C1)− UI(C) ≤ UI(C2)− UI(C)

≤
∑

S∈2V−{i}
Pr(S;V − {i}, C)

(
I(S ∪ {u})− I(S)

)
≤ argmax

u∈V

∑
S∈2V−{u}

Pr(S;V − {u}, C)
(
I(S ∪ {u})− I(S)

)

Theorem 15 indicates that sometimes the gain after one iteration in the coordinate
descent algorithm can be very small, because I(S ∪ {u}) − I(S) can be close to 0. If we
calculate UI(C) by Monte Carlo simulations, such sampling techniques may fail to de-
tect a very small difference between two highly similar configurations. This suggests that
algorithms like some traditional influence maximization algorithms [54, 65], where the opti-
mization and estimation (by Monte Carlo simulations) are conducted alternatively, are not
suitable for implementing the CIM algorithm. Thus, we turn to algorithms that generate
a sketch structure that can be used to estimate everything we need in the optimization
process before optimization. Specifically, we adopt a polling-based algorithm that will be
illustrated in the following of this section.

4.6.2 Polling-based CIM Algorithm

Based on the challenges of implementing CIM algorithms discussed above, we turn to al-
gorithms that generate a sketch structure that can be used to estimate everything we need
in the optimization process before optimization. Specifically, we adopt the polling sketch to
approximate influence spreads of configurations and we conduct optimization on the polling
sketch.

We first show how to approximate UI(C) by a polling sketch.

Theorem 16. Given a graph G = 〈V,E〉, a triggering model I where a propagation can
be simulated and the seed probability functions of all vertices, we generate a polling sketch
H with mH poll samples generated according to G and I. Then for a configuration C,
n∗fH(C)
mH

is an unbiased estimation of UI(C), where fH(C) = ∑
h∈H fh(C) and fh(C) =

1−∏u∈h (1− pu(cu)).
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Proof. By the definition of UI(C), we have

UI(C)
n

= 1
n

∑
S⊆V

Pr(S;V,C)I(S) =
∑
S⊆V

Pr(S;V,C)I(S)
n

For a triggering model, by randomly generating a poll sample h via a Monte Carlo simulation
of the reverse propagation process, we have that A(S, h) is an unbiased estimation of I(S)

n ,
where A(S, h) = 1 if S ∩ h 6= ∅, and A(S, h) = 0 otherwise. So E[A(S, h)] = I(S)

n and

UI(C)
n

=
∑
S⊆V

Pr(S;V,C)E[A(S, h)]

For the expectation E[A(S, h)], the randomness is over the random hyper edge h. Denote by
Pr(h) the probability of generating a poll sample h. So E[A(S, h)] = ∑

h⊆V Pr(h)A(S, h),
and we have

UI(C)
n

=
∑
S⊆V

Pr(S;V,C)
∑
h⊆V

Pr(h)A(S, h)

=
∑
h⊆V

Pr(h)
∑
S⊆V

Pr(S;V,C)A(S, h)

The sum ∑
S⊆V Pr(S;V,C)A(S, h) can be regarded as the expectation of A(S, h) when h

is fixed and S is randomly generated according to Pr(S;V,C). It is obvious that when
S ∩ h = ∅, Pr(S;V,C)A(S, h) = 0, and when S ∩ h 6= ∅, A(S, h) = 1. So

∑
S⊆V

Pr(S;V,C)A(S, h) =
∑

S⊆V,S∩h6=∅
Pr(S;V,C)

The right-hand side is the probability that the randomly generated set S has at least one
vertex in h. Recall that Pr(S;V,C) = ∏

u∈S pu(cu)∏v∈V \S (1− pv(cv)), which means each
u belongs to S independently. Thus, obviously,

∑
S⊆V

Pr(S;V,C)A(S, h) =
∑

S⊆V,S∩h6=∅
Pr(S;V,C)

= 1−
∏
u∈h

(1− pu(cu))

Combining the above results, we have

UI(C)
n

=
∑
h⊆V

Pr(h)[1−
∏
u∈h

(1− pu(cu))]
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The right-hand side is the expectation of 1−∏u∈h (1− pu(cu)), when h is randomly gener-
ated according to Pr(h). Thus,

UI(C)
n

= E[1−
∏
u∈h

(1− pu(cu))]

By the linearity of expectation, we have

E[n ∗
∑
h∈H [1−∏u∈h (1− pu(cu))]

mH
] = UI(C).

According to Theorem 16, we build a polling sketch H of mH poll samples. Then we
solve the following optimization problem.

maximize fH(C) =
∑
h∈H

fh(C) =
∑
h∈H

[1−
∏
u∈h

(1− pu(cu))]

s.t. 0 ≤ cu ≤ 1, ∀u ∈ V∑
u∈V

cu ≤ B

(4.15)

fH(C) is an unbiased estimation of UI(C). In Section 4.4.2, we proved that the CIM
problem (Eq. 4.3) is NP-hard in general, we now prove that so is the optimization problem
in Eq. 4.15.

Theorem 17. Given a polling sketch H and the seed probability function pu(cu) for each
u ∈ V , the optimization problem in Eq. 4.15 is NP-hard in general.

Proof. We prove the NP-hardness of the optimization problem in Eq. 4.15 by a reduction
from the max B-set cover problem, which is known to be NP-hard. Consider an arbitrary
instance of the max B-set cover problem, which consists of the set of all elements E =
{e1, . . . , en}, and a collection of set S = {S1, . . . , Sm}, where Si ⊆ V for all i, and an integer
B. The objective is to choose B sets from S such that the cardinality of the union of these
k sets is maximized. Denote by OPT the optimal cardinality.

We reduce such an instance to an instance of Eq. 4.15. We first create a polling sketch
H as follows. We set the vertex set V as {1, . . . ,m}, and create n poll samples {h1, . . . , hn}.
Note that a poll sample essentially is a set of vertices. For each hi and a vertex u ∈ V , we
make u ∈ hi if ei ∈ Su. We also set the budget in Eq. 4.15 as B, and for each u ∈ V , we set
the seed probability function pu(cu) = cu. The reduction is obviously in polynomial time.

Clearly, for any S ⊆ V , DH(S) = |∩u∈SSu|. Thus, we have maxS⊆V,|S|=B DH(S) = OPT .
Now all we need to prove is that the optimality of Eq. 4.15 is maxS⊆V,|S|=B DH(S). This
is equivalent to prove that Eq. 4.15 in the instance constructed above has an optimal
configuration C whose entries are all integers (either 0 or 1).
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The proof is pretty like the proof of Theorem 13. For any valid configuration C such that∑
u∈V cu = B, if C contains non-integer entries, it must contain at least 2 non-integer entries.

We pick two non-integer entries ci and cj , and fix all other entries. Suppose ci + cj = B′,
then we can optimize over ci to further improve the objective fH(C). It is easy to verify
that fH(C) is a convex function with respect to ci when satisfying cj = B′ − ci, 0 ≤ ci ≤ 1
and 0 ≤ cj ≤ 1 (because the coefficient of the quadratic term is positive). Thus, similar
to the construction in the proof of Theorem 13, after optimizing over ci, either ci or cj
becomes an integer and the objective fH(C) does not decrease. Therefore, there exist an
integer configuration C such that fH(C) is optimal to Eq. 4.15.

As we pointed out in Section 4.4.2, UI(C) is not necessarily concave or convex. It is
easy to verify that neither is fH(C). Thus, we seek for stationary points as illustrated in
Section 4.4.2, which are necessary conditions of local maxima points (note that finding local
maxima of non-concave functions is NP-hard in general [75]). Due to the linear contraints
in Eq. 4.15, a configuration C is a stationary point if and only if it satisfies the Karush-
Kuhn-Tucker (KKT) conditions [11]. By a simple derivation, we have that if C is a KKT
point of Eq. 4.15, it should satisfy the following.

∇ufH(C) =


≥ λ cu = 1

= λ 1 > cu > 0

≤ λ cu = 0

∀u ∈ V (4.16)

where ∇ufH(C) is the partial derivative of fH(C) with respect to cu and

∇ufH(C) = pu(cu)′
∑
h∈Hu

∏
i∈h,i 6=u

(1− pi(ci)) (4.17)

The condition in Eq. 4.16 is equivalent to

max
u:cu<1

∇ufH(C) ≤ min
v:cv>0

∇vfH(C) (4.18)

Our algorithmic framework Algorithm 8 can be used to find KKT points. In every iteration,
we pick the discounts of two vertices cu and cv to optimize, where u = arg maxi:ci<1∇ifH(C)
and v = arg minj:cj>0∇jfH(C). But this method is time consuming, since in each iteration
we need O(n) time to find cu and cv to optimize. To avoid this, we adopt a Shrink-and-
Expansion strategy which is used in finding dense subgraphs [67].
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Algorithm 10 2-Coordinate Descent Shrink-and-Expansion Algorithm.
Input: A polling sketch H, and an initial configuration C
Output: C
1: S ← {u | cu > 0}
2: while true do
3: Use the 2-Coordinate Descent algorithm and take C as the initial value to find a local

KKT point Cnew on S
4: C ← Cnew

5: S ← {u | cu > 0}
6: t← minv∈S ∇vfH(C)
7: Z ← {i | ∇ifH(C) > t}
8: if Z 6= ∅ then
9: S ← S ∪ Z
10: else
11: break
12: end if
13: end while
14: return C

To illustrate the Shrink-and-Expansion method, we first define a local KKT point on
S ⊆ V as a configuration C satisfying

cu = 0 if u /∈ S

∇ufH(C) =


≥ λ cu = 1

= λ 1 > cu > 0

≤ λ cu = 0

∀u ∈ S
(4.19)

Algorithm 10 describes the Shrink-and-Expansion algorithm. Line 3 is the Shrink stage,
because after Line 3 the number of non-zero entries of C does not get bigger. Line 7 is
the expansion stage, where we add vertices whose partial derivatives is greater than the
threshold t with respect to S for iterations, and the threshold is set to the smallest partial
derivative of vertices in S. If in the expansion stage, we do not have any vertices to add to S,
clearly the current C satisfies the KKT condition in Eq. 4.16 so it is already a KKT point.
If C is only a local KKT point on S but not a KKT point to Eq. 4.15, in the expansion
stage we must add some vertices to S. Also, after one shrink stage and one expansion stage,
the objective fH(C) is obviously non-decreasing. Thus, Algorithm 10 always converges and
it converges to a KKT point.

Theorem 18 (KKT Point). Algorithm 10 converges to a KKT configuration C.

The advantage of Algorithm 10 is that normally only a small number of vertices are
involved in computation, especially when the initial configuration C does not have many
non-zero entries. Thus, comparing to directly running line 3 of Algorithm 10 to find a KKT
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point C, which is also a local KKT point on the all vertices set V , Algorithm 10 is more
efficient.

To find a good initial configuration C, we first define

fH(S; c) =
∑
S′∈2S

Pr(S′;S, c)
∑
h∈H

[1−
∏

u∈S′∩h
(1− pu(c))]

It is not difficult to verify that when c is fixed, similar to UI(S; c), fH(S; c) is also monotonic
and submodular with respect to S. Thus, we can totally apply the Unified Discount heuristic
(Algorithm 9) described in section 4.4.3.

4.6.3 Deciding Sample Size to Avoid “Overfitting”

Our algorithm needs to build a polling sketch H. How many poll samples do we need to
achieve a good result? What are the risks if we only sample a small number of random poll
samples? We answer these questions by making an analogy of machine learning.

An Analogy between Influence Maximization and Machine Learning

We first make an analogy between influence maximization based on the polling method and
Empirical Risk Minimization (ERM) machine learning [94].

In machine learning, we have the instance domain X , where an element x ∈ X is an
instance. Denote by Pr(x) the probability of obtaining x as a random sample from X . If
the domain X is continuous, then Pr(x) is the probability density of x. The ultimate goal
is as follows

maximize
∑
x∈X

Pr(x)gx(η)

s.t. η ∈ H
(4.20)

where η is a model and H is the hypothesis set containing all the models we can use. gx(η)
is a function measuring how good is a model η on an instance x. For example, for a binary
classification task, suppose we try to find an optimal linear classifier, and let x = (x1, . . . , xn)
where xn ∈ {0, 1} is the class label of x. Then gx(η) = 1 if (∑n−1

i=1 ηixi + ηn) ∗ xn > 0 and
gx(η) = 0 otherwise.

