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Abstract

The decipherment of homophonic substitution ciphers using language models (LMs) is a
well-studied task in Natural Language Processing (NLP). Previous work in this topic score
short local spans of possible plaintext decipherments using n-gram LMs. The most widely
used technique is the use of beam search with n-gram LMs proposed by Nuhn et al. (2013).
We propose a new approach on decipherment using a beam search algorithm that scores
the entire candidate plaintext at each step with a neural LM. We augment beam search
with a novel rest cost estimation that exploits the predictive power of a neural LM. This
work, to our knowledge, is the first to use a large pre-trained neural language model for
decipherment. Our neural decipherment approach outperforms the state-of-the-art n-gram
based methods on many different ciphers. On challenging ciphers such as the Beale cipher
our system reports significantly lower error rates with much smaller beam sizes.

Keywords: Natural Language Processing; decipherment; neural decipherment; neural lan-
guage models; beam search
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Chapter 1

Introduction

The term decipherment is used to describe the process of converting an encoded text or a
signal into a comprehensible normal language text. In cryptanalysis, decipherment means
decryption - the process of retrieving the original data from its encrypted form. Decipher-
ment in archaeology and historical linguistics means producing an interpretation of ancient
scripts and languages.

For thousands of years, codes have been used by many, including the military, scientists,
criminals and secret societies, to maintain secrecy. These encoded messages or ciphertexts
are obfuscated forms of the original texts obtained by systematically operating on the con-
stituent symbols by a process called encipherment. Decipherment subverts the sanctuary
that encipherment creates by reversing the process to obtain the original plaintext. Philolo-
gists and archaeologists have spent lifetimes attempting to decipher several ancient scripts
and lost languages. Despite computers being nonexistent at the time, many such scripts and
languages have been deciphered, thanks to decades of man-hours spent on these undertak-
ings. A crowning achievement in the area was the decipherment of Egyptian hieroglyphic
writings during early 1820s [1]. Besides the discovery of Rosetta Stone in 1799, this success
was a culmination of efforts of historians and literary scientists for centuries. In cryptanal-
ysis, Alan Turing’s code breaking machine Bombe which played a crucial role in cracking
the Enigma code - an encryption system employed by the German forces for secure commu-
nication during World War II - was a significant breakthrough. Turing’s invention of this
deciphering-machine reduced the duration of the war by at least 2 years, thereby saving
millions of lives [10], and has been pivotal in the advancement of computing.

In 1947 Warren Weaver, a mathematician and one of the pioneers of machine translation
(MT), suggested that an article written in Russian can be really perceived as written in
English but encoded with strange symbols, and that one would simply decode the text to
learn its meaning [36, 22]. The cryptographic decipherment approach for machine translation
of natural languages was one of the first envisioned applications of modern computing [17].
State-of-the-art machine translation approaches rely on copious amounts of parallel text to
estimate translation models. While these methods are effective, it is difficult to find parallel
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data in every domain or for every language pair. Though computational decipherment has
been explored to offset this drawback [34, 25], translation accuracies of such techniques are
still low.

The application of decipherment in different areas of research makes it an interesting
venue to explore further. A robust decipherment system is crucial to making decipherment
approaches functional in practical real-world applications.

1.1 Definitions

Substitution ciphers are encrypting algorithms which operate by replacing the con-
stituent tokens of a plaintext with ciphertext units, typically following a mapping scheme
(φ) or a set of defined rules.

Using general notations from MT [26], consider ciphertext fN1 = f1...fi...fN and plain-
text eN1 = e1...ei...eN consisting of vocabularies fi ∈ Vf and ei ∈ Ve respectively. Mathe-
matically, substitution cipher is formulated as a function φ(e, f) that computes probability
of mapping a given ciphered symbol f to a context symbol e. We call a table with these
probabilities of mapping of a plaintext token with a ciphertext token a substitution table.

Figure 1.1: An example of Simple Substitution cipher.

There are different types of substitution ciphers: 1:1 letter substitution, homophonic,
polygraphic, mechanical and poly-alphabetic. Polygraphic ciphers substitute a plaintext
token with multiple ciphertext tokens. Mechanical ciphers logically select a plaintext token
to be substituted using a rotating letter disk (example: the Enigma machine). Polyalphabetic
ciphers use multiple substitution alphabets.

2



Figure 1.1 shows a simple substitution cipher written in Alienese, the language of the
aliens, borrowed from an episode (fair use screenshot) of the sci-fi cartoon tv-show Futu-
ramaTM. Even though the language is made-up, we are able to successfully decipher it into
plain English (solution in subsection 1.1.1).

1.1.1 1:1 Substitution Ciphers

Also referred to as simple substitution cipher, in 1:1 substitution cipher each plaintext
character is replaced with a unique ciphertext symbol. This type of ciphers is simple and can
be generally solved using frequency analysis techniques. Consider the following decipherment
key :

In this key, the letters of English alphabet are plaintext tokens e ∈ Ve and beneath them
are the corresponding ciphertext symbols e ∈ Ve which substitute them. Mathematically,
the mapping function c(e|f) assigns a value of 1 to the right plaintext-ciphertext pairs and
0 for the rest.

A B C D E ..
1 0 0 0 0 ..
0 0 1 0 0 ..
0 1 0 0 0 ..
0 0 0 1 0 ..
0 0 0 0 1 ..

.. .. .. .. .. .. ..

Table 1.1: Substitution table for simple substitution cipher.

Using the key, the Alienese text shown in Figure 1.1 can
be deciphered to USED HUMAN PROBES.
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Figure 1.2: A historic homophonic cipher used in our experiments [Wikisource]
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1.1.2 Homophonic Substitution Ciphers

A homophonic cipher is a more advanced cipher. It uses an encryption scheme which sub-
stitutes each plaintext token with one or more than one cipher symbol. Thus, a plaintext
token e ∈ Ve is mapped to multiple symbols f ∈ Vf , which often makes it difficult to crack.

 
 

A     B    C  ..  E  ..  I  .. R    S    T 
 
  12   09   02    45    63   11   01  21
  31   18   53    33    39   07   87  62
  17          36    15                 81  96
                 24     75                   38  
 
 

    PLAINTEXT :   I    T    S    A    S    E    C    R    E    T  

 CIPHERTEXT :  39  62  87  31  38   33   02  11  75   21  

Figure 1.3: An example Homophonic Cipher.

The encipherment process for this type of substitution involves mapping a key to dif-
ferent symbols. This makes homophonic ciphers non-deterministic. Figure 1.1.2 shows an
example homophonic cipher. Note how the E is disguised as 33 and 75 at different positions
in the ciphertext. This non-determinism makes homonphonic ciphers much harder than 1:1
ciphers as guessing just one substitution option doesn’t lead to the solution.

1.2 Motivation

Breaking substitution ciphers recovers the plaintext from a ciphertext that uses a 1:1 or
homophonic cipher key. Previous work using pre-trained language models (LMs) for de-
cipherment use n-gram LMs [33, 26]. Some methods use the Expectation-Maximization
(EM) algorithm [19] while most state-of-the-art approaches for decipherment of 1:1 and
homophonic substitution ciphers use beam search and rely on the clever use of n-gram
LMs [27, 15]. Newly proposed neural LMs can globally score the entire candidate plain-
text sequence [24]. However, using a neural LM for decipherment is not trivial because
scoring the entire partially-deciphered plaintext candidate is computationally challenging.
A partially decoded text has many undeciphered symbols as well. The scoring function in
state-of-the-art beam search technique employs an n−gram language model to evaluate the
partial outputs with maximum available context, or local context, based on some heuristic
assumption. An n−gram language model can hold a maximum context window of n. A neu-
ral language model, on the other hand, has a richer context. The improvements on beam
search algorithm in this decipherment system allow for it to use large pre-trained neural
LM to score the partial decipherments with global context.
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1.3 Contribution

In this thesis, we introduce a novel method for solving substitution ciphers using neural
language models and beam search. Our contributions are as follows:

• We present the first automatic-decipherment system to use a large pre-trained neural
language model.

