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Abstract 

In western North America, snowpack supplies much of the water used for irrigation and 

for municipal and industrial uses, and snowmelt recharges groundwater and provides 

ecosystem-sustaining baseflow during low flow periods. Continued climate warming is 

expected to have large impacts on snowmelt hydrology, with subsequent impacts on low 

flows and snow and streamflow drought regimes. This research combined two separate 

methodologies, a data-driven (downward) approach and a process-based (upward) 

approach, to improve our understanding of snow drought and streamflow drought in the 

context of a warming climate. The data-driven approach combined observed 

hydroclimatic time series with multiple statistical methods, including bivariate and partial 

correlation and temporal and spatial analogs. The process-based approach combined 

climate change projections and hydrological modelling.  

The two approaches yielded consistent results that, together, illustrate that snow 

drought, low flows, and streamflow drought are sensitive to winter climate conditions, 

particularly precipitation and thawing degrees. In the context of climate warming, 

increased winter season thawing degrees leads to increased warm (temperature-driven) 

snow drought, shorter and less severe winter low flows, longer and more severe summer 

low flows, and increased summer streamflow drought risk. Further, both approaches 

showed that the response of snowmelt hydrology to climate warming is non-linear, and 

regions with winter temperatures near 0°C exhibit substantially larger impacts from +2°C 

of warming compared to regions with winter temperatures far below 0°C.  

Temperature-driven shifts in snow drought, low flows, and streamflow drought regimes 

will have widespread implications for surface water supply security. Increased frequency 

of warm snow droughts will likely lead to an increased frequency of mid-winter melt 

events, which will create challenges for water management. As summer low flow periods 

become more severe and snow-drought related summer streamflow droughts become 

more frequent, the potential for more severe summer water shortages increases. The 

most severe shortages will likely occur due to the co-occurrence of warm and dry 

conditions. 

Keywords:  streamflow; snow; low flows; climate change; drought 



iv 

Dedication 

 

 

 

For Laurel 



v 

Acknowledgements 

First and foremost, I’d like to acknowledge and thank my senior supervisor, Dr. 

Diana Allen, and my committee member, Paul Whitfield. Their support and unwavering 

confidence in my abilities has meant so much to me. They provided the perfect balance 

of guidance and personal freedom. 

This research was carried out with scholarship support from Simon Fraser 

University and through graduate fellowships from the Simon Fraser University 

Department of Earth Sciences and the Pacific Institute for Climate Solutions.  

Finally, the completion of this thesis wouldn’t have been possible without the 

support of my husband Tom, who always believes in me, encourages me, and pulls me 

back to reality when I start wandering away.  



vi 

Table of Contents 

Approval .......................................................................................................................... ii 

Abstract .......................................................................................................................... iii 

Dedication ...................................................................................................................... iv 

Acknowledgements ......................................................................................................... v 

Table of Contents ........................................................................................................... vi 

List of Tables .................................................................................................................. ix 

List of Figures.................................................................................................................. x 

Chapter 1. Introduction .............................................................................................. 1 

1.1. Background and Previous Research...................................................................... 3 

1.1.1. Defining Drought ............................................................................................ 3 

Snow drought ........................................................................................................... 4 

Hydrological drought ................................................................................................ 4 

1.1.2. Climate Change Impacts on Snowmelt Hydrology ......................................... 7 

1.1.3. Approaches for Investigating Climate Change Impacts on Water Resources . 8 

Data-driven (downward) approach ........................................................................... 8 

Process-based (upward) approach ........................................................................ 11 

1.2. Purpose and Objectives ....................................................................................... 13 

1.3. Scope of Work ..................................................................................................... 13 

1.4. Thesis Overview .................................................................................................. 14 

1.5. Significant Contributions ...................................................................................... 18 

Chapter 2. Climate Controls on Runoff and Low Flows in Mountain Catchments 
of Western North America................................................................................. 20 

2.1. Introduction .......................................................................................................... 20 

2.2. Data and Methods ............................................................................................... 22 

2.2.1. Streamflow Observations ............................................................................. 22 

2.2.2. Meteorological Data and Simulated Fluxes .................................................. 24 

2.2.3. Low Flow Regime Characterization ............................................................. 25 

2.2.4. Predictor and Response Variables ............................................................... 26 

2.2.5. Identification of Dominant Climate Controls ................................................. 27 

2.2.6. Precipitation and Temperature Sensitivity .................................................... 29 

2.3. Results ................................................................................................................ 29 

2.3.1. Low Flow Regime Characterization ............................................................. 30 

2.3.2. Regional Analysis: Climate Controls on the Low Flow Regime .................... 31 

2.3.3. Catchment-scale Analysis: Climate Controls on Inter-annual Variability ...... 33 

Mean daily runoff (MDR) ........................................................................................ 35 

Summer low flows .................................................................................................. 35 

Winter low flows ..................................................................................................... 35 

2.3.4. Low Flow Sensitivity to Precipitation and Temperature ................................ 36 

2.3.5. Winter Climate Impacts on SWE, Runoff, and Low Flows ............................ 37 

2.4. Discussion ........................................................................................................... 40 



vii 

2.5. Conclusions ......................................................................................................... 42 

Chapter 3. Winter Temperature Controls on Snow Drought Risk in Western North 
America .............................................................................................................. 44 

3.1. Introduction .......................................................................................................... 44 