However, solving Eq. 4.20 is difficult since we normally cannot iterate every instance
x ∈ X . Instead, we can draw a set T that contains a number of i.i.d. samples, where a
sample x is drew according to the probability Pr(x). We call T the training set. Adopting
the Empirical Risk Minimization (ERM) rule in machine learning, to solve Eq. 4.20, we
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Table 4.2: IM & CIM from machine learning perspective.

IM CIM
Instances All possible poll samples All possible poll samples

Training Samples mH samples poll samples mH samples poll samples
Hypothesis set S = {S | S ⊆ V, |S| = B} C = {C | 0 � C � 1, |C|1 = B}

Objective I(S) UI(C)
Objective on training data n ∗ DH(S)/mH n ∗ fH(C)/mH

solve the following optimization problem.

maximize
∑
x∈T

gx(η)

s.t. η ∈ H
(4.21)

We call ∑x∈X Pr(x)gx(η) in Eq. 4.20 the objective and ∑x∈T gx(η) in Eq. 4.21 the
objective on training data of a machine learning task.

We write the problems of IM and CIM as machine learning problems, as shown in
Table 4.2. For both IM and CIM, the expectation of the objective on training data equals
the real objective for any hypothesis. Similar to machine learning, our task in IM or CIM
is to choose a good hypothesis with high objective value from the hypothesis set (S or C),
by utilizing the training samples and the objective function on the training data.

One key point of machine learning is, how many training samples do we need to achieve
a provable performance guarantee [94]? If we do not have sufficient training samples, we may
get overfitting, which means we may choose a hypothesis whose expected objective value
on the whole data set is much smaller than its objective value on the training samples.

Deciding the sample size (number of poll samples) is also the key point of state-of-the-
art influence maximization algorithms based on polling method [10, 104, 103]. Similar to
machine learning, if the random poll samples (training samples) are not sufficient, we may
find a seed set with poor quality and get “overfitting” (the estimated influence of the seed
set on the sampled polling sketch is much greater than it real influence spread).

One major idea of these algorithms is to sample enough poll samples to achieve a uni-
form convergence [94] on S such that

Pr{∃S ∈ S, |DH(S)
mH

− I(S)
n
| > ε} ≤ δ (4.22)

When this uniform convergence is achieved, the value n∗DH(S)
mH

is a good estimation of I(S)
for any B-sized seed set S. Thus, by maximizing n∗DH(S)

mH
, we can find a good seed set with

near-optimal influence spread (the approximation ratio is decided by ε). To achieve Eq. 4.22,
a necessary condition is to sample enough poll samples such that for an arbitrary B-sized
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seed set S,

Pr{|DH(S)
mH

− I(S)
n
| > ε} ≤ δ/

(
n

B

)
(4.23)

Once Eq. 4.23 is satisfied, by applying the union bound, Eq. 4.22 holds because the number
of different B-seed sets (i.e., classifiers) is

(n
B

)
.

Sample Size for CIM

We discuss how to decide a proper sample size (number of random poll samples) for the CIM
problem. One difficulty is that optimizing fH(C) over a number of poll samples is NP-hard
as illustrated by Theorem 17. Moreover, fH(C) is often neither convex nor concave, and so
far we can only find a KKT point but we do not know how big the gap between a KKT
point and the optimal configuration is. Therefore, unlike influence maximization, where we
can get a constant approximation factor (1− 1/e− ε) (ε is decided by the sample size) with
high probability, for the CIM problem, it is hard to figure out the gap between a solution
obtained by optimizing fH(C) over a given number of poll samples and the optimal solution.
Thus, we seek for a weaker goal that, for the configuration C obtained by optimizing C,
with high probability, fH(C)

mH
is close to UI(C)

n . Note that, according to the machine learning
setting of influence maximization in Section 4.6.3, fH(C)

mH
is the accuracy of C on the training

data and UI(C)
n is the real accuracy of C. Formally, we define “overfitting” in CIM as

fH(C)
mH

− UI(C)
n

> ε (4.24)

where C is returned by Algorithm 10 with mH poll samples as inputs. Our goal is to sample
mH poll samples such that

Pr{|fH(C)
mH

− UI(C)
n
| ≤ ε} ≥ 1− δ (4.25)

Just achieving Eq. 4.25 may cause “underfitting” [94] , where although |fH(C)
mH
− UI(C)

n | ≤
ε, UI(C)

n might not be good enough. This is because fixing the sample size mH , the smaller
UI(C)
n , the higher probability that |fH(C)

mH
− UI(C)

n | ≤ ε, according to the Chernoff bound [72].
Thus, just achieving Eq. 4.25 may lead to find a poor configuration.

We fix the underfitting issue by setting a good configuration C as the initial configuration
of Algorithm 10. Taking Influence Maximization (IM) as the baseline, our goal is to find a
configuration that is at least as good as the solution produced by the state-of-the-art IM
algorithm. We run a state-of-the-art IM algorithm [10, 104, 103, 82] first to get a discrete
configuration C1, then we use the poll samples, apply the Unified Discount algorithm to
find a better configuration C2, and apply Algorithm 10 to find an even better configuration
C3. Here “better” is with respect to the objective value on poll samples. Clearly f(C3) ≥
f(C2) ≥ f(C1). Suppose f(C2) = f(C1) + δ2 ∗ mH and f(C3) = f(C1) + δ3 ∗ mH . If
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|f(C)
mH
− UI(C)

n | ≤ ε holds for C = C1, C2, C3, then we have

n(f(C1)
mH

− ε) ≤ UI(C1) ≤ n(f(C1)
mH

+ ε)

UI(C2) ≥ UI(C1) + n(δ2 − 2ε)

UI(C3) ≥ UI(C1) + n(δ3 − 2ε)

(4.26)

Thus, if δ3 ≥ δ2 ≥ 2ε, we have UI(C2) ≥ UI(C1) and UI(C3) ≥ UI(C1). If both δ2

and δ3 are no greater than 2ε, to avoid the risk of getting a configuration C such that
UI(C) ≤ UI(C1), we can just conservatively pick C1 as our final configuration. Therefore,
taking IM as the baseline, we can avoid the underfitting issue where our final configuration
is at least as good as the solution of IM.

One necessary condition of Eq. 4.25 is the uniform convergence on C, that is, we need
to ensure

Pr{∀C ∈ C, |fH(C)
mH

− UI(C)
n
| ≤ ε} ≥ 1− δ (4.27)

where C = {C | 0 � C � 1, |C|1 = B} is our hypothesis set. Unlike influence maximization,
where the hypothesis set S contains only

(n
B

)
hypotheses, C is uncountablely infinite. This

seems to be a trouble for us to apply the union bound, but we show that we can still achieve
the uniform convergence in Eq. 4.25 by sampling a finite number of poll samples.

Theorem 19 (Uniform Convergence). By sampling mH ≥
3(n ln 2+ln 2

δ
)

ε2 poll samples, we
have Pr{∀C ∈ C, |fH(C)

mH
− UI(C)

n | ≤ ε} ≥ 1− δ, where C = {C | 0 � C � 1, |C|1 = B}.

Proof. We show that fH(C)
mH

can be represented by a convex combination of a finite number of
unbiased estimations of influence spread of seed sets. fH(C) = ∑

h∈H [1−∏u∈h (1− pu(cu))].
In the proof of Theorem 16, we demonstrate that

∑
S⊆V

Pr(S;V,C)A(S, h) = 1−
∏
u∈h

(1− pu(cu))

where A(S, h) = 1 if S ∩ h 6= ∅, and A(S, h) = 0 otherwise. Thus,

fH(C) =
∑
h∈H

[1−
∏
u∈h

(1− pu(cu))]

=
∑
h∈H

∑
S⊆V

Pr(S;V,C)A(S, h)

=
∑
S⊆V

Pr(S;V,C)
∑
h∈H

A(S, h)

Note that ∑h∈H A(S, h) is actually DH(S). So we have

fH(C)
mH

=
∑
S⊆V

Pr(S;V,C)DH(S)
mH
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Since Pr(S;V,C) is the probability of generating a seed set S when the discount config-
uration is C, clearly fH(C)

mH
is a convex combination of DH(S)

mH
over all possible S. In addi-

tion, UI(C)
n = ∑

S⊆V Pr(S;V,C) I(S)
n and UI(C)

n is a convex combination of I(S)
n with the

same coefficients. Recall that DH(S)
mH

is an unbiased estimation of I(S)
n . If for all S ⊆ V ,

|DH(S)
mH

− I(S)
n | ≤ ε, then it is guaranteed that |fH(C)

mH
− UI(C)

n | ≤ ε.

We set mH = 3(n ln 2+ln 2
δ

)
ε2 . Applying the Chernoff bound [72], we obtain that for a seed

set S ⊆ V ,
Pr{|DH(S)

mH
− I(S)

n
| ≥ ε} ≤ δ

2n

Applying the union bound, we have

Pr{|DH(S)
mH

− I(S)
n
| ≤ ε,∀S ⊆ V } ≥ 1− δ

Therefore, when mH = 3(n ln 2+ln 2
δ

)
ε2 ,

Pr{|fH(C)
mH

− UI(C)
n
| ≤ ε,∀C ∈ C} ≥ 1− δ.

Similar to many machine learning methods, if we do not want to sample too many
poll samples, we can play the regularization trick to narrow down the hypothesis set. In
CIM, the regularization is to add a constraint to C such that the number of non-zero
entries (or |C|0) is no greater than a threshold N . Therefore, the hypothesis set becomes
CN = {C | 0 � C � 1, |C|1 = B, |C|0 ≤ N}. Note that |CN | = ∑N

i=B ≤ ( enN )N . Similar to
Theorem 19, we have the following corollary.

Corollary 19.1 (Regularization). By setting the number of poll samplesmH ≥
3(N+N ln n

N
+ln 2

δ
)

ε2 ,
we have Pr{∀C ∈ CN , |fH(C)

mH
− UI(C)

n | ≤ ε} ≥ 1 − δ, where CN = {C | 0 � C � 1, |C|1 =
B, |C|0 ≤ N}.

When we have the regularization with parameter N , we slightly modify Algorithm 10.
In the expansion stage (Line 7), if |Z| > N − |S|, we truncate Z by only keeping the top
N − |S| vertices with respect to their partial derivatives in Z, and in the next while loop,
we only do the shrink stage and return the C obtained.

Theorem 19 and Corollary 19.1 provide necessary conditions for avoiding overfitting in
CIM. These two bounds of mH may be loose. Thus, in practice, we use a similar strat-
egy as the state-of-the-art IM algorithm in [82], where we keep two hyper graphs H1 and
H2 that both have mH poll samples. We maximize fH1(C) to get C on H1, and esti-
mate UI(C)

n using H2. Suppose bfH2(C)c = L. Note that fH2(C) = ∑
h∈H2 fh(C) where

fh(C) = 1 − ∏u∈h (1− pu(cu)). We find the smallest index iL of poll samples in H2 such
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Algorithm 11 Optimization-and-Estimation Strategy
Input: Two polling sketchs H1 and H2 that both have mH poll samples
Output: C
1: Set M to 3(n ln 2+ln 2

δ
)

ε2 (without regularization) or 3(N+N ln n
N

+ln 2
δ

)
ε2 (with regularization)

2: while mH ≤M do
3: Optimize fH1(C) on H1 to get C
4: L← bfH2(C)c
5: Find the smallest index iL such that ∑iL

i=1 fhi(C) ≥ L, where h1, h2, . . . , hiL ∈ H2

6: e← max(|fH1 (C)
mH

− L
(1+ε1)iL |, |

fH1 (C)
mH

− L
(1−ε1)iL |)

7: if e ≤ ε then
8: break
9: else
10: H1 ← H1 ∪H2
11: Sample |H1| = 2mH random poll samples to rebuild H2
12: mH ← 2 ∗mH

13: end if
14: end while
15: return C

that ∑iL
i=1 fhi(C) ≥ L, where hi is the i-th poll sample of H2. Since fh(C) is a ran-

dom variable (due to the randomness of h) distributed in [0, 1] and E[fh(C)] = UI(C)
n ,

we can apply the Stop-Rule Theorem [28] and obtain that L
iL

is an (ε1, δ) estimation of
UI(C)
n , where 1 + (1 + ε1)4(e−2) ln 2

δ

ε21
= L. Thus, with probability at least 1 − δ, we have

UI(C)
n ∈ [ L

(1+ε1)iL ,
L

(1−ε1)iL ]. Then we check if the maximum possible estimation error of
fH1 (C)
mH

, max(|fH1 (C)
mH

− L
(1+ε1)iL |, |

fH1 (C)
mH

− L
(1−ε1)iL |), is less than ε. If it is, we are done. If

not, we set H1 = H1∪H2 and we rebuild H2 by sampling |H1| = 2mH random poll samples.
Then we redo the above process until the maximum possible estimation error of fH1 (C)

mH
is

less than ε, or |H1| exceeds the value of mH in Theorem 19 or Corollary 19.1. We describe
the Optimization-and-Estimation Strategy in Algorithm 11.