• We propose an improvement over the beam search for decipherment introduced by
Nuhn et al.[26] that solves both 1:1 and homophonic letter substitution ciphers effec-
tively.

• Our new method seeks to complete a partially-deciphered text by sampling the miss-
ing plaintext tokens from a neural language model, implicitly enabling the entire
sequence to be scored globally as beam search progresses. This provides a robust deci-
pherment system that counterbalances the drawbacks faced by the previous methods
using n−gram language models.

• We introduce a second variant of the scoring function in beam search by augmenting
it with a frequency matching heuristic that estimates the correlation between a ci-
phertext symbol and a plaintext token. This technique seems to contribute positively
towards decipherment accuracies.

1.4 Overview

This thesis introduces a simple and powerful method to obtain the plaintext from an un-
readable text enciphered with a substitution cipher automatically.

In Chapter 2, we discuss previous work on decipherment, primarily the approaches
for solving substitution ciphers. The aim of this chapter is to summarize the literature in
computational decipherment while introducing the techniques with which we juxtapose our
system.

In Chapter 3, we describe our decipherment model. Our algorithm solves monophonic
(1:1) and homophonic substitution ciphers with a pre-trained source language model (LM).
The chapter is divided into two sections: (1) neural language model to find the most probable
deciphered text; (2) beam search algorithm that finds the best scoring mapping (φ) for the
deciphered text.

In Chapter 4, we detail the score estimation function that is crucial to beam search
algorithm. We discuss the baseline local scoring method and our novel global scoring method
that works with neural language model.

In Chapter 5, we report the experiments conducted on various 1:1 and homophonic
ciphertexts, both synthetic and historic, their evaluation and results. We apply our auto-
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mated decipherment model on the Zodiac 408 and Beale Pt-2 ciphers, and record interesting
results.

We conclude our work in Chapter 6. We summarize our contributions, and the ex-
perimental results and findings in this chapter. We show that our simple neural language
model powered decipherment system is very effective and quite comparable to the current
state-of-the-art.
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Chapter 2

Related Work

One of the earliest known methods employed to decipher substitution ciphers was based on
frequency analysis. The development of this technique is accredited to the great polymath,
Al-kindi, who gave the description of this first cryptanalysis method in the 9th century [2].
Since then several methods relying on number theory have been studied to automate decryp-
tion or decipherment. Differential cryptanalysis [6] is one such technique which investigates
the differences in ciphertext through a network of transformations to find any non-random
behaviour of symbols in the cipher. Biryukov et al. [7] later developed a cipher-only attack
which applies a series of methods to break a code, assuming no prior knowledge about the
ciphertext. Bleichenbacher et al. [8] presented a technique that uses a guessing approach to
replace ciphertext tokens at random on a unit or a segment level. In a broader sense, these
techniques used mathematical models to solve ciphers with no prior knowledge about the
plaintext.

The initial works on using linguistic information in decipherment systems were predom-
inantly based on dictionary attacks. In 1979 Peleg and Rosenfield [30] used dictionaries to
find cleartext patterns within ciphertext with a relaxation algorithm to solve substitution
ciphers. Hart et al.[14] proposed a statistical model that used a large dictionary to mine
symbol patterns and augment the language model. [18, 28] had further employed heuristic
search based on word dictionaries to find the cipher key.

Knight and Yamada [20] used a statistical method based on Expectation Maximization
(EM) algorithm to decipher unidentified foreign writing scripts with phonetic models of
familiar languages. Their model was able to learn the interconnection of written tokens
(cipher), and phonemes (plaintext). In another work, Knight et al.[19] proposed a fully un-
supervised technique based on EM for breaking substitution ciphers. The method relied on a
character n−gram language model (LM) to obtain the most probable decipherment. The EM
computes plaintext-to-ciphertext symbol mapping probabilities, then the Viterbi algorithm
is used as a decoder to produce the output sequence. Berg-Kirkpatrick and Klein [5] showed
that a large number of random restarts improved the EM approach in the decipherment
setting, yielding high accuracies.
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Ravi and Knight [33] introduced a novel Bayesian approach for decipherment, and re-
ported the first automatic decipherment of the Zodiac-408 cipher using a trigram LM and
a word dictionary. Ravi and Knight [32] framed the decipherment problem as an integer
linear programming (ILP) problem. Corlett and Penn [11] presented an efficient A* search
algorithm to solve letter substitution ciphers. This method is capable of working with longer
ciphers than the ILP approach. While A* search produces optimal solution, it is computa-
tionally complex in terms of time and space, which makes it less suitable for solving very
long ciphers.

Nuhn et al. [26] produced better results on 1:1 and homophonic letter substitution ci-
phers in shorter time compared to ILP and EM-based decipherment methods by employing
a higher order language model and an iterative beam search algorithm, thus becoming the
state of the art for solving substitution ciphers. The beam search allowed for solving one
symbol at a time, building the search space into a tree, such that exactly k symbols are
deciphered at the k-th level of the tree. Using a character 6−gram LM to quantify the
probabilities of partial solutions, beam search keeps only the n best scoring solutions and
prunes the rest. Nuhn et al. [27] further presented various improvements and extensions to
this beam search algorithm by introducing an improved rest cost estimation and an opti-
mized strategy to arrange the order in which the cipher symbols are deciphered. This is
the current state of the art. Our approach investigates these two methods almost exhaus-
tively and directly builds on top of the decipherment models given by Nuhn et al. [26, 27].
With extensions to the model within the same framework, our system compares against
its predecessors on deciphering substitution ciphers. For shorter cryptograms, Hauer et al.
[15] proposed a novel approach for solving mono-alphabetic substitution ciphers which com-
bined character-level and word-level language model. They formulated decipherment as a
tree search problem, and used Monte Carlo Tree Search (MCTS) as an alternative to beam
search. Their approach is the best for short ciphers.

In NLP, the effectiveness of neural network models for decipherment has not been
thoroughly investigated. Greydanus [13] framed the decryption process as a sequence-to-
sequence translation task and use a deep LSTM-based model to learn the decryption al-
gorithms for three poly-alphabetic ciphers including the Enigma cipher. However, their
approach needs supervision compared to our approach which uses a pre-trained neural LM.
Gomez et al. [12] (CipherGAN) used a generative adversarial network to learn the mapping
between the learned letter embedding distributions in the ciphertext and plaintext. They
apply this approach to shift ciphers (including Vigenère ciphers). Their approach cannot
be extended to homophonic ciphers and full message neural LMs as in our work. To our
knowledge, our work is the first to apply neural networks based approach for decipherment
of natural language.
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Chapter 3

Decipherment Model

The aim of decipherment is to transform an unreadable ciphertext into the original hu-
man comprehensible plaintext. To describe the problem formally, consider ciphertext fN1 =
f1..fi..fN and plaintext eN1 = e1..ei..eN which consist of vocabularies fi ∈ Vf and ei ∈ Ve
respectively. The beginning tokens in the ciphertext (f0) and plaintext (e0) are set to
“$” denoting the beginning of a sentence. The substitutions are represented by a func-
tion φ : Vf → Ve such that 1:1 substitutions are bijective while homophonic substitutions
are general. A cipher function φ which does not have every φ(f) fixed is called a partial
cipher function [11]. The number of fs that are fixed in φ is given by its cardinality. φ′ is
called an extension of φ, if f is fixed in φ′ such that δ(φ′(f), φ(f)) yields true ∀f ∈ Vf which
are already fixed in φ where δ is the Kronecker delta function [37].