3.2. Materials and Methods ........................................................................................ 46 

3.2.1. Data and Domain ......................................................................................... 46 

3.2.2. Snow Drought Classification ........................................................................ 47 

3.2.3. Precipitation (P) Versus Temperature (T) Sensitivity.................................... 50 

3.2.4. Temperature Thresholds and SWE Susceptibility Mapping ......................... 50 

3.3. Results ................................................................................................................ 51 

3.4. Discussion ........................................................................................................... 57 

3.5. Conclusions ......................................................................................................... 61 

Chapter 4. Climate Change Impacts on Snow and Streamflow Drought Regimes
 63 

4.1. Introduction .......................................................................................................... 63 

4.2. Study Locations ................................................................................................... 64 

4.3. Materials and Methods ........................................................................................ 66 

4.3.1. Groundwater - Surface Water (GW-SW) Modelling ...................................... 66 

Land surface data and overland flow ...................................................................... 68 

Unsaturated and saturated zone ............................................................................ 69 

MIKE 11 stream network ........................................................................................ 69 

4.3.2. Climate Change Scenario Modelling ............................................................ 70 

4.3.3. Evapotranspiration and Snow ...................................................................... 71 

4.3.4. Assessment of Snow Drought ...................................................................... 72 

4.3.5. Assessment of Low Flows and Streamflow Drought .................................... 73 

4.4. Results ................................................................................................................ 74 

4.4.1. Climate Change Impacts on the Annual Water Balance ............................... 74 

4.4.2. Snow Drought .............................................................................................. 80 

4.4.3. Low Flows and Summer Streamflow drought ............................................... 82 

4.5. Discussion ........................................................................................................... 86 

4.6. Conclusions ......................................................................................................... 90 

Chapter 5. Case Study: Future Water Security in Northeast British Columbia .... 91 

5.1. Introduction .......................................................................................................... 91 

5.2. Study Area........................................................................................................... 93 

5.3. Climate Change Projections ................................................................................ 94 

GCM bias................................................................................................................... 95 

5.4. Hydrologic Modelling ........................................................................................... 98 

5.5. Daily to Hourly Downscaling .............................................................................. 102 

5.6. Future Water Demand ....................................................................................... 102 

5.7. Results .............................................................................................................. 103 

5.7.1. Simulated Versus Observed ...................................................................... 103 

Snow water equivalent ......................................................................................... 104 



viii 

Runoff .................................................................................................................. 105 

5.7.2. Dugout Impacts on Runoff ......................................................................... 109 

5.7.3. Near Future (2021-2050) Versus Historical (1971-2000) Hydrology ........... 111 

5.8. Demand Versus Supply ..................................................................................... 114 

5.9. Conclusions ....................................................................................................... 116 

Chapter 6. Conclusions ......................................................................................... 118 

6.1. Climate Controls on Low Flows / Hydrological Drought...................................... 118 

6.2. Climate Controls on Snow Drought .................................................................... 119 

6.3. Snow and Streamflow Drought in the Context of a Warming Climate ................. 120 

6.4. Contributions ..................................................................................................... 121 

6.5. Recommendations for Future Research ............................................................ 122 

References ................................................................................................................. 124 

Appendix A.  Chapter 2 Supplemental Information ................................................ 148 

Appendix B.  Chapter 3 Supplemental Information ................................................ 155 

Appendix C.  Chapter 4 Supplemental Information ................................................ 162 

Appendix D.  Chapter 5 Supplemental Information: Daily to Hourly Climate Time 
Series Disaggregation ..................................................................................... 182 

Appendix E.  Chapter 5 Supplemental Information: Gauge Time Series 
Comparison ..................................................................................................... 184 

 



ix 

List of Tables 

Table 2.1 Climate predictor variables and low flow regime response variables used 
in the analyses. ...................................................................................... 27 

Table 2.2 Streamflow response variable sensitivity to selected climate variables, 
estimated by standardized regression coefficients. ................................ 37 

Table 2.3 Effect of winter climate conditions on the median z-scores of runoff and 
low flows. Significance assessed with the Mann-Whitney U test. ........... 39 

Table 3.1 Temperature-related snow drought susceptibility summarized by 
ecoregion. SWE = mean snow water equivalent; Vol. = mean snowpack 
water volume. Ecoregion numbering as in Figure 3.1. “Other” includes all 
grid cells not within the 15 ecoregions. Table S3.5 presents the same 
data in terms of area as opposed to volume. .......................................... 57 

Table 4.1  Catchment characteristics, including baseline 1980s (1970-1999) mean 
annual precipitation (P), snow fraction (Sf), mean annual temperature (T), 
and mean winter (1-Nov to 1-Apr) temperature (Tw). MASL = meters 
above sea level. ..................................................................................... 65 

Table 4.2 Low flow regime indicators, calculated yearly. Baseline = 1980s (1970-
1999). MAR = mean annual runoff. ........................................................ 74 

Table 4.3 Risk (severity x frequency) for dry (D), warm (W), and warm and dry 
(W&D) snow droughts. Baseline 1980s (1970-1999) versus 2050s (2040-
2069) and 2080s (2070-2099) for representative concentration pathways 
(RCPs) 4.5 and 8.5. ............................................................................... 82 

Table 5.1 Graham and Blueberry headwater catchment Hydrological Response 
Units (HRUs) .......................................................................................... 99 

Table 5.2 HRU aspect, slope, and elevation. ......................................................... 99 

Table 5.3 Modules used in CRHM setups. ........................................................... 100 

Table 5.4 Climate stations used to generate hourly time series. .......................... 102 