The input of Algorithm 11 can be obtained by the state-of-the-art algorithm SSA-
fix [82, 51] for influence maximization, where SSA-fix exactly outputs two polling sketchs
H1 and H2 that have the same size. The seed set returned by SSA-fix can be transformed
to an integer configuration and be used to find a good initial configuration. Moreover, the
result of SSA-fix can help us control a relative error (note that our goal Eq. 4.25 controls an
absolute error). Suppose the integer configuration returned by SSA-fix is C1, we just need
to set ε = O(fH1 (C1)

mH
) because it is guaranteed that fH1(C) ≥ fH1(C1) where C is obtained

in Line 3 in Algorithm 11. The coefficient hidden in O(fH1 (C1)
mH

) is decided by the relative
error of SSA-fix, our desired relative error and the parameter δ in Eq. 4.25.
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Figure 4.2: The seed probability functions used in the experiments.

Table 4.3: Datasets

Network n m
Average
Degree

wiki-Vote 7,115 103,689 14.6
ca-AstroPh 18,772 396,220 21.1
com-dblp 317,080 2,099,732 6.6

com-LiveJornal 3,997,962 69,362,378 17.3

4.7 Empirical Evaluation

To examine the effectiveness and efficiency of our methods, in this section, we report experi-
ments on four real networks with synthesized seed probability functions to test our proposed
methods. The experiment results show that the continuous influence maximization strat-
egy can significantly improve influence spread without incurring dramatic extra overheads
compared to discrete influence maximization.

4.7.1 Experimental Settings

We ran our experiments on four real network data sets that are publicly available in SNAP
(http://snap.stanford.edu/data/index.html). Table 4.3 shows the details of the four
data sets. All networks are treated as directed graphs, which means if a network is undi-
rected, every undirected edge (u, v) is processed as two directed edges (u, v) and (v, u).

In our experiments, we adopted the Independent Cascade (IC) model as the propagation
model, which is the most widely used triggering model in literature [20, 19, 54, 104, 82]. Fol-
lowing the most popular settings of the IC model [20, 19, 54, 104, 82], we set the propagation
probability of a directed edge (u, v) to 1

in−degree(v) .
For seed probability functions, unfortunately we do not have access to any such real data

sets for the purpose of experiments. Thus, we used synthesized seed probability functions.
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Given a network G = 〈V,E〉, we randomly assigned pu(cu) = 2cu−c2
u to a p1 portion of ver-

tices, which means that those users were sensitive to discount. Then a p2 portion of vertices
were assigned with pu(cu) = cu, and a p3 portion of vertices were assigned with pu(cu) = c2

u.
These users (vertices) were insensitive to discount. We maintain p1 +p2 +p3 = 1. Figure 4.2
shows the curves of the two seed probability functions as well as the function pu(cu) = cu as
the reference. In our experiments, we set P = (p1, p2, p3) as (0.85, 0.1, 0.05), (0.75, 0.15, 0.1)
and (0.65, 0.2, 0.15). For each P , we ran 20 independent experiments by randomly assigning
seed probability functions to vertices. All results reported are the averages taken over the
results of 20 independent experiments.

We also tested the pool setting described in Section 4.4.4, although the aim of this
chapter is to settle the CIM problem under the curve setting. We still used the 3 curves
pu(cu) = 2cu − c2

u, pu(cu) = cu and pu(cu) = c2
u, and portion of each curve is set the same

as described above. We set the discount pool P = {1%, 2%, 3%, . . . , 100%}.
We compare three algorithms: discrete influence maximization (IM), the unified discount

heuristic for finding a good initial configuration (UC), and applying the coordinate descent
algorithm based on the unified discount heuristic (UC+CD). Note that except for IM, all
other algorithms are CIM algorithms since they can allocate non-integer discounts to users.

We adopted the state-of-the-art SSA-fix [82, 51] algorithm as the IM implementation.
According to Theorem 14, for the result of IM, the better approximation it is to DIM,
the better approximation it is to CIM. Thus, we implemented the IM algorithm by setting
ε = 0.03 and δ = 1

n , which means with probability at least 1− 1
n , the result of IM is at least

60%-optimal to DIM. For our CIM algorithms UC and UC+CD, we used our Algorithm 11 in
section 4.6.3 to avoid the “overfitting” issue. The two polling sketches generated by the SSA-
fix [82, 51] algorithm are used as the input of Algorithm 11. We played the regularization
trick and set N = 20B, which means we offer non-zero discounts to at most 20B users.
The absolute error ε of |fH(C)

mH
− UI(C)

n | in Eq. 4.24 was set to 0.01. For our unified discount
heuristic (UC), as introduced in at the end of section 4.6.2, we set τ = 20 since N = 20B.

All algorithms were implemented in C# and ran on an Windows 10 computer with
Intel(R) Core(TM) i7-3770 3.40GHz CPU, 32GB main memory.

4.7.2 Effectiveness

Fig. 4.3 and Fig. 4.4 show the influence spread of each algorithm under different settings of
parameters. Note that in our Algorithm 11 described in Section 4.6.3, we have two polling
sketchs. The second one is for testing the influence spread of a given configuration. By the
Stop Rule Theorem [28], we find that the second polling sketch estimates influence spreads
of configurations obtained by different algorithms accurately. With very high probability
(1 − O( 1

n)), the relative error of estimations never exceeds 2%. From the results we find
that all CIM algorithms can significantly increase the expected influence spread compared
to discrete influence maximization (IM).
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It is not surprising that our CIM algorithms can achieve slightly higher influence spread
under the curve setting than under the pool setting, since the curve setting fully utilizes
the purchase probability curves. Moreover, the impact of adjusting the portions different
purchase probability curves (the parameter P ) is limited. Compared to P = (0.85, 0.1, 0.05),
when we set P = (0.65, 0.2, 0.15) the influence spreads of UC and UC+CD only decrease
by at most 2%.

Under the curve setting, the improvement of UC to IM is from 3% to 40%, the improve-
ment of UC+CD to UC is from 1% to 9.5% and the improvement of UC+CD to IM is from
12% to 43%. Under the pool setting we have similar findings, where the improvement of UC
to IM is also 3% to 40%, the improvement of UC+CD to UC is from 1% to 9.2% and the
improvement of UC+CD to IM is from 11.7% to 42%. Thus, we can see that both UC and
UC+CD can significantly improve influence spread compared to the baseline method IM.

Effectiveness of Setting τ = 20 in UC

We also tested the effectiveness of setting τ = 20 in the Unified Discount algorithm (UC).
Table 4.4 shows the difference of using τ = 100 and τ = 20 as the search step when finding
the best unified discount c. Here P = (0.85, 0.1, 0.05). Results under other setting of P are
skipped because they are all similar. The column “Reduction Percentage” means how much
influence the best spread is decreased if we change τ from 100 to 20. From Table 4.4 we find
that the reduction is tiny. In other words, the Unified Discount algorithm is insensitive to
this parameter.

4.7.3 Efficiency

We also tested the efficiency and the scalability of algorithms compared and report the
results in Fig. 4.5 and Fig. 4.6. The IM algorithm is always the fastest, since the other two
algorithms need to run the IM algorithm (the SSA-fix [82, 51]) first and take the two polling
sketches generated by IM as the input to run the Optimization-and-Estimation Strategy
(Algorithm 11). However, the running time of different algorithms does not differ much.
The most time-consuming algorithm UC+CD only takes around 1.1 to 3 times of the time
spent by the most efficient algorithm IM. This is because the two random hyper graphs
produced by the IM algorithm are always enough for avoiding the “overfitting” issue in the
other CIM algorithms. Thus, every time we broke the while loop in Algorithm 11 in the
first round.

4.8 Conclusions

In this chapter, we propose to offer users in social networks discounts rather than free prod-
ucts to trigger social cascades. We model the continuous influence maximization problem.
Some key properties of the continuous influence maximization problem are studied and a
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Figure 4.3: Influence spread under curve setting

coordinate descent framework is devised. Based on this framework, we prove that under cer-
tain conditions the continuous influence maximization problem and the original influence
maximization problem share the same optimal solutions. We also demonstrate that there
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Figure 4.4: Influence spread under pool setting

is a data dependent approximation ratio for our solution, where the ratio is decided by
the approximation ratio of a traditional influence maximization algorithm (used for finding
a good initial configuration) and all seed probability functions. We then develop methods
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Dataset B τ = 100 τ = 20 Reduction Percentage

Wiki-Vote

10 329 329 0%
20 475 472 0.6%
30 579 579 0%
40 661 653 1.2%
50 728 718 1.3%

Ca-Astro

10 1241 1241 0%
20 1760 1760 0%
30 2120 2120 0%
40 2422 2422 0%
50 2680 2680 0%

Com-Dblp

10 1896 1896 0%
20 3290 3290 0%
30 4489 4489 0%
40 5578 5563 0.3%
50 6557 6530 0.4%

Com-
LiveJournal

10 46906 46845 0.1%
20 69185 69126 0.1%
30 86469 86469 0%
40 100027 99948 0.1%
50 111086 110967 0.1%

Table 4.4: Effect of the parameter τ in the Unified Discount heuristic (UC).

for implementing the CIM algorithm under triggering models. An analogy between polling-
based algorithms and machine learning is discussed. Inspired by this analogy, we point
out that there are problems similar to the overfitting issue in machine learning and devise
methods to avoid the “overfitting” issue in CIM. The experiment results demonstrate that
our methods can improve influence spreads significantly compared to traditional influence
maximization, while the extra running time over the baselines is not much.

We believe that this work opens a new direction for future work. For example, in the
Unified Discount (UC) heuristic for finding a good initial configuration, we conduct a brute
force search to find the optimal discount c. Can we devise a better algorithm to search c?
Another interesting direction is minimizing the budget of our continuous seeding strategy to
cover a given portion of users in a social network. While minimizing budget under integer
seeding strategy can be easily obtained by slightly modifying the greedy algorithm for
influence maximization, it is far from trivial to design a new algorithm for our continuous
seeding strategy.
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Figure 4.5: Running time under curve setting
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Figure 4.6: Running time under pool setting
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Chapter 5

Activity Maximization in Social
Networks

In a social network, even about the same information the excitements between different users
are different. If we want to spread a piece of new information and maximize the expected
total amount of excitements, which seed users should we choose? This problem indeed is
substantially different from the renowned influence maximization problem and cannot be
tackled using the existing approaches. In this chapter, motivated by the demand in a few
interesting applications, we model the novel problem of activity maximization, and tackle
the problem systematically. We first analyze the complexity and the approximability of the
problem. We develop an upper bound function and a lower bound function that are both
submodular so that the Sandwich framework can be applied. We then devise a polling-
based randomized algorithm that guarantees a data dependent approximation factor. Our
experiments on four real networks clearly verify the effectiveness and scalability of our
method, as well as the advantage of our method against the other heuristic methods.