The objective of automated decipherment is then to find the φ that maximizes the
probability of the deciphered text:

φ̂ = arg max
φ

p(φ(f1)...φ(fN )) (3.1)

Here, p(.) is the language model (LM). In practice, argmax function is approximated using
a beam search algorithm [26] which incrementally finds the most likely substitutions using
the language model scores as the ranking.

3.1 Language Model

Language modelling is a very important task in natural language processing. A language
model (LM) is an approach to statistically specify the model of a natural language through
a lot of examples. A statistical language model is a probability distribution over words
or characters. Traditionally, a statistical LM is trained using large amounts of monolingual
data, to make probabilistic prediction of the subsequent element in a sequence given a set of
elements that precede it. These elements could be either words or characters. The statistical
n−gram language models make an estimate of the likelihood of the element being of each
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certain value given the preceding n − 1 elements.The goal of a language model (LM) is to
estimate the probability distribution of a sequence of words or characters. It can, therefore,
assign a probability to an entire given sequence of characters/words.

For example, consider a sequence x1:T = x1, x2, x3, ..., xT . An aforementioned LMmodels
the likelihood of the sequence of characters p(x1:T ) as:

p(x1:T ) = p(x1, x2, x3, ..., xT )

p(x1:T ) = p(x1).p(x2|x1).p(x3|x2, x1)...p(xT |xT−1..x1)

p(x1:T ) =
T∏
i=1

p(xi | x1, x2, ..., xi−1))

p(x1:T ) =
T∏
i=1

p (xi | x<i)

(3.2)

Language models are pivotal to solving the problem of decipherment, since we can use
them to guide the search algorithm to the possible optimal solution. Thus, in equation (3.1)
the probability distribution from an LM can be treated as an objective function to find the
cipher key which gives the most probable decipherment.

3.1.1 Neural Language Model

As opposed to a statistical LM, a neural LM models language sequence probability using
neural network representations. Bengio et al. [3] proposed a feed-forward neural network
language model which operates on a fixed number of elements at each step. The major
drawback in this approach is that a feed forward network has to use fixed-length context
that needs to be specified ad hoc before training. A solution to this issue is using Recurrent
Neural Networks (RNNs). RNNs can incorporate any number of elements as possible thus
allowing an unlimited context. By using recurrent connections, information persists inside
these networks for arbitrarily long time [9]. Mikolov et al. [23] proposed the simplest form
of optimized RNN language model. The main advantage of an RNN LM, or a neural LM
in general, over a statistical n−gram LM is that it can compute the log-likelihood of the
entire candidate plaintext for a partial hypothesis during decipherment. In this work, we
use a state-of-the-art byte (character) level neural LM using a multiplicative LSTM [31].
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Figure 3.1: Character NLM in action on the word ’zodiac’.
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Multiplicative RNNs or mRNNs allow flexible input-dependent transitions. They per-
form better than traditional RNNs on language modelling tasks [35]. Alhough generative
RNNs measure the log-likelihoods of variable length sequences accurately, the vanishing
gradient problem renders RNNs hard to train [4]. The long short-term memory (LSTM)
architecture [16] was proposed to address this issue. LSTM adds additional units to model
long term and short term memory separately. So during backpropagation, the gradient is
less likely to vanish. Both LSTM and mRNN present multiplicative units. But the architec-
ture of an LSTM allows it to regulate the information flow through the network, whereas
in an mRNN the transition functions can vary across inputs. In other words, LSTM and
mRNN have complementary architecture. The multiplicative LSTM (mLSTM) [21] is a hy-
brid architecture that amalgamates the factorized hidden-to-hidden transitions of mRNNs
with the gating structure of LSTMs.

The demonstrated success of mLSTMs on character level language modelling [21, 31]
motivated us to use mLSTM network to train our language model. For mLSTM LM, mRNN
and LSTM are combined by adding connections to the intermediate state mt to the gates of
LSTM. With inputs from the input layer xt and the previous hidden state ht, intermediate
state mt in mLSTM is calculated using this equation:

mt = (Wmxxt)� (Wmhht−1) (3.3)

Using the state mt, the hidden state, and the sigmoid input, output and forget gates of the
mLSTM are formulated as:

ĥt = Whxxt +Whmmt

it = σ(Wixxt +Wimmt)

ot = σ(Woxxt +Wommt)

ft = σ(Wfxxt +Wfmmt)

(3.4)

At each time step, the internal cell state is updated using the input and forget gates.

ct = ft � ct−1 + it � tanh(ĥt) (3.5)

The final output of the hidden state at step t is then given as:

ht = tanh(ct)� ot (3.6)

The gated units of LSTM control the complex transitions in mRNN that result from the
factorized hidden weight matrix. The sigmoid input and forget gates in the LSTM units
allow more flexible input-dependent transition functions than in regular mRNNs. Assume
we have a sequence x1:T = x1, x2, x3, ..., xT . To measure the likelihood of the sequence, we
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calculate the probability of x1:T using equation 3.2 as:

p(x1, x2, ..., xT ) =
i=T∏
i=1

p (xi | x<i)

With xt as the current input, the updated final output of the current hidden state (ht)
from equation 3.6 is used to predict the probability distribution over the next subsequent
element in the sequence as a function of g:

p(xt+1) = softmax(g(ht)) (3.7)

The function g applies a matrix multiplication and then softmax normalization is performed
on ht to convert it into a valid probability distribution.

Let SCORE() denote the scoring function based on the neural language model. Given a
sequence x1:T = x1..xT , SCORE(x1:T ) determines its score as the negative log likelihood of
the sequence:

SCORE(x1:T ) = −log(p(x1:T ))

Simplifying this further from equation 3.2:

SCORE(x1:T ) = −log
(

T∏
i=1

p(xi | x<1)
)

= −
T∑
i=1

log (p (xi | x<i))
(3.8)

where the probability p(.) is computed using Equation 3.7. The above equation 3.8 shows
the language model score (SCORE(.)) obtained on any given sequence. Since this is a neural
language model, it considers the entire stream of characters to produce the score.

3.2 Beam Search

Beam search is a heuristic search algorithm that combines breadth-first search (BFS) and
child pruning techniques to build its search space into a tree. At each level it produces
the subsequent state of all the current states and ranks them using the scoring (or cost)
function. It stores only k best options at each depth and prunes the rest, thus reducing
the search space as it expands. Beam search is most oftenly used to maintain tractability
in large systems with insufficient amount of resources to store the entire search tree. In
a decipherment model, beam search finds a sequence of plain text letters by using the
ciphertext based on the plaintext language model.
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Consider the ciphered sequence ‘lo∼≈ aohln’ of length n. Deciphering this to En-
glish would mean the plaintext vocabulary size |Ve| is 26. This would require searching
across a space of 26 candidate maps for each cipher symbol f ∈ Vf . Performing a search
through whole space of 26 letters would result in a high space complexity of O(26n). Using
beam search can help prune the candidate plaintext tokens based on their LM score. If we
choose a beam size of top k candidate tokens scored by LM, the resulting search would only
need a space of O(kn) - a significant improvement in terms of complexity. If the language
model is powerful enough, with any luck, the above code can be deciphered to ‘LOST WORLD’.

3.2.1 Algorithm for Decipherment

Algorithm 1 is the general framework of the beam search algorithm introduced by Nuhn
et al. [26] for solving substitution ciphers. As an overview, it tracks all partial hypotheses
by maintaining two lists: Hs and Ht, based on their quality. As the search progresses, the
partial hypotheses are extended, scored with SCORE and appended to Ht. SCORE(.) scores
a hypothesized partial decipherment using probabilities from the plaintext language model.
The number of fixed ciphertext symbols is given by CARDINALITY. EXT_LIMITS determines
which extensions should be allowed and EXT_ORDER picks the next cipher symbol for exten-
sion. HISTOGRAM_PRUNE then returns the best scoring subset with kbest hypotheses from the
new partial hypotheses by sorting them according to their scores determined by SCORE(.).
The search continues after pruning: Hs ← HISTOGRAM_PRUNE(Ht).