Table 5.5 Median monthly and annual runoff estimated by the naturalized model 
and the dugout model for the Blueberry headwater catchment. Median 
difference between models was estimated with the Wilcoxon signed-ranks 
test. ...................................................................................................... 110 

 



x 

List of Figures 

Figure 2.1 Study region elevation in meters above sea level (MASL) with the 
locations of selected hydrometric gauging stations indicated by white 
circles. Additional station information is included in Appendix A, Table 
S2.1. ...................................................................................................... 23 

Figure 2.2 Example low flow regime classifications: (a) Flathead River, gauge ID 
12358500, and (b) Newhalem Creek, gauge ID 12178100. Winter low 
flow period shown in blue; summer low flow period shown in pink. Dashed 
horizontal line is equal to the mean daily runoff (MDR) and is used as the 
upper-bound for defining the low flow periods. The gray areas above the 
MDR line are equal to the blue and pink areas when not plotted with a 
logarithmic y-axis. .................................................................................. 26 

Figure 2.3 Response variable bivariate plots. Spearman’s rho reported for significant 
(p < 0.05) correlations. Red (blue) points indicate significant negative 
(positive) correlation; gray points indicate non-significant results. 
Abbreviations and units are as in Table 2.1. ........................................... 30 

Figure 2.4 Predictor and response variable bivariate correlation plots. Spearman’s 
rho reported for significant (p < 0.05) correlations. Red (blue) points 
indicate significant negative (positive) correlation; gray points indicate 
non-significant results. Abbreviations and units are as in Table 2.1. ....... 32 

Figure 2.5 Low flow regimes for catchments with different mean annual 
temperatures (Ta) and mean annual precipitation (Pa) – two each from two 
level III ecoregions. (a) Cataract Creek, gauge ID 05BL022, (b) Flathead 
River, gauge ID 12358500, (c) Merced River, gauge ID 11264500, (d) 
Duncan Canyon Creek, gauge ID 11427700. ......................................... 33 

Figure 2.6 (a) Fraction of stations exhibiting significant correlation (p value < 0.05) 
between the streamflow response variables and the climate predictor 
variables. (b) Fraction of stations exhibiting significant partial correlations 
(p < 0.05) – control variable marked with a star. For (a) and (b): Red 
gradient indicates an increase in the climate predictor variable is 
associated with a decrease in water quantity (e.g., longer duration low 
flow season, lower runoff) while blue gradient indicates increased water 
quantity (e.g., shorter duration low flow season, higher runoff). Color 
saturation, shown in bottom legend, indicates mean percent variance 
explained for the subset of stations with significant correlations. 
Streamflow response variable and climate predictor variable 
abbreviations are as in Table 2.1, with the addition of preceding year 
climate variables, as indicated with “-1” postscript. ................................. 34 

Figure 2.7 Winter season classification based on standardized values (z-scores) for 
winter precipitation (Pw) and winter thawing degrees (TDw). Number of 
years in each quadrant indicated by n values. ........................................ 39 

Figure 3.1 Ecoregions (CEC, 2009) and mean peak snow water equivalent (SWE; 
1951-2000) for masked analysis domain. Ecoregions are outlined in black 
and include: (1) Pacific and Nass Ranges, (2) North Cascades, (3) 
Cascades, (4) Eastern Cascades Slopes and Foothills, (5) Klamath 
Mountains, (6) Sierra Nevada, (7) Wasatch and Uinta Mountains, (8) 
Southern Rockies, (9) Middle Rockies, (10) Idaho Batholith, (11) Blue 



xi 

Mountains, (12) Canadian Rockies, (13) Columbia Mountains / Northern 
Rockies, (14) Thompson-Okanagan Plateau, (15) Chilcotin Ranges and 
Fraser Plateau. Glaciated cells as flagged in Livneh et al. (2015). MASL = 
meters above sea level. ......................................................................... 47 

Figure 3.2 Frequency, severity, and risk for dry, warm, and warm & dry snow 
droughts, 1951-2013. ............................................................................. 52 

Figure 3.3 Snow drought severity, frequency, and risk by ecoregion, 1951-2013. For 
severity, the gray vertical lines represent individual years, the black 
horizontal lines span the inter-quartile range, and the symbols coincide 
with the mean. Ecoregion numbering as in Figure 3.1. See Table S3.4 for 
values of mean severity, frequency, and risk in table format................... 53 

Figure 3.4 Snow drought risk and peak SWE sensitivities versus mean winter (1-Nov 
to 1-Apr) temperature [TW]. Top row: (a) RD [dry], (b) RW [warm], and (c) 
RWD [warm and dry] snow drought risk. Bottom row: Peak SWE sensitivity 
to (d) temperature [ST] and (e) precipitation [SP]. Piecewise linear 
regression lines are shown in red for variables with strong correlations 
with temperature (r values shown in top-left corners). Break-points (BPs) 
from the piecewise regression are shown with black vertical dashed lines. 
Slopes (S1, S2, S3) and associated standard errors are indicated for 
each linear regression segment. Model performance indicated by 
coefficient of determination (R2). ............................................................ 55 

Figure 3.5 Peak SWE temperature-related snow drought susceptibility under (a) 
historical [1951-2000] and (b) +2°C climate scenario. Ecoregion 
numbering as in Figure 3.1. Results are summarized by ecoregion in 
Table 3.1 and Table S3.5. ...................................................................... 56 

Figure 4.1 Headwater catchment locations and Level I ecoregions (CEC, 2011). ... 66 