5.1 Introduction

Consider how one can stimulate the discussion about a topic in a social network as much as
possible within a budget. Based on messages between users in an instant messaging network,
such as Whatsapp and WeChat, one can model topics and strengths/frequencies of interac-
tion activities between users. In some situations, one may want to raise the awareness of a
controversial social issue, such as Trump’s pulling the US out of Trans-Pacific Partnership
(TPP). Within a budget, one wants to spread the information in the network so that people
in the network discuss the issue as much as possible. Which users should we choose to start
spreading the words?

We model this problem as activity maximization. Given a propagation network, which
records user interaction activity strength along each edge, we aim to find an optimal set of
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seed users under a given budget, such that starting information propagation from the seed
users leads to the maximum sum of activity strengths among the influenced users.

activated by A

activated by B

A

B

1.0                

0.5                

Figure 5.1: A toy example showing the difference between influence maximization and ac-
tivity maximization.

Isn’t this an instance of the well known and well studied influence maximization prob-
lem [54]? The answer is “no” indeed. Influence maximization selects a seed set of vertices
within a given budget constraint such that the expected number of vertices influenced by
information diffusion is maximized. However, to satisfy the requirement that “people in the
network discuss the issue as much as possible”, we not only want to influence many users,
but more importantly also want to maximize the expectation of the sum of strengths of the
interaction activities between influenced users. Since the activity strength between users
differs from user to user, more influenced users do not necessarily lead to more interaction
activities. Figure 5.1 shows an example. In the figure, the orange vertices and the blue ver-
tices are activated by seed vertices A and B, respectively. The thick edges carry an activity
strength (i.e., weight) of 1.0 and the thin edges carry a strength of 0.5. Although A can
activate more vertices (13) than B (10), the number of edges between the blue vertices
as well as the blue vertices and B (i.e., the 15 edges in blue) is more than that between
the orange vertices and the orange vertices and B (i.e., the 13 edges in orange). The total
activity strength activated by B, 13, is substantially more than the total activity strength
activated by A, which is 8.5.

Activity maximization is a novel problem that is substantially different from classic in-
fluence maximization. Can we adapt some existing influence maximization methods to solve
the activity maximization problem? Unfortunately, the answer is no due to the following
two major reasons.

First, the activity maximization problem focuses on the interaction activities between the
influenced users. This requires comprehensive consideration of both the information diffusion
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dynamics and the diffusion network structure formed by the diffusion process. However,
existing influence maximization methods aim to simply maximize the expected number of
the active users and seldom take the diffusion network structure into consideration.

Second, at the technical level, the objective functions in the influence maximization
problem and the activity maximization problem proposed here have different properties, as
to be shown in Section 5.3. Many existing methods for the influence maximization problem
rely on some special properties, such as submodurarity and supermodurarity, of the objec-
tive function in influence maximization, which unfortunately do not hold for the activity
maximization problem.

Motivated by the interesting application scenarios and the technical challenges associ-
ated, in this chapter, we propose a novel problem, activity maximization, which aims to
maximize the expectation of the total activity among all active users. A unique novel fea-
ture of our problem is that the optimization objective captures interactions among active
users. We make several contributions.

First, we identify a novel research problem with interesting applications. We propose the
novel activity maximization problem that aims to maximize the expectation of the overall
activities in a social network. To the best of our knowledge, we are the first to explore the
interactions among active vertices in information propagation.

Second, we assess the challenges of the proposed activity maximization problem. We
show that the activity maximization problem is NP-hard under the two most popularly
used information diffusion models, namely the independent cascade (IC) model and the
linear threshold (LT) model. We also prove that computing the activities with respect to a
given set of vertices is #P-hard under both the IC model and the LT model. Moreover, we
show that the objective function of the problem is neither submodular nor supermodular.
The theoretical results clearly show that the proposed activity maximization problem cannot
be easily solved using the existing methods for influence maximization. To understand the
feasibility of approximate solutions, we appraise the approximability of the problem by
constructing a reduction from the densest k-subgraph problem.

Third, to develop practical approximate solutions, we develop a lower bound and an
upper bound of activities. We prove that maximizing the lower bound or upper bound is
still NP-hard under the IC model and the LT model. Moreover, computing the lower bound
or upper bound is still #P-hard under the IC model and the LT model. However, we show
the submodularity of the lower bound and the upper bound, which facilitates approximation.

Fourth, we develop a polling based randomized algorithm. We design a sampling method
to obtain an unbiased estimation of activities. We also show how to efficiently implement
the greedy strategy on the estimate of activities. We extend the sandwich approximation
scheme to prove that the proposed algorithm has a data dependent approximation factor.

Last, we verify our algorithm on four real world networks. The experimental results
confirm the effectiveness and the efficiency of the proposed algorithm.
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Table 5.1: Frequently used notations.

Notation Description
G = (V,E,B) A social network, where each edge (u, v) ∈ E is asso-

ciated with a diffusion model-dependent parameter
Bu,v

GS = (VS , ES) The propagation subgraph induced by seed set S,
where VS is the set of all active vertices and ES =
{(u, v) | u ∈ VS ∧ v ∈ VS}

n = |V | The number of vertices in G
Au,v The interaction strength of edge (u, v)
δA(S) The activity of a given seed set S

δL(·), δU (·) The lower bound and the upper bound respectively
g A “live-edge” graph instance of G

g ∼ G g is sampled from all possible instances of G
Rg(S) The set of vertices reachable from vertex set S in g
gT The transpose graph of g: (u, v) ∈ g iff (v, u) ∈ gT

RgT (v) The reverse reachable (RR) set (poll sample) of ver-
tex v

H The hypergraph consist of hyperedges
mH The number of the hyperedges in H
D(S) The degree of the vertex set S in H

The rest of the pager is organized as follows. We formulate the activity maximization
problem in Section 5.2. In Section 5.3, we observe several interesting and useful properties
of the proposed problem. We develop a lower bound and an upper bound in Section 5.4.
In Section 5.5, we devise the polling based algorithm. We report the empirical evaluation
results in Section 5.6, and conclude the chapter in Section 5.7. Table 5.1 summarizes the
frequently used symbols and their meanings.

5.2 Problem Formulation

In this section, we first review two widely used information diffusion models, and then give
the formal statement of the activity maximization problem.

5.2.1 Activity Maximization

The activity maximization problem also considers information diffusion in a social network
with an extra parameter A. Each edge (u, v) ∈ E is associated with an activity strength Au,v.
Different from diffusion parameter Bu,v, which indicates how vertex u influences/activates
its neighbor v, Au,v captures the interaction strength between u and v when they are both
active. The activity strength between a pair of vertices depends on application scenarios,
and take any numerical domain. For example, one may learn the activity strength from
interaction log data with machine learning methods or simply use some statistical results
as activity strength.
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Given a social network G, an information diffusion model M, and a seed set S, the
diffusion process forms a propagation induced subgraph GS = (VS , ES), where VS is the set
of all active vertices and ES = {(u, v) ∈ E | u ∈ VS ∧ v ∈ VS} is the set of all edges whose
two endpoints are both in VS . Then, we can define the activity of a given seed set S as

δA(S) = E
[ ∑

(u,v)∈ES

Au,v

]
(5.1)

where E[·] is the expectation operator. Since information diffusion is a stochastic process, we
take the expectation with respect to all possible diffusion instances. The activity measures
the overall interaction strength among the active vertices and thus can reflect the overall
strength of the activity caused by the information propagated in the social network.

Now, we can formally define the activity maximization problem as follows. Given a social
network G, an information diffusion modelM, and a budget k, find a seed set S∗ such that

S∗ = arg max
S ⊆ V
|S| = k

δA(S) (5.2)

From the definition, we can see that activity maximization is a discrete optimization
problem, just as the traditional influence maximization problem is. Both diffusion parameter
B and activity parameter A are inputs to the problem. The activity maximization problem
tries to find a set of seed vertices to maximize the activity with given parameter settings. In
the next section, we discuss the problem in general. Thus, the solution does no dependent
on any specific settings.

5.3 Properties of Activity Maximization

In this section, we first prove the hardness of the activity maximization problem. Then we
discuss the properties of the objective function δA(·). Last, we show the approximability of
the problem.

5.3.1 Hardness Results

We first assess the hardness of the activity maximization problem.

Theorem 20. Activity maximization is NP-hard under the IC model and the LT model.

Proof. We prove by reducing from the set cover problem [53], which is well known in NP-
complete. Given a ground set U = {u1, u2, . . . , un} and a collection of sets {S1, S2, . . . , Sm}
whose union equals the ground set, the set cover problem is to decide if there exist k sets
in S so that the union equals U .
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Given an instance of the set cover problem, we construct a corresponding graph with
2n+m vertices as follows. We create a vertex xi for each set Si, two vertices yj and y′j for
each element uj , and two edges (xi, yj) and (xi, y′j) with propagation probability 1 for the
IC model and with influence weight 1 for the LT model and activity 0 if uj ∈ Si. We also
create an edge between yj and y′j with propagation probability 0 and activity 1 for each
element uj . The information diffusion will be a deterministic process, since all propagation
probabilities are either 1 or 0. Therefore, the set cover problem is equivalent to deciding if
there is a set S of k vertices such that δA(S) = n. The theorem follows immediately.

Activity maximization is NP-hard. Then, what is the hardness of computing the activity
with respect to a given seed set S?

Theorem 21. Given a seed set S, computing δA(S) is #P-hard under the IC model and
the LT model.

Proof. We prove by reducing from the influence spread computation problem, which was
proved #P-hard under the IC model and the LT model [19, 21].

Given an instance of the influence spread computation problem, we keep the same graph
G and influence diffusion parameters B. We set Au,v = 1 for any u, v ∈ V and compute
x1 = δA(S) in the graph G. Next, we add a new vertex v′ for each vertex v in the graph
G and an edge between v and v′ with propagation probability 1 for the IC model and with
influence weight 1 for the LT model and activity 1. Now, we obtain a new graph G′ and
can compute x2 = δA(S) in the graph G′. For any newly added vertex v′, the only way
to be activated is through its only neighbor v. Moreover, a newly added vertex v′ will be
activated if its neighbor v is active, since the propagation probability of the newly added
edges is 1. Thus, x2−x1 is exactly the influence spread in the graph G. The theorem follows
immediately.

In [54], Kempe et al. introduced the triggering model that generalizes the IC model and
the LT model. In the triggering model, each vertex v independently chooses a subset of its
neighbors as its “triggering set” according to some distribution. A vertex will be activated if
at least one vertex of its triggering set is active. We can see that the reduction we construct
in the proof of Theorem 21 still holds for the triggering model. Thus, we have the following
result.

Corollary 21.1. Given a seed set S, computing δA(S) is #P-hard in any triggering model
M if computing influence spread is #P-hard inM.

5.3.2 Modularity of Objective Functions

The objective function of influence maximization is submodular under the IC model and the
LT model. Unfortunately, the objective function in activity maximization is not submodular.
Moreover, we can show that δA(·) is not supermodular as well.
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Figure 5.2: Counter examples

Fact 2. δA(·) is not submodular under the IC model and the LT model.

Proof. We prove by a counter example. Consider Figure 5.2(a). The first number in the
tuple on each edge represents the propagation probability for the IC model and the influence
weight for the LT model. The second number is the activity of the edge. For example, in the
counter example 1, (1, 1) on edge (v1, v2) means Bv1,v2 = 1 and Av1,v2 = 1. In this example,
we have δA({v1}) = 1, δA({v1, v5}) = 5 and δA({v5}) = 2. That is,

δA({v1})− δA(∅) < δA({v1, v5})− δA({v5})

Therefore, δA(·) is not submodular.

From the counter example in the proof of Fact 2 (Figure 5.2(a)), we can see that the
reason why δA(·) is not submodular is the “combination effect” between the newly added
vertex and the existing seed vertices. For example, If we add v1 into S when S = ∅, then
there is only one active endpoint for edge (v2, v4) and (v2, v3), that is v2. But if we add v1

to S when S = {v5}, then both the two endpoints of edge (v2, v4) and (v2, v3) are active,
since v3 and v4 are activated by v5. The “combination effect” has its roots in the definition
of activity. We only count the activity on the edges whose two endpoints are both active.
As a result, the newly added vertex and the existing seed vertices may activate the two
endpoints of an edge together, which leads to a violation of submodularity.