Algorithm 1 Beam Search for Decipherment by Nuhn et al. [26]
1: function (BEAM_SEARCH (EXT_ORDER, EXT_ LIMITS))
2: initialize sets Hs, Ht

3: CARDINALITY = 0
4: Hs.ADD((∅,0))
5: while CARDINALITY < |Vf | do
6: f = EXT_ORDER[CARDINALITY]
7: for each φ ∈ Hs do
8: for each e ∈ Ve do
9: φ’ := φ ∪ {(e, f)}

10: if EXT_LIMITS(φ’) then
11: Ht.ADD(φ’,SCORE(φ’))
12: HISTOGRAM_PRUNE(Ht)
13: CARDINALITY = CARDINALITY + 1
14: Hs = Ht

15: Ht.CLEAR()
16: return WINNER(Hs)
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Note that EXT_LIMITS() chooses which partial to leave out. This is based on the con-
straints of the cipher function φ.

MAP_LIMIT =

1 for 1:1

max
e

∑
f φ(f |e) for Homophonic

where MAP_LIMIT is the constraint on maximum number of f ∈ Vf that can map to plaintext
token e. EXT_ORDER is the order in which the cipher symbols will be fixed. This is a list of the
symbols sorted according to their unigram-frequencies, meaning the most frequent symbol
will be first operated on. This helps pruning out the deceptive hypotheses early from the
search span. SCORE is the most central function of the algorithm that determines if a partial
hypothesis should be kept or not by determining its quality based on a plaintext LM.

We augment this algorithm by updating the SCORE function with a neural LM. The
next chapter describes the improved score function that is capable of working with a neural
language model.
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Chapter 4

Score Estimation

Score estimation evaluates the quality of the partial hypotheses φ at each step as the beam
search progresses. In this chapter, we discuss the baseline scoring function and introduce a
novel scoring function that works with neural language model for the beam search algorithm
used for decipherment.

Consider Ve = {a, b, c, d} for plaintext vocabulary and Vf = {A,B,C,D} for ciphertext
vocabulary. We assume an extension order of (B,A,C,D). We now take a ciphertext

ABDDCABCDADCABDC

Let φ = {(a,A), (b, B))} be the partial hypothesis, meaning at this point only A and B are
converted to plaintext tokens. Then SCORE(φ) scores this hypothesized partial decipherment
using pre-trained language model (section 3.1.1) in the hypothesized plaintext language.

For better insights, let’s look at the following demonstration of the scoring process. Con-
sider this example [27] with vocabularies Ve = {a, b, c, d} and Vf = {A,B,C,D}, extension
order (B,A,C,D), and ciphered text

fN1 = $ ABDD CABC DADC ABDC $

We also have φ = {(a,A), (b, B))} as the partial hypothesis which returns the partial deci-
phered text

φ(fN1 ) = $ ab.. .ab. .a.. ab..$

With only these two locations deciphered, the score estimation (SCORE) can calculate the
hypothesis score only based on this partially interpreted sequence.
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4.1 Baseline

The initial rest cost estimator introduced in [26] computes the score of hypotheses only
based on partially deciphered text that builds a shard of n adjacent solved symbols. As
a heuristic, n-grams which still consist of unsolved cipher-symbols are assigned a trivial
estimate of probability 1. An improved version of rest cost estimation [27] consults lower
order n-grams to score each position. This would produce a score of:

p(a | $) · p(b | a) · 13 · p(a) · p(b | a) · 12 · p(a)·12 · p(a) · p(b | a) · 12

Meaning, with n−grams as low as unigrams chipping in to score, each symbol is scored with
most context available.

Though this method of scoring is computationally efficient and demonstrates good re-
sults, the scoring method greatly relies on local context, i.e. the estimation is strictly based
on partial character sequences. The unigram-probabilities here are static and do not de-
pend on the context at all. When estimating the parameters of an n-gram model, only the
context of (n − 1) words is considered. More specifically, the true conditional probability
under Markov assumption is not modelled and, therefore, context dependency beyond the
window is ignored. Thus, attempting to utilize a higher amount of context can lower the
probability of some tokens. During decipherment, this drawback prevents the model from
being able to estimate the contribution of a single character towards the structure of the
entire sequence.

4.2 New Improved Rest Cost Estimation

The baseline scoring method greatly relies on local context, i.e. the estimation is strictly
based on partial character sequences. Since this depends solely on the n-gram LM, the true
conditional probability under Markov assumption is not modeled and, therefore, context
dependency beyond the window of (n− 1) is ignored. Thus, attempting to utilize a higher
amount of context can lower the probability of some tokens resulting in poor scores.

We address this drawback with a new improved version of the rest cost estimator by
supplementing the partial decipherment φ(fN1 ) with predicted plaintext text symbols using
our neural language model (NLM). Using the same example as above with ciphertext $

ABDDCABCDADCABDC $ and φ = {(a,A), (b, B))}. The partial hypothesis constructed by [26,
27] and given a SCORE would be:

φ(fN1 ) = $a1b2...a6b7..a10..a13b14..$

The subscripts indicate the position of token. For example, a6 implies that token is at the
6th position in the sequence. We introduce a scoring function that is able to score the

17



entire plaintext including the missing plaintext symbols. First, we sample the plaintext
symbols from the NLM at all locations depending on the deciphered tokens from the partial
hypothesis φ such that these tokens maintain their respective positions in the sequence, and
at the same time are sampled from the neural LM to fit (probabilistically) in this context.
The char-level sampling is done incrementally from left to right to generate a sequence that
contains the deciphered tokens from φ at the exact locations they occur in the above φ(fN1 ).
If the LM prediction contradicts the hypothesized decipherment we stop sampling and start
from the next character.

NLM

Next, we determine the probability of the entire sequence including the scores of sam-
pled plaintext as our rest cost estimate. In our running example, this would yield a score
estimation of:

φ(fN1 ) = $ a1b2d3c4c5a6b7c8d9a10d11d12a13b14d15c16 $

Thus, the neural LM is used to predict the score of the full sequence (Eqn. 3.8). Thus, in
any iteration, given a φ with the SCORE(φ), the extension φ′ (Algo. 1) is scored as:

SCORE(φ′) = SCORE(φ) + NEW(φ′) (4.1)

where NEW is the score for symbols that have been newly fixed in φ′ while extending φ to φ′.
Since the NLM is just a distribution of probabilities, sampling characters from the

NLM is stochastic. Sampling is done to reconstruct the whole candidate decipherment from
a partial hypothesis every time the algorithm finds an extension φ′ to the hypothesis φ.
These missing characters would need to be resampled at each update. Note that it isn’t a
random cipher but a random sample of letters to fill the spaces. It need not be consistent
with the actual ciphertext.

This method of global scoring evaluates each candidate partial decipherment by scoring
the entire message, augmented by the sampled plaintext symbols from the NLM. Since more
terms participate in the rest cost estimation with global context, we use the plaintext LM
to provide us with a better rest cost in the beam search. In this approach, even with a few
symbols decoded, we need a much smaller beam size.

4.2.1 Frequency Matching Heuristic

Homophonic ciphers are non-deterministic in nature as they allow multiple cipher symbols
to be mapped to one plaintext token. The vocabulary of cipher symbols is much larger
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than the number of plaintext tokens. For example, Zodiac-408 and Beale Pt-2 ciphers each
have vocabulary size of 54 and 180 compared to that of 26 of the English alphabet. Plain
frequency analysis approaches on homophonic ciphers have been shown to be generally
ineffective. Therefore, it is interesting to explore if the non-determinism in homophones can
be formulated probabilistically.