Figure 4.2 Annual climate and water balance components for the 1980s baseline 
(1970-1999) versus 2050s (2040-2069) and 2080s (2070-2099) for 
representative concentration pathway (RCP) 4.5 and RCP 8.5, including 
mean annual temperature (Temp), annual precipitation (Precip), peak 
snow water equivalent (SWE), annual runoff, annual actual 
evapotranspiration (AET), and annual groundwater recharge. Blue and 
orange shading indicate a significant (p < 0.05) increase or decrease 
relative to the baseline period, as assessed with the two-sided Mann-
Whitney U test. Arrows are added for clarity where boxplot shading is 
unclear. Figure S4.1 shows the same data, plotted as absolute values, 
and Table S4.6 provides the corresponding mean annual values along 
with the absolute and relative change. ................................................... 79 

Figure 4.3 Frequency (fraction of years) of dry (D), warm (W), and warm and dry 
(W&D) snow droughts for the baseline 1980s (1970-1999) versus 2050s 
(2040-2069) and 2080s (2070-2099) for representative concentration 
pathway (RCP) 4.5 and RCP 8.5. Table S4.7 provides the same data in 
tabular format. ........................................................................................ 80 

Figure 4.4 Mean severity (fraction below baseline normal) of dry (D), warm (W), and 
warm and dry (W&D) snow droughts for the baseline 1980s versus 2050s 
(2040-2069) and 2080s (2070-2099) for representative concentration 
pathway (RCP) 4.5 and RCP 8.5. Table S4.8 provides the same data in 
tabular format. Note: Dry snow droughts transition to warm and dry snow 



xii 

droughts and therefore have no mean severity plotted for some future 
time periods. .......................................................................................... 81 

Figure 4.5 Summer low flow regime indicators for the 1980s baseline (1970-1999) 
versus 2050s (2040-2069) and 2080s (2070-2099) for representative 
concentration pathway (RCP) 4.5 and RCP 8.5. Blue and orange shading 
indicate a significant (p < 0.05) increase or decrease relative to the 
baseline period, as assessed with the two-sided Mann-Whitney U test. 
Figure S4.10 shows winter low flow regime indicators. ........................... 84 

Figure 4.6 Snow drought impacts on summer low flows by snow drought type, 
including years without snow drought (None) and years with warm (W), 
dry (D), and warm and dry (W&D) snow droughts. Blue and orange 
shading indicate the values are significantly (p < 0.05) higher or lower 
relative to years without snow drought, as assessed with the two-sided 
Mann-Whitney U test. Abbreviations are as in Table 4.2. Arrows are 
added for clarity where boxplot shading is unclear. Figure S4.15 shows 
the winter low flow regime indicators. ..................................................... 85 

Figure 4.7 Frequency of snow drought propagation into summer streamflow drought, 
in the absence of summer precipitation deficit, by snow drought type: 
warm (W), Dry (D), warm and dry (W&D), RCP 8.5. Figure S4.16 shows 
the same plot for RCP 4.5. ..................................................................... 86 

Figure 5.1 Study area including (a) Peace River watershed and shale gas plays, (b) 
Graham and Blueberry watersheds, and current land use and oil and gas 
industry water source dugout locations in the (c) Graham headwater 
catchment and (d) Blueberry headwater catchment. .............................. 94 

Figure 5.2 Boxplots of historical (1971-2000; shown in black) versus near future 
(2021-2050; shown in gray) climate from model ensemble for the 
Blueberry headwater catchment. (a) mean daily temperature, (b) monthly 
precipitation, (c) mean annual temperature, and (d) annual precipitation. 
Outliers not shown. ................................................................................ 95 

Figure 5.3 Observed (Wonowon climate station) versus simulated (BCCAQ 
downscaled data from three GCMs) comparison of (a) monthly 
precipitation and (b) monthly dry days (precipitation < 0.5 mm). Outliers 
are not shown. ....................................................................................... 97 

Figure 5.4 Observed (Wonowon climate station) versus simulated (BCCAQ 
downscaled data from three GCMs) comparison of (a) daily maximum 
temperature and (b) daily minimum temperature. Outliers are not shown.
 ............................................................................................................... 98 

Figure 5.5 Flowchart of physically based hydrological modules used in the CRHM 
models. The model structure is the same for the Blueberry and Graham 
catchments. (abbreviations: Inf: Infiltration; Adj.: Adjusted) .................. 101 

Figure 5.6  Projected shale gas industry freshwater demand from Kniewasser and 
Horne (2015). High, medium, and low development correspond to 5, 3, 
and 1 Liquid natural Gas (LNG) plants, respectively. The improved water 
management scenario incorporates 25% water recycling and 25% saline 
water use. ............................................................................................ 103 

Figure 5.7 Observed versus simulated snow water equivalent (SWE), Wonowon 
climate station. ..................................................................................... 105 



xiii 

Figure 5.8 Mean daily snow water equivalent (SWE) observed at the Wonowon 
climate station versus simulated at the Wonowon climate (forced with 
observed data), and versus simulated SWE in the Blueberry headwater 
catchment (forced with downscaled GCM model output). ..................... 105 

Figure 5.9 Beatton River watershed and gauging station locations. ...................... 107 

Figure 5.10 Simulated median daily runoff in the Blueberry catchment versus 
observed median daily runoff from two nearby stream gauges, St. John 
Creek (Gauge ID: 07FC002) and Blueberry River (Gauge ID: 07FC003). 
Median daily runoff values are calculated for the observed record period 
of St. John Creek: 1962-1974. .............................................................. 108 