Fact 3. δA(·) is not supermodular under the IC model and the LT model.
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Proof. Again, we prove by a counter example. Consider the counter example 2 in Fig 5.2(b),
we have δA({v2}) = 4, δA({v1, v2}) = 4 and δA({v1}) = 4. Thus,

δA({v2})− δA(∅) > δA({v2, v1})− δA({v1})

That is, δA(·) is not supermodular.

From the counter example in the proof of Fact 3 (Figure 5.2(b)), we can see that the
reason why δA(·) is not supermodular is the “overlap effect” between the newly added vertex
and the existing seed vertices. The vertices that the newly added vertex can activate may
have already been activated by the existing seed vertices, which means that adding a new
vertex does not bring any marginal gain.

5.3.3 Approximability

Since δA(·) is neither submodular nor supermodular, we cannot adopt the standard proce-
dure for optimizing submodular function or supermodular function to get an approximation
solution. To explore the approximability of the activity maximization problem, we explore
the connection between the activity maximization problem and the densest k-subgraph
extraction problem.

Theorem 22. If there exists a polynomial time algorithm approximating the activity max-
imization problem within a ratio of α, then there exists a polynomial time algorithm that
can approximate the densest k-subgraph problem within a ratio of α.

Proof. We prove by constructing a reduction from the densest k-subgraph problem to the
activity maximization problem. Given a graph and an integer k, the densest k-subgraph
problem is to find a subgraph of exactly k vertices that has the maximum density. For a
subgraph GS = (VS , ES), the density is defined as |ES ||VS | .

Given an instance of the densest k-subgraph problem, we construct a corresponding
instance of the activity maximization problem. We keep the same graph and set Bu,v = 0
and Au,v = 1 for u, v ∈ V . Then, the activity maximization problem is to find a set of
k vertices and maximize the number of edges whose both endpoints are in this set. It is
equivalent to maximizing the density since the number of vertices is constant.

Khot [56] showed that the densest k-subgraph problem does not admit PTAS1 (Polyno-
mial Time Approximation Scheme [105]) assuming NP *

⋂
ε>0

BPTIME(2nε), we immedi-
ately have the following result.

1A PTAS is an algorithm that returns a solution within a factor 1 + ε of being optimal (or 1 - ε for
maximization problems) in polynomial time for any ε > 0.
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Corollary 22.1. There is no PTAS for the activity maximization problem assuming NP *⋂
ε>0

BPTIME(2nε).

In fact, finding a good approximation to the densest k-subgraph problem is challenging.
The current best approximation ratio of n1/4+ε for ε > 0 was achieved by Bhaskara et al. [8].
It is still unknown if there exists a polynomial time algorithm that can approximate the
densest k-subgraph problem with a constant factor.

5.4 Lower Bound and Upper Bound

In this section, we first give a lower bound and an upper bound on activities. Then we
discuss the properties of the lower bound and the upper bound.

5.4.1 The Bounds

Since the “combination effect” among seed vertices comprises the submodularity of the
objective function δA(·), we try to develop a lower bound of δA(·) that is submodular by
ignoring the “combination effect”. The major idea is that we only consider the edges whose
two endpoints are activated by the same seed vertex. Accordingly, the lower bound can be
defined as

δL(S) = E[
∑

(u,v)∈
⋃
x∈S

E{x}

Au,v] (5.3)

where E{x} is the set of edges of the propagation subgraph induced by seed set {x}. Recall
that the propagation subgraph induced by a seed set consists of the vertices that can be
activated by the seed set. Here, the seed set consists of only one vertex x. It is easy to see
that δL(S) ≤ δA(S) for any S ⊆ V , since we ignore the edges whose endpoints are activated
by different seed vertices.

A straightforward way to get an upper bound is to consider all the edges that have at
least one active endpoint. In this way, the upper bound equals to the activity of edges that
have one active endpoint plus the activity of edges whose two endpoints are both active.
The latter is exactly the activity we want to compute. Here, we present a tighter upper
bound from the perspective of active vertices, which can be defined as

δU (S) = E[
∑
v∈VS

w(v)] (5.4)

where
w(v) = 1

2
∑

u∈N(v)
Au,v.

Given a seed set S, δU (S) equals to the half of the activity of edges that have one active
endpoint plus the activity of edges whose two endpoints are both active. Thus, δU (S) is

98



better than the straightforward one. Also, we can see that the upper bound is essentially
a weighted version of the influence spread, where the weight of vertex v is 1

2
∑
u∈N(v)Au,v.

For the influence spread, w(v) = 1 for each vertex v.

5.4.2 Properties of the Bounds

Using the lower bound and the upper bound, we can approximate the information activity
problem by maximizing the lower bound and the upper bound [69]. However, maximizing
the lower bound and the upper bound is still NP-hard.

Theorem 23. Maximizing the lower bound is NP-hard under the IC model and the LT
model.

Proof. We prove by reducing from the NP-complete set cover problem [53]. We show the
reduction constructed in the proof of Theorem 20 still holds for the lower bound. The lower
bound only considers the edges whose two endpoints can be activated by the same seed
vertex. In the previous reduction, for all the edges whose activity is not equal to 0 (the
edges between yj and y′j), their two endpoints can be activated by the same vertex. Thus,
the set cover problem can be solved by deciding if there is a set S of k vertices such that
δL(S) = n.

Theorem 24. Maximizing the upper bound is NP-hard under the IC model and the LT
model.

Proof. We prove by reducing from the NP-hard influence maximization problem [54].
Given an instance of the influence maximization problem, let dmax be the highest degree

of the vertices in the graph G. Then, for each vertex v in G, we add Nd = dmax − dv new
vertices, v′1, v′2, . . . , v′Nd , and Nd new edges, (v, v′1), (v, v′2), . . . , (v, v′Nd). Now we obtain a
new graph G′. We set the propagation probability of the newly added edges to 0 for the IC
model, and set the influence weight of the newly added edges to 0 for the LT model, and
set the information activity of all the edges in G′ to 2

dmax
.

Then, we have ∀v ∈ V , w(v) = 1, and ∀v′ ∈ V ′ \V , w(v′) = 2
dmax

. Since the propagation
probability of all newly added edges is 0, the newly added vertices can never be activated.
Therefore, we have IG(S) = δG

′
U (S), ∀S ⊆ V , where I(S) is the influence spread of a give

seed set S in G and δG′U (S) is the upper bound in G′.
Next, we prove that S∗U = argmax δG′U (S) does not contain any newly added vertices. If

there is any newly added vertex in S∗U , we can always replace it with a vertex in V \S∗U and
increase the value of the objective function. Thus, if S∗U is the optimal solution of maximizing
the upper bound in G′, it must be the optimal solution to the influence maximization
problem in G.

Although maximizing the lower bound and the upper bound is NP-hard, the objective
functions of the lower bound and the upper bound are submodular.
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Theorem 25. δL(·) is submodular under the IC model and the LT model.

Proof. Given a graph G and an influence diffusion model, either the IC model or the LT
model, we can construct “live-edge” graphs for G using the methods proposed in [54]. Let
g be a “live-edge” graph instance. Denote by Pr(g) the probability that g is selected from
all possible instances. Let Eg(S) be the set of edges whose two endpoints can be reachable
from the same vertex in the seed set S. Then we can rewrite δL(S) to

δL(S) =
∑
g∼G

Pr(g)
∑

(u,v)∈Eg(S)
Au,v

We only need to prove Q(S) = ∑
(u,v)∈Eg(S)

Au,v is submodular for any “live-edge” graph

instance g, since an non-negative linear combination of submodular functions is also sub-
modular.

To prove, let M and N be two sets such that M ⊆ N ⊆ V . For any v ∈ V \ N ,
consider the difference between Q(M ∪ {v}) and Q(M). It must be contributed from the
edges whose two endpoints can be reachable from v but cannot be reachable from the
vertices in M . These edges must be a super set of the edges whose two endpoints can be
reachable from v but cannot be reachable from the vertices in N , since M ⊆ N . It follows
that Q(M ∪ {v}) −Q(M) ≥ Q(N ∪ {v}) −Q(N). Therefore, Q(S) is submodular and the
theorem follows.

Theorem 26. δU (·) is submodular under the IC model and the LT model.

Proof. We can prove the theorem by the same “live-edge” technique used in the proof of
Theorem 25. Let Rg(S) be the set of vertices reachable from S in g. Then, δU (S) can be
rewritten to

δU (S) =
∑
g∼G

Pr(g)
∑

v∈Rg(S)
w(v)

The way to prove that Q′(S) = ∑
v∈Rg(S)

w(v) is submodular is similar to the proof of Q(S)

in Theorem 25. The vertices that can be reachable from v but cannot be reachable from the
vertices inM must be a super set of the vertices that can be reachable from v but cannot be
reachable from the vertices inN . It follows that Q′(M∪{v})−Q′(M) ≥ Q′(N∪{v})−Q′(N).
Therefore, Q′(S) is submodular and the theorem follows.

Theorems 25 and 26 are good news. With the submodularity we can adopt the standard
procedure for optimizing submodular functions to obtain an approximation solution [78].
One challenge remains. Applying the algorithm proposed in [78] requires evaluating the
lower bound and the upper bound. However, computing the lower bound and the upper
bound with respect to a given seed set is unfortunately #P-hard.

Theorem 27. Given a seed set S, computing δL(S) is #P-hard under the IC and the LT
model.
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Proof. We prove by reducing from the influence spread computation problem. We show that
the reduction we construct in the proof of Theorem 21 still holds for the lower bound case.
Let y1 = δL(S) in the graph G and y2 = δL(S) in the graph G′. Since the propagation
probability of the edge (v, v′) is 1 for the IC model and the influence weight of the edge
(v, v′) is 1 for the LT model, v and v′ can be activated by the same seed vertex. It follows
that y2 − y1 is also the influence spread in the graph G.

Theorem 28. Given a seed set S, computing δU (S) is #P-hard under the IC and the LT
model.

Proof. We prove by reducing from the influence spread computation problem. The reduction
is the same as the one in the proof of Theorem 24. We already showed IG(S) = δG

′
U (S) for

any seed set S ⊆ V . Therefore, the theorem follows immediately.

Since the activity, the lower bound and the upper bound are all #P-hard to compute,
we will discuss how to estimate them in the next section.

5.5 A Polling Based Method

To solve the activity maximization problem, we design a polling based method similar to
the one introduced in Chapter 2 for the influence maximization problem. The framework
of our method includes two steps. In the first step, it estimates the activity, the lower
bound and the upper bound through sampling. In the second step, it finds a solution for
maximizing the estimated activity based on estimations of the activity, the lower bound
and the upper bound. We prove that we can bound the estimation error and our solution
enjoys a data-dependent approximation guarantee for the activity maximization problem.

5.5.1 Estimation

In a social network G, given an information diffusion model, either the IC model or the LT
model, and a seed set S, let g be a “live-edge” graph instance of G and Rg(S) be the set of
vertices reachable from S in g. Denote by RgT (v) the reverse reachable (RR) set [104] (poll
sample) for vertex v in g, where gT is the transpose graph [10] of g: (u, v) ∈ g iff (v, u) ∈ gT .
We write (u, v) ∼ E to indicate that we randomly pick (u, v) from E as a sample according
to a certain distribution. The meaning of v ∼ V is similar.

To estimate the activity, we first have the following result.

Theorem 29. For any seed set S ⊆ V ,

δA(S) = T · Pr
g∼G,(u,v)∼E

[
S ∩RgT (u) 6= ∅ ∧ S ∩RgT (v) 6= ∅

]
,

where T = ∑
(u,v)∈E Au,v.
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Proof.