In the field of morphological analyses, more specifically, morphological alignment, Yarowsky
et al. [38] addressed the problem of determining the correct past tense of a verb (sing/sang
vs sing/singed) with a corpus based frequency similarity approach. This problem statement
is similar to the one discussed above. This is because it is inappropriate to determine the
association between an inflection and its candidate root form by relative frequencies alone as
many inflections are comparatively rare and appear considerably fewer times than its root.
Lemma alignment by frequency similarity assumes two forms belong to the same lemma by
quantifying how well the relative frequency in the corpus fits the expected distribution.

Motivated by their approach, we introduce a frequency matching heuristic that quanti-
tatively determines if a ciphertext symbol and a plaintext token could be actually mapped
to each other with an absolute numerical value. This estimator can be described as:

FMH(φ′) =
∣∣∣∣log (ν(f)

ν(e)

)∣∣∣∣ f ∈ Vf , e ∈ Ve (4.2)

ν(f) is the percentage relative frequency of the ciphertext symbol f , while ν(e) is the
percentage relative frequency of the plaintext token e in the plaintext language model. The
closer this value to 0, the more likely it is that f is mapped to e.

We augment our original scoring function by simply adding this to the score. Thus, in
any iteration, given a φ with the SCORE(φ), we now compute the score of extension φ′ (Algo.
1) with the augmented function:

SCORE(φ′) = SCORE(φ) + NEW(φ′)− FMH(φ′) (4.3)

where NEW is the score for symbols that have been newly fixed in φ′ while extending φ to φ′.
This method of global scoring estimates each candidate partial decipherment by scoring

the entire message, with sampled plaintext symbols from the NLM, substantiated with the
relative-frequency matching heuristic. We use this as an additional method of scoring to
explore if the statistical correlation between a ciphertext symbol and a plaintext token can
be helpful in decipherment.

4.3 Summary

The SCORE() function is crucial to determining the quality of a partial hypothesis φ as
the beam search advances. We introduce two novel methods of scoring. The first method
is global rest cost estimation which scores the entire partially-deciphered message by
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sampling missing plaintext tokens from the NLM. The second method augments the first
one with a frequency matching heuristic (FMH) that quantifies the correlation between
a ciphertext and a plaintext symbol.

Experiments show these methods contribute positively towards the accuracy on different
decipherment tasks.
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Chapter 5

Experimental Evaluation

In this chapter, we describe the experiments we performed to evaluate our decipherment
method. We carry out two sets of experiments: one on letter based 1:1 ciphers, and another
on homophonic substitution ciphers.

We report Symbol Error Rate (SER) to determine the quality of the deciphered
text given a reference mapping φref and a candidate mapping φ.

Given a set of characters Veval, we calculate SER as:

SER = 1−
∑

v∈Veval

N(v)
Neval

· δ(φ(v), φref (v)) (5.1)

where N(v) is the unigram count for v ∈ Veval, and total number of symbols at hand,
Neval =

∑
v∈V N(v). SER returns the fraction of characters in the deciphered text that are

incorrect.

5.1 Experimental Setup

Plaintext Language Model: The character-level neural language model (NLM) uses
a single layer multiplicative LSTM (mLSTM)with 4096 units. The model was trained for
a single epoch on mini-batches of 128 subsequences of length 256 for a total of 1 million
weight updates. States were initialized to zero at the beginning of each data shard and
persisted across updates to simulate full-backprop and allow for the forward propagation of
information outside of a given sub-sequence.

Data: We trained the plaintext (NLM) on the English Gigaword [29] corpus augmented
with a short corpus of plaintext letters of about 2000 words authored by the Zodiac killer1.
The Gigaword corpus is a collection of English newswire text (New York Times, Washington
Post, Bloomberg News etc.) consistng of about 1200 million words. Tailoring the data for

1https://en.wikisource.org/wiki/Zodiac_Killer_letters
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our plaintext NLM further, we lowercase the entire corpus, and remove all punctuations
and special characters. To build an LM simulating the text conditions in the ciphers, we
make sure that our data consists of lower-cased letters from English alphabet and numbers
only. We use the same NLM for all our decipherment experiments.

Beam Search: We carry out all experiments with two versions of the beam search. The
first one is the beam search algorithm with global scoring function (section 4.2). The second
version of the search has global scoring function with a frequency matching heuristic (section
4.2.1). For all experiments, both results are reported separately.

5.2 Deciphering 1:1 Substitution Ciphers

In this experiment we use a synthetic 1:1 letter substitution cipher dataset from [26]. The
text is from English Wikipedia articles about history2, pre-processed by stripping the text
of all images, tables, then lower-casing all characters, and removing all non-alphabetic and
non-numeric characters. We create 50 cryptograms for each length 16, 32, 64, 128 and 256
using a random Caesar-cipher 1:1 substitution.

Length Beam SER(%) 1 SER(%) 2 RT(sec)
64 100 4.14 4.14 1.40

1000 1.09 1.04 4.91
10000 0.08 0.12 41.29
100000 0.07 0.07 384.16

128 100 7.31 7.29 1.47
1000 1.68 1.55 5.60
10000 0.15 0.09 44.75
100000 0.01 0.02 441.11

Table 5.1: Symbol Error Rates (SER) and average Run Times (RT) in seconds based on
Neural Language Model and beam size (Beam) for solving 1:1 substitution ciphers of lengths
64 and 128, respectively. SER 1 shows beam search with global scoring, and SER 2 shows
beam search with global scoring with frequency matching heuristic.

Each of the 50 cryptograms of each length is deciphered using our model in two settings
- one using beam search with global scoring, and the other using beam search with global
scoring and frequency matching heuristic - each using different beam sizes. We report the
symbol error rate on the decipherments obtained in the first setting as SER1 and those
obtained in the second setting as SER2.

The decipherment results on 1:1 letter substitution ciphers of length 64 and 128 are
shown in Table 5.1. Each of the scores reported in the table is the average SER obtained
on deciphering 50 ciphers. Evidently, our method obtains close-to-perfect decryption of the

2http://en.wikipedia.org/wiki/History
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longer mono-alphabetic letter substitution ciphers. However, on shorter ciphertxts of length
16 and 32, we obtain slightly inaccurate mappings resulting in higher symbol error rates.

Table 1

0 16 32 64 128 256

6-gram, Beam 
(Nunh et al.)

61 4 1 0 0

NLM, Beam 26.8 5.8 1.2 0.01 0.02

NLM, Beam, FMH 31 2.9 0.07 0.02 0

Sy
mb

ol
 E

rr
or

 R
at

e 
(%

)

0

14

28

42

56

70

Cipher Length

0 16 32 64 12
8

25
6

6-gram, Beam (Nuhn et al. 2013)
NLM, Beam
NLM, Beam, FMH

�1

Figure 5.1: Symbol error rates for decipherment of 1:1 substitution ciphers of different
lengths. The beam size is 100k. Beam 6-gram model is [26].

Fig 5.1 plots the results of our method for cipher lengths of 16, 32, 64, 128 and 256
alongside Beam 6-gram (the best performing model) model from [26]. It can be inferred
from the accuracies that the effectiveness of the sampling technique depends directly of the
length of the ciphertext. For shorter cipher lengths (16, 32) the sampling has a high variance,
resulting in high average error rates. However, for longer ciphers, the average symbol error
rates are close to zero for the 50 ciphertexts. Thus, a larger sample reduces the variance.

5.3 Deciphering Homophonic Ciphers

We perform decipherment of two important homophonic ciphers. Both of these ciphers have
been computationally deciphered before, providing us with a baseline to compare against.
Table 5.2 details the characteristic attributes of the ciphers used in our experiments.