Figure 5.11 Monthly mean daily runoff (a) estimated by the North East Water Tool 
(NEWT) and (b) simulated for the Blueberry headwater catchment and 
observed at hydrometric gauging stations. Simulated and observed data 
are summarized for the 1971-2000 period for consistency with NEWT, 
with the exception of the St. John Creek gauge, which only covers the 
1962-1974 period. ................................................................................ 109 

Figure 5.12 Blueberry headwater catchment (plains) simulated historical (1971-2000) 
in black and near future (2021-2050) in gray (a) monthly snowfall 
(represented as mm of snow water equivalent - SWE), (b) mean monthly 
SWE, (c) monthly actual evapotranspiration (AET), and (d) monthly 
runoff. ................................................................................................... 112 

Figure 5.13 Graham headwater catchment (foothills) simulated historical (1971-2000) 
in black and near future (2021-2050) in gray (a) monthly snowfall 
(represented as mm of snow water equivalent - SWE), (b) mean monthly 
SWE (c) monthly actual evapotranspiration (AET), and (d) monthly runoff.
 ............................................................................................................. 113 

Figure 5.14 (a) Blueberry and (b) Graham headwater catchment annual snowfall, 
annual peak snow water equivalent (SWE), annual actual 
evapotranspiration (AET), and annual runoff. Simulated historical (1971-
2000) is shown in black and near future (2021-2050) in shown in gray. 114 

Figure 5.15 Blueberry headwater catchment fraction of annual runoff required to meet 
shale gas industry freshwater demands. Results are presented by 
centered 10-year periods (2020 = 2015-2024, 2030 = 2025-2034, etc.). 
Boxplots show the fraction allocated for individual years; black circles 
show the fraction allocated based on the 10-year mean annual runoff. 115 

 

 



1 

Chapter 1. Introduction 

Drought is one of the main types of weather-related disasters. Unlike other 

disaster types, which tend to develop quickly and have dramatic visible impacts, drought 

events develop slowly, often cover extensive areas (trans-national), and can last for 

months to years (Beran & Rodier, 1985; Sheffield & Wood, 2011). With such large 

spatial and temporal scales, droughts can have devastating impacts on many economic 

sectors (Tallaksen & Van Lanen, 2004; Sheffield & Wood, 2011), including drinking 

water supply, crop production, water transportation, electricity production, and recreation 

(e.g., Wilhite, 2000; Tallaksen & Van Lanen, 2004; Sheffield & Wood, 2011; van Vliet et 

al., 2012). Drought is also one of the most damaging natural hazards in terms of societal 

impacts, such as hunger, mass migration, conflict, and loss of life (Garcia-Herrera et al., 

2010; European Environment Agency [EEA], 2012; Hsiang et al., 2013; Emergency 

Events Database [EM-DAT], 2016).  

Droughts can occur anywhere in the world, and because of the growing 

population and increasing water demands, the adverse impacts of droughts are likely to 

worsen. Recent drought studies (Sheffield & Wood, 2008; Feyen & Dankers, 2009; Dai, 

2011) have shown an increasing trend in drought extent and affected population. 

Climate change is predicted to lead to more extreme hydrological regimes 

(Intergovernmental Panel on Climate Change [IPCC], 2013), including a shift from snow-

dominated to rain-dominated systems (Laternser & Schneebeli, 2003; Hamlet et al., 

2005; Barnett et al., 2008), and, consequently, a shift in snow drought (Harpold et al., 

2017) and thus hydrological drought regimes (Feyen & Dankers, 2009; Wanders & Van 

Lanen, 2015). These factors (increasing population + increasing water demand + climate 

change) make drought research and management a prominent issue. Indeed, drought 

and related hazards (heat waves and wildfires) have received increasing attention over 

the past decade (Sheffield et al., 2012; Dai, 2013; Harpold et al., 2017), but our 

understanding of drought, especially snow drought, hydrological drought, and the 

relationship between the two, still has large gaps.  

In western North America, snowpack plays a vital role in maintaining streamflow 

during the relatively warm and dry spring and summer months (Barnett et al., 2008). 

Snowpack also provides natural storage for water supply and hydropower (Barnett et al., 
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2005). Ecosystems (Ficke et al., 2007; Rocca et al., 2014; Service, 2015; Chang & 

Bonnette, 2016) and economies (Sturm et al., 2017; Hagenstad et al., 2018) depend on 

the amount of snow that accumulates during the winter and on the timing and rate of 

melt in the spring and summer. The recent (2014-2015) drought in western United 

States showed that below-normal winter snow accumulation can lead to below-normal 

summer streamflow (Harpold et al., 2017); however, there has been limited research on 

the relationship between snow drought and summer streamflow drought. Gaps in our 

knowledge of hydrological drought, and its relationship to snow drought, are particularly 

pressing as many of the adverse impacts of drought are directly related to hydrological 

drought (drought in rivers, lakes, and groundwater) and only indirectly related to 

meteorological drought (Dracup et al., 1980; Van Loon, 2015). Understanding the 

occurrence and variability of hydrological drought events, and their relationship with 

snow drought events, in both the historic and the future climate, is essential for natural 

resource management and policy decisions, including managing water allocations for 

agriculture, municipal, and industrial sectors.   

Studies of hydrological drought have traditionally lumped all drought events 

together; however, recent work by Van Loon & Van Lanen (2012) and Van Loon et al. 