δA(S) = E
[ ∑

(u,v)∈ES

Au,v

]

=
∑

(u,v)∈E
Pr

[
(u, v) ∈ ES

]
Au,v

=
∑

(u,v)∈E
Pr
g∼G

[
u ∈ Rg(S) ∧ v ∈ Rg(S)

]
Au,v

=
∑

(u,v)∈E
Pr
g∼G

[
∃w1, w2 ∈ S,w1 ∈ RgT (u) ∧ w2 ∈ RgT (v)

]
Au,v

= T ·
∑

(u,v)∈E
Pr
g∼G

[
∃w1, w2 ∈ S,w1 ∈ RgT (u) ∧ w2 ∈ RgT (v)

]
Au,v
T

= T · Pr
g∼G,(u,v)∼E

[
∃w1, w2 ∈ S,w1 ∈ RgT (u) ∧ w2 ∈ RgT (v)

]
= T · Pr

g∼G,(u,v)∼E

[
S ∩RgT (u) 6= ∅ ∧ S ∩RgT (v) 6= ∅

]
The 5th line is the expected probability with respect to the activity distribution of edges,

where the probability for edge (u, v) is Au,v
T .

The intuition of Theorem 29 is that if a seed set S has a high activity value, then the
probability that S is simultaneously reachable from both two endpoints of a randomly picked
edge in a randomly picked “live-edge” graph instance is high, since we only count the activity
on the edges whose two endpoints are both active. Theorem 29 implies that we can estimate
δA(S) by estimating the probability of the event S∩RgT (u) 6= ∅∧S∩RgT (v) 6= ∅. To achieve
the estimation, we conduct a poll as follows. We select an edge (u, v) with probability Au,v

T ,
and run Monte Carlo simulation of the “live-edge” process. During the process, we record
all the vertices that can reach u and v through “live” edges. Algorithm 12 summarizes the
process.

One critical observation is that we do not need to conduct the “live-edge” process on
the entire graph. Instead, we can simulate the process starting from u and v, respectively.
We only need to make sure that each edge is marked consistently as the same status (“live”
or “blocked”) in these two simulations. We call the pair of two RR sets obtained from a poll
a hyperedge. All the generated hyperedges constitute a hypergraph H.

Denote by mH the number of the hyperedges in H. If a vertex v appears in both RR
sets of a hyperedge E , E is said to be fully covered by v. If a vertex v only appears in one
of the two RR sets of a hyperedge E , E is said to be partially covered by v. Denote by D(S)
the degree of the set of vertices S, which is the number of hyperedges in H that can be
fully covered by S. According to Theorem 29, T · D(S)

mH
is an unbiased estimator of δA(S)

102



. . .

. . .

RR Set 1

RR Set 2

v1

v2

v3

v4

v5

. . .Hyperedge !

. . .
v1

v2

v3

v4

v5
. . .Hyperedge !

. . .

. . .

Node Set 1(n1)

Node Set 2(n2)

Node Set 3(n3)

Figure 5.3: Hyperedge for activities

Algorithm 12 Generate Hyperedges
Input: Social network G = (V,E,B), A and diffusion modelM
Output: A hyperedge E
1: Initialize E = (∅, ∅)
2: Pick an edge (u, v) with probability Au,v

T .
3: Generate a “live-edge” graph g according toM
4: Let N1 = RgT (u) and N2 = RgT (v)
5: Let E = (N1, N2)
6: return E

for any fixed mH . Please note that there also exists “combination effect” between vertices
in this case. For example, in the left part of Figure 5.3, v1 only appears in the first RR set
of hyperedge E and v4 only appears in the second RR set. v1 and v4, respectively, partially
covers E . But E is fully covered by the combination of v1 and v4. Thus, similar to δA(·),
D(·) is not submodular neither.

Similarly, for the lower bound and the upper bound, we have the following two results.

Theorem 30. For any seed set S ⊆ V ,

δL(S) = T · Pr
g∼G,(u,v)∼E

[
S ∩ (RgT (u) ∩RgT (v)) 6= ∅

]
,

where T = ∑
(u,v)∈E Au,v.

Proof. The lower bound only considers the edges whose two endpoints can be activated by
the same seed vertex. Thus, to prove the theorem, we only need to let w1 = w2 in the proof
of Theorem 29, that is

δL(S) =T · Pr
g∼G,(u,v)∼E

[
∃w ∈ S,w ∈ RgT (u) ∧ w ∈ RgT (v)

]
=T · Pr

g∼G,(u,v)∼E

[
S ∩ (RgT (u) ∩RgT (v)) 6= ∅

]
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Using Theorem 30, we can estimate the lower bound using essentially the same sam-
pling process as the activity. The only difference is that there is only one vertex set in the
hyperedge for the lower bound, that is N1 ∩N2. In this case, a hyperedge E is covered by
vertex v if and only if v ∈ N1 ∩N2.

Theorem 31. For any seed set S ⊆ V ,

δU (S) = W · Pr
g∼G,v∼V

[
S ∩RgT (v) 6= ∅

]
,

where W = ∑
v∈V w(v).

Proof. The upper bound is essentially a weighted variation of the influence spread. Thus,
we can apply the proof proposed in [81].

There is also only one vertex set in the hyperedge for the upper bound. We can generate
the hyperedge using the sampling method proposed in [81].

Since we can estimate the objective function (δA(·), δL(·) or δU (·)) by the degrees of the
set of vertices, we can regard H as encoding an approximation to the objective function.
With the estimate of the objective function, we go to the second step of the polling based
framework, that is, maximizing the estimate. To achieve this goal, we adopt the simple but
powerful greedy strategy, which picks the vertex with the largest marginal gain (the increase
of degree in H for our case) iteratively. Next, we show how to efficiently implement a greedy
strategy on the hypergraph.

5.5.2 Efficient Implementation of the Greedy Strategy

For the lower bound and the upper bound, there is only one vertex set in each hyperedge.
Thus, we can use the standard greedy algorithm for maximum coverage problem to obtain
an approximate solution [104]. However, there are two vertex sets in the hyperedge for the
activity maximization problem. A hyperedge can be fully or partially covered by a vertex
or a vertex set. Thus, we cannot directly apply the greedy strategy. To tackle this issue,
here we discuss how to efficiently implement the greedy strategy on the hypergraph.

First, we store the original hyperedges of two RR sets in a more efficient manner. There
are three sets, n1, n2 and n3 for each hyperedge E , where n1 and n2 are the sets of vertices
that can only cover the first and second RR set of E , respectively, and n3 is the set of
vertices that can cover both two RR sets of E . Figure 5.3 illustrates the idea.

Then, we build an inverted index for each vertex. There are three sets, e1, e2 and e3 for
each vertex v, where e1 and e2 are the sets of hyperedges whose first and second RR set
can be covered by v, respectively, and e3 is the set of hyperedges that can be fully covered
by v.
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Figure 5.4: Data Structures

Third, we maintain a global data structure to record the current covered hyperedges.
There are also three sets, E1, E2 and E3, in this data structure, where E1 and E2 are
the sets of hyperedges whose first and second RR sets have been covered, respectively, and
E3 is the set of hyperedges that have been fully covered. Figure 5.4 shows these two data
structures. With these data structures, we have the following fact.

Fact 4. Given a seed set S, for each vertex v ∈ V \S, the marginal gain D(S∪{v})−D(S)
is

MG(v) = |v.e3 \ E3|+ |v.e1 ∩ E2|+ |v.e2 ∩ E1| (5.5)

Rationale. If we add a vertex v to the current seed set S, the newly covered hyperedges
can be divided into two groups. The first group is the hyperedges that can be covered by
v alone but not covered by S, that is v.e3 \ E3. The second group is the hyperedges that
are partially covered by S and are fully covered if v is added to S, that is v.e1 ∩ E2 and
v.e2 ∩ E1.

Fact 4 implies that we can pick the vertex with the largest marginal gain in each iter-
ation and then incrementally update the marginal gains of the rest vertices. Algorithm 13
describes the details.

Here, we briefly explain how to incrementally update the marginal gain. Assuming E1,
E2 and E3 are updated to E′1, E′2, and E′3, respectively, we update the marginal gains as
follows. For each hyperedge E ∈ E′1 \ E1, we increase the marginal gains of the vertices in
E .n2 by 1. For each hyperedge E ∈ E′2 \ E2, we increase the marginal gains of the vertices
in E .n1 by 1. For each hyperedge E ∈ E′3 \ E3, we first decrease the marginal gains of the
vertices in E .n3 by 1. Then, we decrease the marginal gains of the vertices in E .n2 by 1 if
E ∈ E1, and decrease the marginal gains of the vertices in E .n1 by 1 if E ∈ E2.

Now, the only remaining question is to decide how many hyperedges we need to sample,
which will be addressed next.
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Algorithm 13 Maximum Coverage on Hypergraph
Input: Social network G, Hypergraph H and budget k
Output: Seed set S
1: Initialize S = E1 = E2 = E3 = ∅
2: for v ∈ V do
3: MG(v) = |v.e|
4: end for
5: while |S| < k do
6: v = argmaxu∈V \SMG(u)
7: S = S ∪ {v}
8: update E1, E2, and E3
9: for u ∈ V \ S do

10: update MG(u) according to Eq. 5.5
11: end for
12: end while
13: return S

5.5.3 Sample Complexity

In this subsection, we discuss how to use a sample of proper size to restrict the estimate
error of the activity, the lower bound and the upper bound. With the technique, we show
that the polling algorithm can provide an approximate solution to maximizing the lower
bound and the upper bound.

To bound the estimate error of the polling method, we use the Stopping Rule Theorem
(Corollary 0.2) in Section 2.1.4. Given a seed set S, we can keep sampling hyperedges until
D(S) ≥ Υ1. Then, T · D(S)

mH
is an (ε, δ) estimation [72] of δA(S) according to Corollary 0.2.

The analysis is similar in the cases of the lower bound and the upper bound.
Huang et al. [51] analyzed the conditions that the polling algorithmic framework must

meet to obtain an approximation solution. Let S∗ be the optimal seed set and Ŝ be the seed
set returned by the greedy strategy on the estimate of the objective function f(·) (δL(·) or
δU (·)). Denote by f̂(·) the estimate of the objective function f(·). The conditions are

Pr[f̂(Ŝ) ≤ (1 + ε1)f(Ŝ)] ≥ 1− δ1 (5.6)

Pr[f̂(S∗) ≥ (1− ε2)f(S∗)] ≥ 1− δ2 (5.7)

where δ1 + δ2 ≤ δ and ε1 + (1− 1/e)ε2 ≤ ε. Let N be the number of samples such that both
Eq. 5.6 and Eq. 5.7 are guaranteed. Then we have the following lemma from [51].

Lemma 10. Given a social network G, if the number of hyperedges mH ≥ N , then the
polling algorithm returns Ŝ satisfying Pr[f(Ŝ) ≥ (1 − 1/e − ε)f(S∗)] ≥ 1 − δ and Ŝ is an
(1− 1/e− ε) approximate solution.
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Applying Corollary 0.2 and Lemma 10, to obtain an approximation solution to maxi-
mizing the lower bound or upper bound, we can keep sampling hyperedges and checking if
the conditions are met. The SSA-fix algorithm from [51] describes the process.

Using the SSA-fix algorithm, we can provide a (1 − 1/e − ε) approximation solution
to maximizing the lower bound and the upper bound with probability of at least 1 −
δ. But we must point out that the analysis does not hold for the activity maximization
problem. This is because a necessary condition of the polling algorithmic framework is that
we can approximate the estimate using the greedy strategy. The condition is not met in
the case of the activity maximization problem, since the estimate of the activity is not
submodular. Thus, the polling algorithm cannot provide an approximation solution to the
activity maximization problem. But it is still a good heuristic for the activity maximization
problem. Furthermore, by combining the approximation algorithm for the lower bound and
the upper bound, we can derive a data dependent approximation scheme for the activity
maximization problem.

5.5.4 Data Dependent Approximation

There is no general way to optimize or approximate a non-submodular function. Lu et al. [69]
proposed a sandwich approximation strategy, which approximates the objective function
by approximating its lower bound and upper bound. The sandwich approximation strategy
works as follows. First, we find a solution to the original problem with any strategy. Second,
we find an approximate solution to the lower bound and the upper bound, respectively. Last,
we return the solution that has the best result for the original problem.

Here, we extend the strategy to the case in which the objective function is intractable
and have the following result.