Cipher Length Unique
Symbols

Obs/
symbol

Zodiac-408 408 54 7.55
Beale Pt. 2 763 180 4.23

Table 5.2: Homophonic ciphers used in our experiments.
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The quality of the results obtained on each of the decipherments is presented as two
symbol error rates. SER1 represents the model with beam search using global scoring func-
tion while SER2 is the error obtained using beam search with global scoring function and
frequency matching heuristic.

5.3.1 A Simple Cipher: Zodiac-408

Zodiac-408 is probably the most popular homophonic cipher seen in history. It was used by
the notorious Zodiac serial killer 1960s in a series of mocking enciphered-letters sent to the
newspapers. Though the identity of the killer remains a mystery, the encrypted messages
attracted several cryptanalysts - professionals and amateurs alike. The first automatic deci-
pherment of this cipher was reported by Ravi and Knight et al. [33]. Zodiac-408 cipher has
since become a commonly used homophonic cipher to evaluate decipherment algorithms.

(a) Zodiac-408 cipher.

I L I K E K I L L I N G P E O P L
E B E C A U S E I T I S S O M U C
H F U N I T I S M O R E F U N T H
A N K I L L I N G W I L D G A M E
I N T H E F O R T E S T B E C A U
S E M A N I S T H E M O S T D A N
G E R T U E A N A M A L O F A L L
T O K I L L S O M E T H I N G G I
V E S M E T H E M O A T T H R I L
L I N G E X P E R E N C E I T I S
E V E N B E T T E R T H A N G E T
T I N G Y O U R R O C K S O F F W
I T H A G I R L T H E B E S T P A
R T O F I T I A T H A E W H E N I
D I E I W I L L B E R E B O R N I
N P A R A D I C E A N D A L L T H
E I H A V E K I L L E D W I L L B
E C O M E M Y S L A V E S I W I L
L N O T G I V E Y O U M Y N A M E
B E C A U S E Y O U W I L L T R Y
T O S L O I D O W N O R A T O P M
Y C O L L E C T I N G O F S L A V
E S F O R M Y A F T E R L I F E E
B E O R I E T E M E T H H P I T I

(b) Our decipherment of Zodiac-408 cipher.

Figure 5.2: Deciphering the Zodiac-408 cipher.

Getting its name from the length of the ciphertext, Zodiac-408 (Figure 5.5a) has 408
characters. It has 54 unique symbols and a per symbol observation of 7.5. Though these
statistics present the Zodiac-408 cipher as easy to crack, there are several challenges that the
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ciphertext poses. Except for 1 symbol in the cipher, every other symbol shows redundancy.
This makes the cipher very non-deterministic. It also contains words like “PARADICE” and
“FORREST” which are intentionally misspelled, and the last 18 characters in the cracked
cipher don’t mean anything. All these attributes (color coded in Figure 5.5b) make the
Zodiac-408 cipher a very good candidate to benchmark decipherment systems designed to
break substitution ciphers.

Beam SER (%) 1 SER (%) 2
10k 3.92 3.18
100k 2.40 1.91
1M 1.47 1.22

Table 5.3: Symbol Error Rates (SER) based on Neural Language Model and beam size
(Beam) for deciphering Zodiac-408, respectively. SER 1 shows beam search with global
scoring, and SER 2 shows beam search with global scoring with the frequency matching
heuristic.

Table 5.3 shows the performance of our system with different beam sizes. Our improved
Beam Search algorithm is able to achieve an accuracy of 98.8% with a beam size of 1 million.
Even with much lower beam size of 100k, we are able to get an accuracy of about 98%.
Since beam search with higher beam sizes is computationally expensive, choosing a lower
beam size at an expense of marginally lower accuracy turns out be a good trade-off.

Our decipherment model with rest cost estimation and frequency matching heuristic
with a beam size of 1M records an error of 1.2%. Figure (5.5b) shows the deciphered text
we obtained with our system. Mis-mapped tokens have a bold font and are marked in yellow.

5.3.2 A Difficult Cipher: Beale Pt 2

The Beale Papers is a collection of three historical ciphertexts discovered in 1800s that are
believed to lead to a hidden treasure. Though the first and the third part of the ciphertext
remain unsolved, the second part has been deciphered. The first automatic decipherment of
this cipher was present by Nuhn et al. [27]. Since this gives us a ground truth to compare
our version of the decipherment against, we apply our system to the second part of the
Beale Cipher, and report our results.

Part two of the Beale Cipher (Figure 5.4) is 763 characters long with 180 unique symbols
amounting to 4.23 observations per symbol of the ciphertext. Only 43 of these symbols
occur once while others are seen to be repetitive. The symbol 807 is the most frequent
symbol, occurring 18 times. The high repetition of symbols, and the enormous search space
of solutions makes Beale Pt 2 a challenging homophonic cipher to crack compared to the
ciphers we’ve seen in the previous sections.
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Beam SER (%) 1 SER (%) 2
10k 41.67 48.33
100k 7.20 10.09
1M 4.98 5.50

Table 5.4: Symbol Error Rates (SER) based on Neural Language Model and beam size
(Beam) for deciphering Part 2 of the Beale Cipher. SER 1 shows beam search with global
scoring, and SER 2 shows beam search with global scoring with the frequency matching
heuristic.

With the deciphered text obtained using our model, illustrated in Figure 5.3, we find
that Beale cipher is indeed a hard cipher to crack. The symbol errors in decipherment are
marked in yellow.

I H A V E D E P O S I T E D I N T H E C O U N T Y O F B E D F O R D A B O U T F O U R M I

L E S F R O M B U F O R D S I N A N E X C A V A T I O N O R V A U L T S I X F E E T B E L

O W T H E S U R F A C E O F T H E G R O U N D T H E F O L L O W I N G A R T I C L E S B E

L O N G I N G J O I N T L Y T O T H E P A R T Y E S W H O S E N A M E S A R E G I V E N I

N N U M B E R T H R E E B E R E W I T H T H E F I R S T D E P O S I T E O N S I S T E D O

F T E N H U N D R E D A N D F O X R T E E N P O U N D S O F G O L D A N D T H I R T Y E I

G H T H U N D R E D A N D T W E L V K P O U N D S O F S I L V E R D E P O S I T E D N O N

E I G H T E E N N I N E T E E N T H E S E C O N D O A S M A D E D I C E I G H T E E N T W

E N T Y F N E A J D C O N S I Q T E D O F N I N E T E E N H U N D R E D A N A S E V E N P

O U N D S O F G O L D A N D T W E L V E H U N D R E D A N D E I G H T Y E I G H T O F S I

L V E R A L S O F E W E L Q O B T A I N E D I N S T L O U I S I N E X C H A N G E T O S A

V E T R A N S P O U T A T I O N A N D V A L U E O A T T H I R T E E N T H O U S A N D D O

L L A R S T H E A T O V E I N S E C U R E L Y P A C K E D I N I R Q N P O T S W I T H I R

O N C O V E R S T H E V A U L T I S R O U G H L Y L I N E D W I T H S T O N E A N D T H E

V E S S E L S R E S T O N S O L I D B T O N E A N D A R E C O V E R E D W I T H Q T H E R

S P A P E R N U M B E R O N E D E S C R I B E S T H E E X A C T L O C A L I T Y O F T H E

V A U L T S O T H A T N O D I F F I C U L T Y W I L L B E H A D I N F I N D I N G I T

Figure 5.3: Our decipherment of Beale cipher Pt-2.