(2015) propose the classification of hydrological drought into eight distinct types based 

on climatic causes, including three types related to the timing and magnitude of snow 

accumulation and melt. Similarly, a recent paper by Harpold et al. (2017) calls for a 

distinction between “warm” and “dry” snow drought events, and studies of warm versus 

dry snow drought are just emerging (e.g., Cooper et al., 2016; Sproles et al., 2017; 

Hatchett & McEvoy, 2018). To my knowledge, no studies have completed a combined 

analysis of snow drought and streamflow drought in the context of climatic causes, and 

no studies have undertaken a regional analysis of the historical frequency and severity 

of warm versus dry snow drought. Additionally, no climate change impact modelling 

studies have completed a combined analysis of snow drought and hydrological drought. 

The proposed research aims to close some of the gaps in our knowledge by 

investigating snow drought, hydrological drought, and the relationship between the two 

in the context of a warming climate.  
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1.1. Background and Previous Research 

The following sections review the existing literature and provide context for the 

novel contributions of the proposed research. 

1.1.1. Defining Drought 

Drought is defined as prolonged, below-average moisture availability (Palmer, 

1965). Drought should not be confused with aridity, which is a permanent feature of a 

dry climate (Mishra & Singh, 2010; Maliva & Missimer, 2012), or with water scarcity, 

which refers to a below-normal water availability caused fully or in part by human 

activities (Seneviratne et al., 2012). For purposes of this research, drought is defined as 

below-normal water availability due to natural causes only. 

Drought affects all components of the hydrologic cycle and is typically classified 

into the following categories (e.g., Changnon, 1980; Tallaksen & Van Lanen, 2004; 

Mishra & Singh 2010; Sheffield & Wood, 2011), with the addition of the emerging 

concept of snow drought (Ludlum, 1978; Wiesnet, 1981; Mote et al., 2016; Harpold et 

al., 2017). 

• Meteorological drought – precipitation deficiency, possibly in conjunction with 
increased evapotranspiration. 

• Snow drought – lack of snow accumulation in winter due to below-normal 
precipitation and/or above-normal winter temperatures. 

• Soil moisture drought – soil moisture deficiency which reduces the supply of 
moisture to vegetation. Soil moisture droughts are closely linked to crop failure 
and therefore are sometimes referred to as agricultural drought.  

• Hydrological drought – broad term related to below-normal surface and 
subsurface water storage and flows.  

• Socioeconomic drought – associated with the impacts from the four above-
mentioned drought types.   

The two main classes of drought of direct relevance to this research, snow 

drought and hydrological drought, are summarized below. 
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Snow drought 

Snow drought (Ludlum, 1978; Wiesnet, 1981) is characterized by below-normal 

peak or April 1st snow water equivalent (SWE) and can be caused by either a lack of 

winter precipitation (dry snow drought) or a lack of snow accumulation due to above-

normal winter temperatures (warm snow drought) (Harpold et al., 2017).  These different 

snow drought types have different hydrologic and economic impacts. Dry snow droughts 

reduce streamflow year-round, resulting in low reservoir levels, reduced hydropower 

production, and, in severe cases, drinking and irrigation water supply shortages. On the 

other hand, warm snow droughts increase flood risk (Allamano et al., 2009; Harpold et 

al., 2017) and create a mismatch between water availability and need. Both warm snow 

droughts and dry snow droughts cause below-normal summer streamflow (Harpold et 

al., 2017). 

The classification of snow droughts into “warm snow drought” and “dry snow 

drought” is an emerging concept. Mote et al. (2016) showed that exceptionally warm 

winter conditions prevented snow accumulation in the states of California, Oregon, and 

Washington during the record low snow season in 2015. Harpold et al. (2017) suggest 

distinguishing warm versus dry snow droughts based on April 1 SWE and cumulative 

winter (1-Nov to 1-Apr) precipitation, where winters with below-normal SWE and above-

normal precipitation are classified as warm snow droughts and years with below-normal 

SWE and below-normal precipitation are classified as dry snow droughts. The 

classification methodology of Harpold et al. (2017), however, does not account for the 

co-occurrence of warm and dry conditions, which is likely to be the most severe type of 

snow drought. 

Hydrological drought 

Hydrological drought is a broad term related to negative anomalies in surface 

and subsurface water. Hydrological drought may manifest as abnormally low streamflow 

in rivers and/or abnormally low levels in lakes, reservoirs, and groundwater (Palmer, 

1965; Dracup et al., 1980; Tallaksen & Van Lanen, 2004). Hydrological drought is 

sometimes separated into groundwater drought, defined as below-normal groundwater 

levels (Peters et al., 2003; Peters et al., 2006; Mishra & Singh, 2010), and streamflow 

drought, defined as below-normal river discharge. Streamflow drought should not be 

confused with low flows, which are a normal, seasonal component of flow regimes 
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(Smakhtin, 2001); however, low flow periods that are longer and/or more severe than 

normal are synonymous with streamflow droughts and may have significant impacts on 

water supply and agricultural production (Wilhite, 2000) and human (Charron et al., 

2004) and aquatic ecosystem health (Lake, 2003). 

To identify individual hydrological drought events from streamflow time series, a 

threshold level method is often used (e.g., Dracup et al., 1980; Tallaksen & Van Lanen, 

2004; Fleig et al., 2006; Van Loon, 2013). With this method, a drought occurs when the 

variable of interest falls below the defined threshold level, and the event continues until 

the threshold is exceeded. Individual hydrological drought events can then be described 

by several characteristics, including duration, magnitude, and severity. The duration of 

the drought event is defined as the number of days during which the streamflow is below 

a predefined threshold level. Drought magnitude is defined as the average streamflow 

deficit, and drought severity is defined as the cumulative streamflow deficit.  