Algorithm 14 Sandwich Approximation Framework
1: Let SU be a α approximation to the upper bound
2: Let SL be a β approximation to the lower bound
3: Let SA be a solution to the original problem
4: δ̂A(·) is a multiplicative γ-error estimate of δA(·)
5: S = argmaxS0∈{SU ,SL,SA} δ̂A(S0)
6: return S

Theorem 32. Let S be the seed set returned by Algorithm 14, then we have

δA(S) ≥ max
{δA(SU )
δU (SU )α,

δL(S∗L)
δA(S∗A)β

}1− γ
1 + γ

δA(S∗A) (5.8)
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Proof. Let S∗L, S∗U and S∗A be the optimal solutions to maximizing the lower bound, the
upper bound and the activity, respectively. Then, we have

δA(SU ) = δA(SU )
δU (SU )δU (SU ) ≥ δA(SU )

δU (SU ) · α · δU (S∗U )

≥ δA(SU )
δU (SU ) · α · δU (S∗A) ≥ δA(SU )

δU (SU ) · α · δA(S∗A)

δA(SL) ≥ δL(SL) ≥ β · δL(S∗L) ≥ δL(S∗L)
δA(S∗A) · β · δA(S∗A)

Let Smax = argmaxS0∈{SU ,SL,SA} δA(S0), then

δA(Smax) ≥ max
{δA(SU )
δU (SU )α,

δL(S∗L)
δA(S∗A)β

}
δA(S∗A)

Since ∀S0 ∈ {SU , SL, SA}, |δ̂A(S0) − δA(S0)| ≤ γδA(S0), we have (1 + γ)δA(S) ≥ (1 −
γ)δA(Smax). It follows that

δA(S) ≥ (1− γ)
(1 + γ)δA(Smax)

Theorem 32 indicates that we can approximate the activity maximization problem within
a factor that is dependent on the data. Since it is #P-hard to compute δA(·) and δU (·), and is
NP-hard to find S∗L and S∗A, we cannot compute the exact approximation factor. But we can
estimate δA(SU )

δU (SU ) by computing its lower bound (1−γ)δ̂A(SU )
(1+γ)δ̂U (SU ) . It follows that

(1−γ)2

(1+γ)2 ·α · δ̂A(SU )
δ̂U (SU )

is a computable lower bound of the approximation factor.
Now, we put all the pieces of the puzzle together. We first adopt the polling algorithm to

maximize the lower bound and the upper bound. As discussed in Section 5.5.3, it provides
(1− 1/e− ε) approximate solutions to the lower bound and the upper bound, respectively.
Consequently, we have α = β = (1− 1

e − ε) in Algorithm 14. Then, we also use the polling
algorithm to get a heuristic solution (SA) to the activity maximization problem. Last, we
get a (γ, δ) estimation of δA(·) based on Corollary 0.2 to complete Line 5 of Algorithm 14.
According to Theorem 32, the sandwich algorithm returns a seed set S such that

δA(S) ≥ max
{δA(SU )
δU (SU ) ,

δL(S∗L)
δA(S∗A)

}1− γ
1 + γ

(1− 1
e
− ε)δA(S∗A)

5.6 Experiments

In this section, we evaluate our algorithm via a series of experiments on four real-world
networks.
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Table 5.2: The statistics of the networks.

Network # Vertices # Edges Average degree
Douban 45,559 293,377 6.4
Aminer 1,712,433 4,258,615 2.5
DBLP 317,080 1,049,866 3.3
LiveJournal 3,997,962 34,681,189 8.7

5.6.1 Settings

We ran our experiments on four real-world networks, which includeDouban [114],AMiner [102],
DBLP [115] and LiveJournal [115]. The last two networks are available at the SNAP web-
site (http://snap.stanford.edu). Table 5.2 shows the statistics of the networks.

The Douban network is a social network about movie ratings. We use the number of
shared movies between a pair of users as their activity strength, which reflects the common
interest between users. The AMiner network is an academic social network. We use the
number of co-authored papers between a pair of users as their activity strength, which
reflects the collaboration strength between users. To explore the possibility of other kind of
activity strengths, we also verify our algorithm using two synthetic activity settings on the
DBLP network and the Livejournal network. In the first case, we uniformly set Au,v to 1 for
each edge (u, v). In the second case, we set Au,v to the value of the diffusion parameter Bu,v.
The intuition is that there may be more interactions between u and v if u is more likely to
activate v. The propagation probability Bu,v for the IC model and the influence weight for
the LT model of an edge (u, v) is set to 1

degree(v) , as widely used in literature [16]. For the
parameters controling approximation quality, we set ε = 0.1, δ = 0.001 and γ = 0.05 for all
networks.

We compare the proposed algorithm, referred as Sandwich, with three heuristic algo-
rithms: InfMax, Degree and PageRank. InfMax returns the vertices for influence maximiza-
tion. We followed the implementation reported in [82]. Degree returns the vertices with high
degrees. PageRank returns the vertices with high PageRank [86] scores.

We implemented our algorithm and the baselines in Java. All experiments were con-
ducted on a PC with a 3.4GHZ Intel Core i7-3770 processor and 32 GB memory, running
Microsoft Windows 7.

5.6.2 Effectiveness

Figure 5.6 shows the activity computed by each algorithm on the four networks, respectively.
For better illustration, we report the comparative gain ratio instead of the absolute activity
value, since the activity value scales vary greatly with respect to seed set size. It is easier
to distinguish the gaps between the baselines and our algorithm when we use comparative
gain ratio as the metric, since it is not affected by activity value scales. The comparative
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gain ratio of an algorithm A is defined as δA(SA)−δA(S)
δA(S) , where SA and S are the seed sets

returned by algorithm A and the Sandwich algorithm, respectively.
In the cases of real activity settings, our algorithm Sandwich always has the best per-

formance. Only in very few cases of synthetic activity settings, Sandwich is outperformed
marginally. In the real activity settings, InfMax has a poor performance and almost in all
cases is the poorest one. This is because influence maximization only considers the number
of active vertices and ignores the network structure. This phenomenon also demonstrates
what we have pointed out in Section 5.1: more active users do not necessarily lead to more
interaction activities.

In the uniform settings, algorithm Degree performs well under the IC model but has
a relatively bad performance under the LT model. InfMax and PageRank often have a
bad performance under both the IC model and the LT model in the uniform settings. In
the diffusion settings, InfMax algorithm is a good heuristic under both the IC model and
the LT model. Algorithm PageRank performs well on the DBLP network but has a bad
performance on the other two networks. Algorithm Degree often has a bad performance
under both the IC model and the LT model in the diffusion settings. These results show
that these baseline algorithms are not stable in performance in this task and can only work
well in some specific network or activity setting. The reason is that these baseline algorithms
only use the properties of the social network or the diffusion process but totally ignore the
activity strengths on edges. In contrast, our algorithm utilizes the unbiased estimate of the
activity and its lower and upper bounds to solve the problem. This is why our algorithm
always has a good performance while the baseline algorithms fail in many cases.

5.6.3 Approximation Quality

A major advantage of our algorithm is that it carries a data dependent approximation ratio.
Since the exact approximation is intractable to compute, we report the computable lower
bound of the approximation ratio, that is (1−γ)2

(1+γ)2 · (1− e− ε) · δ̂A(SU )
δ̂U (SU ) . Figure 5.7 shows the

results on the four networks.
The ratio varies in different networks. On the same network, the ratios under the IC

model and the LT model also differ. In general, the ratio under the LT model is greater than
the one under the IC model in the same activity settings. The ratio does not change much
with respect to the size of the seed set k. Roughly the ratio increases when k increases. A
possible reason is that the gap between the activity and the upper bound shrinks when k
increases, since there are more vertices activated with a larger value of k. Interestingly, we
observe that, in terms of approximation ratio, the LT model consistently outperforms the
IC model on both the real networks (i.e., Douban and Aminer in Figures 5.7(a)-(b)) and
the networks with synthetic activities (i.e., DBLP and LiveJournal in Figures 5.7(c)-(d)).
The consistency in the experimental results indicates that the uniform setting and diffusion
setting of synthetic activities are two possible ways to simulate real activities.
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(c) DBLP-uniform-IC
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(d) DBLP-diffusion-IC
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(e) LiveJournal-uniform-IC
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(f) LiveJournal-diffusion-IC

Figure 5.5: Information activity on four networks. (a)-(d) show the performances on two
real networks (Douban and Aminer) under IC model. (e)-(l) show the performances on real
networks (DBLP and LiveJournal) with two types of synthetic activity settings, such as
uniform and diffusion.
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(c) DBLP-uniform-LT

0 50 100 150 200

K

-0.3

-0.2

-0.1

0

C
o

m
p

a
ra

ti
v
e

 G
a

in
 R

a
ti
o

(d) DBLP-diffusion-LT
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(f) LiveJournal-diffusion-LT

Figure 5.6: Information activity on four networks. (a)-(d) show the performances on two
real networks (Douban and Aminer) under LT model. (e)-(l) show the performances on real
networks (DBLP and LiveJournal) with two types of synthetic activity settings, such as
uniform and diffusion.
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Figure 5.7: The performance of approximation ratio on four networks. (a)-(b) show the
performances on Douban and Aminer under IC model and LT model. (c)-(d) show the
performances on DBLP and LiveJournal with two types of synthetic activity settings, such
as uniform (U) and diffusion (D).

5.6.4 Scalability

Since the activity settings do not affect the running time, we only report the running time
in the uniform case. Fig. 5.8 and Fig. 5.9 shows the running time on the four networks.

In most of the cases, the running time of our algorithm decreases when the size of
seed set k increases. This is because the time cost in Sandwich depends on the number of
sampled hyperedges. According to Corollary 0.2, the expected number of samples is inversely
proportional to µZ , which is the probability of the event S ∩RgT (u) 6= ∅ ∧ S ∩RgT (v) 6= ∅.
It increases when k increases. A similar analysis holds for the lower bound and the upper
bound. PageRank is faster than our algorithm on the smallest networks but slower on the
largest network. Degree and InfMax are more efficient than our algorithm, but they are
substantially weaker than ours in effectiveness in many cases. As described in the previous
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Figure 5.8: The running time of all methods on four networks under IC model.

sections, there are many differences between our algorithm and InfMax, which lead to
different time costs of the two algorithms. First, to obtain a data dependent approximation
factor, the Sandwich algorithm actually solves three problems with polling based method.
Second, during the sampling process of the original problem and maximizing the lower
bound, we need to conduct a poll from both two endpoints of a randomly picked edge.
Third, the sampling objects of the two algorithms are different, i.e., vertices versus edges.
The sampling complexity of InfMax is mainly dependent on the number of vertices while
the sampling complexity of Sandwich is mainly dependent on the number of edges. It is
worthy noting that our algorithm is actually very efficient. The largest running time is only
about 600 seconds on the largest network, which has millions of vertices and tens of millions
of edges.
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Figure 5.9: The running time of all methods on four networks under LT model.
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Figure 5.10: The run running time of all methods on five sampled networks
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Table 5.3: The sampled LiveJournal networks

Sample ID 1 2 3 4 5
Vertices (×105) 1.0 5.0 9.0 13 20
Edges (×106) 1.6 5.8 9.7 13 18

Table 5.4: Influence spread and information activity on the DBLP and LiveJournal networks
(IC Model)

Data k=20 k=200
influence activity ratio influence activity ratio

DBLP 2,291 3,509 1.53 13,764 21,165 1.54
LiveJ 66,615 958,95 1.44 186,726 333,598 1.79

5.6.5 Influence Spread versus Activity

To further explore the scalability of the algorithms, we sample five networks from the
LiveJournal networks as follows. First, we start a breadth first search (BFS) from a randomly
selected vertex on the whole graph G until the desired number of vertices are visited. Denote
by N the set of all vertices visited by the BFS. We use N to induce a subgraph GN as the
sampled network. The number of vertices and edges of the five subgraphs are listed in
Table 5.3. After we obtain the sample networks, we run the algorithms when the size of
seed set is set to 200. The results are shown in Figure 5.10. For both the IC model and the
LT model, the Sandwich algorithm scales up roughly linearly with respect to the number
of edges. Also, the slope in the IC model is greater than that in the LT model. In other
words, the time cost increases more rapidly in the IC model. A possible reason is that the
influence in the IC model is more sensitive to the number of edges in the graph, since each
edge is activated independently in the IC model.