Table 5.4 shows the performance of our decipherment system with different beam sizes
on this task. Our improved Beam Search algorithm is able to achieve an accuracy of 95%
with a beam size of 1 million. Much lower beam size of 100k yields an accuracy of about
93%.
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115, 73, 24, 807, 37, 52, 49, 17, 31, 62, 647, 22, 7, 15, 140, 47, 29, 107, 79,
84, 56, 239, 10, 26, 811, 5, 196, 308, 85, 52, 160, 136, 59, 211, 36, 9, 46, 316,
554, 122, 106, 95, 53, 58, 2, 42, 7, 35, 122, 53, 31, 82, 77, 250, 196, 56, 96,
118, 71, 140, 287, 28, 353, 37, 1005, 65, 147, 807, 24, 3, 8, 12, 47, 43, 59, 807,
45, 316, 101, 41, 78, 154, 1005, 122, 138, 191, 16, 77, 49, 102, 57, 72, 34, 73,
85, 35, 371, 59, 196, 81, 92, 191, 106, 273, 60, 394, 620, 270, 220, 106, 388,
287, 63, 3, 6, 191, 122, 43, 234, 400, 106, 290, 314, 47, 48, 81, 96, 26, 115, 92,
158, 191, 110, 77, 85, 197, 46, 10, 113, 140, 353, 48, 120, 106, 2, 607, 61, 420,
811, 29, 125, 14, 20, 37, 105, 28, 248, 16, 159, 7, 35, 19, 301, 125, 110, 486,
287, 98, 117, 511, 62, 51, 220, 37, 113, 140, 807, 138, 540, 8, 44, 287, 388, 117,
18, 79, 344, 34, 20, 59, 511, 548, 107, 603, 220, 7, 66, 154, 41, 20, 50, 6, 575,
122, 154, 248, 110, 61, 52, 33, 30, 5, 38, 8, 14, 84, 57, 540, 217, 115, 71, 29,
84, 63, 43, 131, 29, 138, 47, 73, 239, 540, 52, 53, 79, 118, 51, 44, 63, 196, 12,
239, 112, 3, 49, 79, 353, 105, 56, 371, 557, 211, 505, 125, 360, 133, 143, 101,
15, 284, 540, 252, 14, 205, 140, 344, 26, 811, 138, 115, 48, 73, 34, 205, 316,
607, 63, 220, 7, 52, 150, 44, 52, 16, 40, 37, 158, 807, 37, 121, 12, 95, 10, 15,
35, 12, 131, 62, 115, 102, 807, 49, 53, 135, 138, 30, 31, 62, 67, 41, 85, 63, 10,
106, 807, 138, 8, 113, 20, 32, 33, 37, 353, 287, 140, 47, 85, 50, 37, 49, 47, 64,
6, 7, 71, 33, 4, 43, 47, 63, 1, 27, 600, 208, 230, 15, 191, 246, 85, 94, 511, 2,
270, 20, 39, 7, 33, 44, 22, 40, 7, 10, 3, 811, 106, 44, 486, 230, 353, 211, 200,
31, 10, 38, 140, 297, 61, 603, 320, 302, 666, 287, 2, 44, 33, 32, 511, 548, 10, 6,
250, 557, 246, 53, 37, 52, 83, 47, 320, 38, 33, 807, 7, 44, 30, 31, 250, 10, 15,
35, 106, 160, 113, 31, 102, 406, 230, 540, 320, 29, 66, 33, 101, 807, 138, 301,
316, 353, 320, 220, 37, 52, 28, 540, 320, 33, 8, 48, 107, 50, 811, 7, 2, 113, 73,
16, 125, 11, 110, 67, 102, 807, 33, 59, 81, 158, 38, 43, 581, 138, 19, 85, 400,
38, 43, 77, 14, 27, 8, 47, 138, 63, 140, 44, 35, 22, 177, 106, 250, 314, 217, 2,
10, 7, 1005, 4, 20, 25, 44, 48, 7, 26, 46, 110, 230, 807, 191, 34, 112, 147, 44,
110, 121, 125, 96, 41, 51, 50, 140, 56, 47, 152, 540, 63, 807, 28, 42, 250, 138,
582, 98, 643, 32, 107, 140, 112, 26, 85, 138, 540, 53, 20, 125, 371, 38, 36, 10,
52, 118, 136, 102, 420, 150, 112, 71, 14, 20, 7, 24, 18, 12, 807, 37, 67, 110,
62, 33, 21, 95, 220, 511, 102, 811, 30, 83, 84, 305, 620, 15, 2, 10, 8, 220, 106,
353, 105, 106, 60, 275, 72, 8, 50, 205, 185, 112, 125, 540, 65, 106, 807, 138, 96,
110, 16, 73, 33, 807, 150, 409, 400, 50, 154, 285, 96, 106, 316, 270, 205, 101,
811, 400, 8, 44, 37, 52, 40, 241, 34, 205, 38, 16, 46, 47, 85, 24, 44, 15, 64, 73,
138, 807, 85, 78, 110, 33, 420, 505, 53, 37, 38, 22, 31, 10, 110, 106, 101, 140,
15, 38, 3, 5, 44, 7, 98, 287, 135, 150, 96, 33, 84, 125, 807, 191, 96, 511, 118,
40, 370, 643, 466, 106, 41, 107, 603, 220, 275, 30, 150, 105, 49, 53, 287, 250,
208, 134, 7, 53, 12, 47, 85, 63, 138, 110, 21, 112, 140, 485, 486, 505, 14, 73,
84, 575, 1005, 150, 200, 16, 42, 5, 4, 25, 42, 8, 16, 811, 125, 160, 32, 205, 603,
807, 81, 96, 405, 41, 600, 136, 14, 20, 28, 26, 353, 302, 246, 8, 131, 160, 140,
84, 440, 42, 16, 811, 40, 67, 101, 102, 194, 138, 205, 51, 63, 241, 540, 122, 8,
10, 63, 140, 47, 48, 140, 288

Figure 5.4: Beale cipher Pt-2.
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5.3.3 Reference Plaintexts

The following Figure 5.5 shows the reference plaintexts for Zodiac-408 cipher, as used by
Ravi and Knight [33], and Beale Cipher Pt-2 which were used to compare and evaluate our
decipherments of these ciphers. The yellow marks in the reference plaintexts above show
the letters which were wrongly deciphered with our system.
I L I K E K I L L I N G P E O P L
E B E C A U S E I T I S S O M U C
H F U N I T I S M O R E F U N T H
A N K I L L I N G W I L D G A M E
I N T H E F O R R E S T B E C A U
S E M A N I S T H E M O S T D A N
G E R O U E A N A M A L O F A L L
T O K I L L S O M E T H I N G G I
V E S M E T H E M O S T T H R I L
L I N G E X P E R E N C E I T I S
E V E N B E T T E R T H A N G E T
T I N G Y O U R R O C K S O F F W
I T H A G I R L T H E B E S T P A
R T O F I T I S T H A E W H E N I
D I E I W I L L B E R E B O R N I
N P A R A D I C E S N D A L L T H
E I H A V E K I L L E D W I L L B
E C O M E M Y S L A V E S I W I L
L N O T G I V E Y O U M Y N A M E
B E C A U S E Y O U W I L L T R Y
T O S L O I D O W N O R S T O P M
Y C O L L E C T I O G O F S L A V
E S F O R M Y A F T E R L I F E E
B E O R I E T E M E T H H P I T I

(a) Zodiac-408 plaintext.