Hydrological drought propagation 

Unlike meteorological drought, which is exclusively caused by a precipitation 

deficiency and controlled by climate, hydrological drought can be caused by precipitation 

and/or temperature anomalies (Van Loon & Van Lanen, 2012; Van Loon et al., 2015) 

and is controlled by both climate and catchment characteristics. During the propagation 

of hydrological drought, the terrestrial part of the hydrological cycle (i.e. the catchment 

control) acts as a low-pass filter to the meteorological forcing (i.e. the climate control). 

This low pass filtering results in the following features that characterize the propagation 

of meteorological drought to hydrological drought (Peters et al., 2003; Tallaksen & Van 

Lanen, 2004): 

• Pooling – smaller meteorological drought events are combined into one 

prolonged hydrological drought. 

• Attenuation – meteorological droughts are attenuated in surface water and 

groundwater stores, causing a smoothing of the maximum negative 

anomaly 

• Lag – a lag occurs between meteorological, soil moisture, and hydrological 

drought; the timing of the drought onset is later when moving through the 

hydrological cycle 
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• Lengthening – droughts increase in length as they move from 

meteorological drought via soil moisture drought to hydrological drought  

Many studies have shown that the propagation of hydrological droughts is 

dependent on both climate and catchment characteristics (Peters et al., 2003; Van 

Lanen & Tallaksen, 2007; Vidal et al., 2010; Van Loon, 2012; Van Loon & Van Lanen, 

2012; Van Loon et al., 2015); however, the relative importance of different climate and 

catchment characteristics is not well understood. A global study by Van Lanen et al. 

(2013) focused on the relative importance of climate versus catchment in the 

development of hydrological droughts and concluded that catchment control is as 

important as climate control. In a regional-scale study, Van Loon & Laaha (2014) 

investigated the relative importance of different climate and catchment characteristics on 

drought severity and identified catchment storage as the primary catchment control and 

seasonality as the primary climate control.  

Catchment storage is determined by multiple factors including geology, 

topography, soil, land use, vegetation, and drainage density – the last two of which may 

change on inter-annual time scales (Van Loon, 2015). According to Van Loon & Laaha 

(2014), a combination of storage factors must be used to explain the variability of 

drought severity. Van Loon & Laaha (2014) found that the baseflow index (BFI; ratio of 

baseflow to total streamflow) provided the best combined measure of catchment 

storage. While this study added to the knowledge of catchment controls on hydrological 

drought, the relative importance of individual catchment descriptors in hydrological 

drought propagation is still poorly understood, and no studies have specifically 

investigated the role of land use, vegetation, or drainage density in hydrological drought 

development. 

In general, climate controls on hydrological drought are easier to study and 

therefore are better understood than catchment controls. Seasonality is recognized as 

the primary climate control (Van Loon & Laaha, 2014; Van Loon, 2015), as hydrological 

droughts develop differently in climates with low seasonality as compared to climates 

with high seasonality. In regions with a relatively constant climate, below-normal 

precipitation and above-normal temperatures are the primary factors in the development 

of hydrological droughts. In a seasonal climate, additional processes play an important 

role in hydrological drought development. For example, in climates with snow 
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accumulation in winter, snow-related processes, including early soil freeze, late/early 

snowmelt timing, and/or below normal snow accumulation, can lead to a hydrological 

drought (Van Loon & Van Lanen, 2012; Van Loon et al., 2015). Thus, in catchments with 

seasonal snow cover, streamflow drought regimes are likely directly related to snow 

drought regimes.  

1.1.2. Climate Change Impacts on Snowmelt Hydrology 

Increasing concentrations of greenhouse gases in the atmosphere are expected 

to lead to an increase in global temperatures and an intensification of the global 

hydrological cycle (IPCC, 2013). Wet regions, such as the Pacific Northwest, will likely 

become wetter while drier regions, like southwestern United States, will likely become 

drier (IPCC, 2013). However, unlike temperature, projections of precipitation show little 

agreement among climate models (Barnett et al., 2005).  

As temperatures rise, precipitation is more likely to fall as rain than to fall as 

snow. The shift from snow-dominated to rain-dominated systems will have large impacts 

on hydrologic regimes in catchments with seasonal snow cover. Warming alone is 

expected to reduce annual snow pack, leading to earlier snowmelt and diminished and 

potentially warmer late summer flows (Barnett et al., 2008; Wu et al., 2012; Seager et 

al., 2013; Reynolds et al., 2015; Service, 2015). In western North America, many 

changes have already been detected, including shifts in the snowmelt season toward 

earlier spring and subsequent decreases in warm season runoff (Leith & Whitfield, 1998; 

Whitfield & Cannon, 2000; Adam et al., 2009; Déry et al., 2009; Pederson et al., 2011; 

among others), decreases in the fraction of rain versus snow (Knowles et al., 2006), and 

decreasing snowmelt rates (Harpold & Kohler, 2017; Musselman et al., 2017).  

While changes in the temporal distribution of streamflow are widely documented 

and acknowledged, the overall impact of a shift from snow to rain on the long-term mean 

streamflow is unknown. The general assumption has been that a shift from a snow- to 

rain-dominated regime will have a negligible impact on the long-term mean streamflow 

(Barnett et al., 2005; Regonda et al., 2005); however, recent studies by Bosson et al. 