To explore the relation between influence spread and activity strength, we report their
values on the DBLP network and the LiveJournal network with the uniform settings. We
choose the uniform settings for these experiments here because, in such a situation, the
total nactivity strength is exactly the number of edges between the active vertices. In this
case, the activities can reflect the effect of the network structure formed by the propagation
induced subgraph. In the the other two networks, there is no such correspondence. We also
calculate the ratio, which is the influence spread against the information activity. Table 5.4
and Table 5.5 show the results on the two networks.

The ratio differs under different models. In general, the ratio under the LT model is
greater than the one under the IC model. Possibly active vertices are more closely connected
to each other under the LT model. We also notice that the ratio is similar when k = 20
and k = 200. This result suggests that the relation between the influence spread and the
activity does not vary much with respect to the size of seed set. The reason is that more
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Table 5.5: Influence spread and information activity on the DBLP and LiveJournal networks
(LT Model)

Data k=20 k=200
influence activity ratio influence activity ratio

DBLP 2,834 5,179 1.83 17,445 32,712 1.88
LiveJ 89,559 184,842 2.06 297,014 839,334 2.83

seed vertices lead to more active vertices, but, at the same time, the activity also depends
on the network structure among these vertices.
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Figure 5.11: The interaction ratio performances of IC model and LT model on DBLP and
LiveJournal networks under uniform activity setting.

The ratio can be viewed as the average degree of the propagation induced subgraph. The
average degree of the propagation induced subgraph is smaller than the average degree of the
whole graph. This is because only a small proportion of the vertices can be activated. Thus,
there are many edges between active vertices and inactive vertices. The average degree of the
propagation induced subgraph only considers the edges between active vertices. Thus, we
report the interaction ratio of the active vertices, which is the number of edges whose both
endpoints are active against the number of edges that have at least one active endpoint. The
results are shown in Figure 5.11. The interaction ratios are not high on the two networks.
This indicates that only a small proportion of the neighbors are activated and interact
with the active vertices. This result demonstrates an essential difference between activity
maximization and influence maximization.

5.7 Conclusions

In this chapter, to address the demand raised in several interesting applications, we proposed
and formulated a novel problem, activity maximization. We proved the hardness of the
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problem under both the IC model and the LT model. We also developed a lower bound and
an upper bound of the objective function, and observed several useful properties of the lower
bound and the upper bound. We designed a polling based algorithm to solve the problem
that carries a data dependent approximation ratio. Our experimental results on four real
networks verified the effectiveness and efficiency of our method. As future work we are
interested in learning the activity of user pairs from real-world data. Moreover, considering
the budget allocation version of the activity maximization similar to the continuous influence
maximization in Chapter 4 is an interesting direction to explore.
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Chapter 6

Conclusion and Future Directions

The booming of online social network services provides tremendous new opportunities to
many traditional business applications like marketing. Leveraging the social propagation
effect lies at the core of mining the marketing values of social networks, and faces many
algorithmic challenges. In this thesis, we focus on algorithm designs for social propagation
aware marketing, and develop solutions to a number of crucial problems emerging from
important marketing applications using social networks.

In this chapter, we summarize our research presented in this thesis and discuss some
future directions in social propagation mining.

6.1 Summary of the Thesis

Mining social propagations for marketing applications has been extensively studied. Most
previous studies aim at finding a set of influential users to maximize the influence spread
in a social network, and often assume that the underlying social network where social
propagations take place is static. However, the highly dynamic nature of real social networks
and the needs of many deeper marketing applications pose many unsettled and challenging
algorithmic problems in leveraging social propagations. In this thesis, we identify three
crucial social marketing problems that cannot be solved by previous studies, and make the
following contributions.

• One fundamental task in utilizing social propagations in marketing is to extract influ-
ential users who can trigger large-scale propagations. There are two big challenges: (1)
computing users? influence spread is often #P-hard [22, 20], and (2) real social net-
works are not static but evolve rapidly. To address these challenges, we devise efficient
incremental algorithms that maintain a number of poll samples where we can extract
top influential vertices with provable quality guarantees. When the network is only
slightly updated, instead of re-generating all poll samples from scratch, our incremen-
tal algorithms only retrieve and update a few poll samples. One important problem
is how many poll samples we need, as the sample size affects the quality of influential
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vertices extracted. We devise efficient methods for deciding small and proper sample
sizes for two common kinds of influential vertices queries, namely tracking vertices
with influence spread of at least a threshold T , and tracking top-k influential indi-
vidual vertices. Our methods are theoretically grounded that with high probability,
the set of vertices S returned by our algorithms contains all real influential vertices
(recall=100%) and influence spread of any false positive vertex in S is only slightly
smaller than T in a threshold query, or Ik, the k-th greatest individual influence spread
in a top-k query.

• When we want to promote a product through a social network, just identifying in-
fluential users is not enough. We need to spend some money on influential users to
motivate them to trigger large-scale propagations for our marketing purposes. Suppose
we know for each user the function of purchase probability with respect to discount.
Then, what discounts should we offer to those social network users so that, under
a predefined budget, the adoption of the product is maximized in expectation? To
answer this question, we formulate the CIM (Continuous Influence Maximization)
problem, which is a generalization of the well-known influence maximization prob-
lem. Denote by C = (c1, c2, ...) a discount configuration, where 0 ≤ cu ≤ 1 is the
discount offered to the user u. To find the best C under a budget B, we devise a
2-coordinate algorithmic framework where any propagation models can be plugged
into. The idea is to improve the discount configuration C in an iterative manner. We
investigate relations of CIM and traditional influence maximization. We also borrow
concepts in statistical learning theory to develop principled implementations of our
CIM algorithms under the family of triggering models, where the key point is how to
effectively approximate the influence spread function to avoid the “overfitting” issue.

• The number of users involved in a propagation is a proper objective for marketing ap-
plications like adoption maximization. However, in some applications, the interaction
activities among active users are also valuable to us. Imagine we want to stimulate
a propagation from some influential users in a network for spreading a controversial
social issue, such as Trump?s pulling the US out of TPP. The goal is to make users in
the social network discuss the issue as much as possible. Thus, instead of the number
of users retweeting the words, what matters is the post-propagation marketing effect,
that is, how intense the discussion between users who retweet will be. We model the
strength of the activity/discussion of two users in a network as the weight of the
edge connecting them, and propose the Activity Maximization problem. Our goal is
to select k seed users to trigger a propagation, such that the expected sum of weights
of edges between users involved in the propagation is maximized. We prove the NP-
hardness and inapproximability of the activity maximization problem. To solve this
problem, we derive an upper bound and a lower bound of the activity function to
apply the Sandwich approximation algorithm. We also devise a novel polling based
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algorithm to approximate the activity function, the upper bound and the lower bound
in order to obtain a data-dependent approximation factor of our solution.

6.2 Future Directions

Besides direct extensions of our current research discussed at the end of each chapter, there
are also some important directions in mining social propagations for business applications.

6.2.1 Social Marketing Optimization under Noisy Influence Oracles

So far for social marketing optimization problems such as influence maximization and its
variations, budget minimization and the budget allocation problem introduced in Chapter 4,
almost all existing studies assume an underlying propagation model in the problem setting.
Most studies adopt the Independent Cascade model and the Linear Threshold model, and
there are also many studies using the Continuous-Time Diffusion model. Although those
popularly used propagation models do capture some intuitions and properties of real so-
cial propagations, there always are networks where the mechanism of propagations differs
very much from the assumptions of those models. In such cases, the popularly adopted
propagation models may lead to large model bias.

In many social marketing optimization problem, the most important information derived
from a propagation model is the influence spread function1. To settle the potential large
model bias issue of propagation models, some studies investigate how to learn the influence
spread function directly from users’ action data [34, 49]. People even proposed black box
learning method like deep neural networks to learn the influence spread function [108, 88].

Compared to the current research in social marketing optimizations, a more realistic
problem setting is that we only have a noisy oracle that returns influence spreads of seed
sets with a reasonable level of accuracy. Such an oracle can be obtained by applying methods
that direct learn the influence spread function [34, 49, 108, 108, 88]. Then one important
and challenging problem is, with such a noisy oracle, how do we design robust [48, 17]
optimization algorithms for social marketing? Note that since the oracle is often a black
box, we cannot apply methods like the polling sketch that utilizes properties of specific
propagation models for approximating influence spread.

6.2.2 Ensemble Learning Propagation Graphs

In our research presented in this thesis, we assume that we have the full information of the
propagation graph. However, in reality, the propagation graph is usually not known to us in

1An influence spread function I : 2V → [0, |V |] is just a function returning the influence spread I(S) of a
given seed set S.
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advance. Since the propagation graph can be regarded as an parameter of a influence prop-
agation model, we can apply machine learning methods like maximum likelihood learning
to learn the propagation graph when given some historical propagation records, which can
be derived from users’ action data [29, 40, 42, 79, 93, 59, 91, 76].

For every stochastic propagation model, we can develop a learning algorithm to learn
the propagation graph. However, although popular propagation models like the Continuous-
Time Diffusion model and the Linear Threshold model were verified be able to fit real prop-
agations to some degree, they still are different from the real mechanism of propagations.
One famous fact in machine learning is that every model has its limitations and ensem-
ble results by multiple models often can get better learning results [118]. Thus, applying
ensemble learning to the propagation graph learning problem, how can we combine results
(which are graphs) of methods assuming different propagation models? One key primitive is
that how to calculate the “average” of a given collection of graphs {G1, G2, ..., Gk}. Unlike
numerical data, there is no nature way to define this “average” for graphs.

We give one possible way to take the “average” of multiple graphs. Inspired by the fact
from geometry that, the average of {x1, ...,xk} is y = arg minx∈x

∑k
i=1

1
k |x− xi|. We can

define the average of {G1, G2, ..., Gk} as

G = arg min
G′∈G

k∑
i=1

1
k
Dis(G′, Gi) (6.1)

where Dis(·, ·) is a graph distance function, for example, the graph edit distance. A big
algorithmic challenge is how to efficiently calculate the average G in Eq. 6.1 when we are
given a graph distance function.

Taking the average of graphs for ensemble learning can also be regarded as a fundamental
tool in graph mining, which can be applied to many other applications like learning scene
graphs in robotics vision [113, 80, 117] and learning knowledge graphs [52, 66].

6.2.3 Adversarial Propagation Graph Learning

Learning the propagation network from users’ action data is not always a good thing.
Sometimes we may want to hide certain parts of the network from a learning algorithm.

The public and private model of graphs [23] draws a lot of attention from both academia
and industry recently. Statistics show that 52.6% Facebook users from New York City hide
part of their friends list [32]. Thus, the social network owner is responsible to keep these
hidden links from being hacked. However, propagation data or timestamped user action data
may cause leakage of hidden social connections. For example, if very often a Facebook user
A shares the article that user B just shared a few minutes ago, we can infer that probably
A follows B or A and B are friends in Facebook, even when A hides her connection to B.
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Besides edges that are hidden by social network users, there may be some other edges
that the social network owner needs to hide. To make money by providing viral marketing
plans to customers [15], the social network owner should make sure that customers cannot
figure out good marketing plans themselves. One natural idea is to hide some crucial links
for propagations in the network such that a customer who wants to conduct a viral mar-
keting campaign cannot find the real influential users. Since people normally use influence
maximization to design viral marketing campaigns, an interesting algorithmic problem is
how to select a small given number of edges to hide, such that the solution of influence
maximization is impaired the most.

Once the social network owner decides to make what edges invisible to a third party,
the task is to massage the propagation data (timestamped user action data) posted online
to make a social graph learning algorithm fail to learn the existence of these edges. We
can make some user action records not accessible and we can modify timestamps of some
records. When one crawls the user action data via APIs for the purpose of data analysis,
she will get the massaged data. One key point is that we hope the massaged data not be
much different from the original data, such that we can still draw reliable statistics like how
many users share an article to do analysis that does not involve the privacy issue.
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