I H A V E D E P O S I T E D I N T H E C O U N T F O F B E D F O R D A B O U T F O U R M I
L E S F R O M B U F O R D S I N A N E H C A V A T I O N O R V A U L T S I H F E E T B E L
O W T H E S U R F A C E O F T H E G R O U N D T H E F O L L O W I N G A R T I C L E S B E
L O N G I N G J O I N T L F T O T H E P A R T I E S W H O S E N A M E S A R E G I V E N I
N N U M B E R T H R E E H E R E W I T H T H E F I R S T D E P O S I T C O N S I S T C D O
F T E N H U N D R E D A N D F O U R T E E N P O U N D S O F G O L D A N D T H I R T F E I
G H T H U N D R E D A N D T W E L V E P O U N D S O F S I L V E R D E P O S I T E D N O V
E I G H T E E N N I N E T E E N T H E S E C O N D W A S M A D E D E C E I G H T E E N T W
E N T F O N E A N D C O N S I S T E D O F N I N E T E E N H U N D R E D A N D S E V E N P
O U N D S O F G O L D A N D T W E L V E H U N D R E D A N D E I G H T F E I G H T O F S I
L V E R A L S O J E W E L S O B T A I N E D I N S T L O U I S I N E H C H A N G E T O S A
V E T R A N S P O R T A T I O N A N D V A L U E D A T T H I R T E E N R H O U S A N D D O
L L A R S T H E A B O V E I S S E C U R E L F P A C K E D I N I R O N P O T S W I T H I R
O N C O V E R S T H E V A U L T I S R O U G H L F L I N E D W I T H S T O N E A N D T H E
V E S S E L S R E S T O N S O L I D S T O N E A N D A R E C O V E R E D W I T H O T H E R
S P A P E R N U M B E R O N E D E S C R I B E S T H C E H A C T L O C A L I T F O F T H E
V A R L T S O T H A T N O D I F F I C U L T F W I L L B E H A D I N F I N D I N G I T

(b) Beale Cipher Pt-2 plaintext.

Figure 5.5: Reference plaintexts for Zodiac-408 and Beale Pt-2 ciphers used for evaluation.

5.3.4 Summary

We applied our novel decipherment system for the task of deciphering two historical homo-
phonic ciphers : Zodiac-408 and Beale Pt 2, and observed that the method performs well
and is comparable to the previous fully automatic statistical decipherment models. The
following is a summary of the results.

Zodiac-408: Our best result on this cipher yields an SER of 1.2% compared to the beam
search algorithm in [26] with beam size of 10M with a 6-gram LM that gives an SER of 2%.
In [27], however, the authors present an extension to [26] and report a full decipherment of
the cipher.

Beale Pt 2: On this cipher, we report a decipherment error of 5%. Our system outper-
forms the state of the art [27] (5.4% with 8-gram LM and a beam size of 10M) on this task
while employing beam search with a beam size of 1M.

Discussion: We observe that for challenging ciphers such as Beale Pt 2, we obtain lower
error rates with smaller beam sizes when compared to the state of the art [27] in decipher-
ment for such ciphers. We note that the frequency matching heuristic may not be entirely
useful in some scenarios. On simple letter substitution ciphers, we get almost identical
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results using both variants of beam search, while on Zodiac-408, beam search with fre-
quency matching heuristic performs better. However, on Beale Pt 2, beam search without
the heuristic seems to be producing lower error rates.
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Chapter 6

Conclusion

This thesis describes a novel neural LM based method for decipherment that effectively
breaks a variety of substitution ciphers. This work, to our knowledge, is the first applica-
tion of large pre-trained neural LMs to the decipherment problem. Unlike previous methods,
our approach scores the candidate decipherments globally and employs a letter frequency
matching heuristic, yielding a robust decipherment system. We modify the beam search
algorithm for decipherment from [26, 27] to use global scoring of the plaintext message
using neural LMs. To enable full plaintext scoring we use the neural LM to sample plain-
text characters which improves convergence times. We use two versions of beam search for
our experiments - a version with the improved rest cost estimator for evaluating partial
hypotheses, and the other with the rest cost estimator augmented with the heuristic. This
work, to our knowledge, is the first to use a neural language model in decipherment. We
record the performance of our system on both versions of the beam search separately. We
empirically evaluate our method through experiments on several substitution ciphers - syn-
thetic 1:1 ciphers, Zodiac-408 and much harder Beale Pt 2 - and observe that the results
have high accuracy.

Decipherment is an intriguing venue of research. Apart from the computational aspect
of it, the idea itself has varied practical applications ranging from raw cryptography tasks
like breaking cyber-codes to discovering ancient languages only found on clay tablets. This
opens up a huge venue for computational assistance in the form of universal cipher-solvers
in all of these applications, accelerating the whole ‘discovery’ process. Unfortunately, we
don’t yet have perfect fully-automatic decipherment systems that are able to chew a cipher
and spit out its plaintext. This work contributes towards a better, robust model for solving
substitution ciphers. It may not yet be able to solve the mystery of the clay tablets of
Mesopotamia, but it is powerful enough to decipher Alienese, the language of aliens.
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pur. Recurrent neural network based language model. In Eleventh Annual Conference
of the International Speech Communication Association, 2010.

[25] Malte Nuhn, Arne Mauser, and Hermann Ney. Deciphering foreign language by combin-
ing language models and context vectors. In Proceedings of the 50th Annual Meeting of
the Association for Computational Linguistics: Long Papers-Volume 1, pages 156–164.
Association for Computational Linguistics, 2012.

[26] Malte Nuhn, Julian Schamper, and Hermann Ney. Beam search for solving substitution
ciphers. In Proceedings of the 51st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), volume 1, pages 1568–1576, 2013.

[27] Malte Nuhn, Julian Schamper, and Hermann Ney. Improved decipherment of homo-
phonic ciphers. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1764–1768, 2014.

32



[28] Edwin Olson. Robust dictionary attack of short simple substitution ciphers. Cryptolo-
gia, 31(4):332–342, 2007.

[29] Robert Parker, David Graff, Junbo Kong, Ke Chen, and Kazuaki Maeda. English
gigaword fifth edition (2011). Linguistic Data Consortium, Philadelphia, PA, USA,
2011.

[30] Shmuel Peleg and Azriel Rosenfeld. Breaking substitution ciphers using a relaxation
algorithm. Communications of the ACM, 22(11):598–605, 1979.

[31] Alec Radford, Rafal Jozefowicz, and Ilya Sutskever. Learning to generate reviews and
discovering sentiment. arXiv preprint arXiv:1704.01444, 2017.

[32] Sujith Ravi and Kevin Knight. Attacking decipherment problems optimally with low-
order n-gram models. In proceedings of the conference on Empirical Methods in Natural
Language Processing, pages 812–819. Association for Computational Linguistics, 2008.

[33] Sujith Ravi and Kevin Knight. Bayesian inference for zodiac and other homophonic ci-
phers. In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies-Volume 1, pages 239–247. Association for
Computational Linguistics, 2011.

[34] Sujith Ravi and Kevin Knight. Deciphering foreign language. In Proceedings of the 49th
Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies-Volume 1, pages 12–21. Association for Computational Linguistics, 2011.

[35] Ilya Sutskever, James Martens, and Geoffrey E Hinton. Generating text with recurrent
neural networks. In Proceedings of the 28th International Conference on Machine
Learning (ICML-11), pages 1017–1024, 2011.

[36] Warren Weaver. Translation. Reproduced in : W. N. Locke and D. A. Booth., eds.
(1955). 1947.

[37] Eric W Weisstein. Kronecker delta. 2002.

[38] David Yarowsky and Richard Wicentowski. Minimally supervised morphological analy-
sis by multimodal alignment. In Proceedings of the 38th Annual Meeting on Association
for Computational Linguistics, pages 207–216. Association for Computational Linguis-
tics, 2000.

33


	Approval
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Definitions
	1:1 Substitution Ciphers
	Homophonic Substitution Ciphers

	Motivation
	Contribution
	Overview

	Related Work
	Decipherment Model
	Language Model
	Neural Language Model

	Beam Search
	Algorithm for Decipherment


	Score Estimation
	Baseline
	New Improved Rest Cost Estimation
	Frequency Matching Heuristic

	Summary

	Experimental Evaluation
	Experimental Setup
	Deciphering 1:1 Substitution Ciphers
	Deciphering Homophonic Ciphers
	A Simple Cipher: Zodiac-408
	A Difficult Cipher: Beale Pt 2
	Reference Plaintexts
	Summary


	Conclusion
	Bibliography