(2012), Berghuijs et al. (2014), and Zhang et al. (2015) conclude that a warmer climate 

with less snow will lead to a significant decrease in mean annual streamflow. 
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Changes in snowmelt hydrology will likely result in shifts in the hydrologic drought 

regime. While several global-scale studies of climate change impacts on hydrological 

droughts have been completed (Hirabayashi et al., 2008; Prudhomme et al., 2014; Van 

Huijgevoort et al. 2014), catchment-scale studies are largely non-existent. In general, 

frost-season droughts are expected to become less severe and non-frost season 

droughts are expected to become more severe (Feyen & Dankers, 2009; Wanders & 

Van Lanen, 2015). 

1.1.3. Approaches for Investigating Climate Change Impacts on Water 
Resources 

Climate change impacts on water resources, including snow drought, low flow, 

and streamflow drought regimes, can be investigated using either a data-driven 

(downward) approach or a process-based (upwards) approach. These two approaches 

and relevant past research are summarized in the following two sections. 

Data-driven (downward) approach 

Data-driven studies assess climate impacts and/or climate sensitivities from 

observed hydroclimatic time series. Trend analysis is often used as a preliminary step to 

assess the existence of significant changes in hydroclimatic time series (Merz et al., 

2012). Assessing the sensitivity of a hydrologic variables to different climate metrics, 

e.g., precipitation and temperature, provides insight into how hydrologic regimes may 

change in the future. 

Temporal trend analysis 

Snow is an important indicator of climate change because of its sensitivity to 

temperature, and a common technique for estimating the impact of climate warming on 

snowpack is temporal trend analysis. While some locations at higher elevations and 

higher latitudes in western North America exhibit upward trends in snow water 

equivalent (Hamlet et al., 2005), many studies have shown significant decreases in late 

season snowpack (Groisman et al., 2004; Mote et al., 2005; Regonda et al., 2005; 

Barnett et al., 2008; Kapnick & Hall, 2012; Mote et al., 2018). Hamlet et al. (2005) show 

that the decline in snowpack cannot be explained by changes in total precipitation alone, 

and it is generally recognized that warming is likely to have played a role in the decrease 
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of spring snowpack. The Pacific Northwest is particularly sensitive to warming because 

winter and spring temperatures are near 0°C (Adam et al., 2009).  

The magnitude and timing of snowmelt has large impacts on warm season runoff 

(Barnett et al., 2008), and, unsurprisingly, many temporal trend analyses have 

documented decreasing summer runoff and decreasing summer minimum flows in 

catchments across western North America (Aguado et al., 1992; Ehsanzadeh & 

Adamowski, 2007; Luce & Holden, 2009; Dittmer, 2013; Kormos et al., 2016; among 

others). Trends in winter flows, however, are less studied and less clear. Novotny and 

Stefan (2007) documented trends toward less severe winter low flows in Minnesota, 

attributing the change to more frequent snow melt events. Ehsanzadeh and Adamowski 

(2007) documented shifts toward earlier winter low flow timing in Canada, suggesting a 

trend toward shorter winter low flow periods. Kormos et al. (2016) found minimal 

evidence for significant trends in winter low flows for the Pacific Northwest. 

While many other studies have investigated temporal trends in meteorological 

drought and soil moisture drought (e.g., Cook et al., 2004; Andreadis & Lettenmaier, 

2006; Sheffield & Wood, 2008; Dai, 2011; Sheffield et al., 2012; Dai, 2013; among many 

others), few studies have investigated trends in the severity, duration, or deficit volume 

of hydrological droughts. Hisdal et al. (2001) completed a pan-European study that 

included a trend analysis of the severity summer hydrological droughts and found no 

significant trend in drought severity. Wilson et al. (2010) investigated temporal trends in 

the duration and deficit volume of summer hydrological droughts in Nordic countries and 

found a trend toward higher summer drought deficit volumes. Bard et al. (2015) 

investigated trends in the hydrologic regime of Alpine rivers and found contrasting trends 

for winter drought severity and a tendency toward earlier summer droughts for 

snowmelt-rainfall regimes. The only study to analyze temporal trends in hydrological 

drought characteristics in North America was completed by Wu et al. (2008) for a set of 

catchments in the State of Nebraska. Like the findings of Hisdal et al. (2001), Wu et al. 

(2008) found no uniform trend in the duration, magnitude, or severity of streamflow 

drought. 

One of the main assumptions in statistical trend analyses is that the events come 

from the same population (population homogeneity). The trend studies mentioned in the 

previous paragraph all grouped drought events into non-frost (i.e. summer) season and 
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frost (i.e. winter) season droughts; however, hydrological droughts have a variety of 

causative factors and propagation processes, even within seasons (Van Loon & Van 

Lanen, 2012). Van Loon (2013) showed that droughts with different propagation 

processes have different characteristics (e.g., frequency, severity, duration), and Van 

Loon & Van Lanen (2012) posited that different types of hydrological droughts will 

respond differently to climate change.  

Sensitivity analysis 

The sensitivity of processes to shifts in climate has been quantified with a variety 

of statistical techniques, including path analysis (Kormos et al., 2016) and spatial (Luce 

et al., 2014) and temporal (Revelle & Waggoner, 1983; Sankarasubramanian et al., 

2001; Mote, 2006; Luce et al., 2014) analogs. These methods attempt to isolate the 

effect of temperature on hydrologic variables from the effect of other variables, such as 

precipitation. 

Path analysis is a special case of structural equation modelling and is used to 

quantify the direct and indirect influences of correlated predictor variables on response 

variables (Alwin & Hauser, 1975). Path analysis can be used to help understand the 

causal structure of the data (Kozak & Kang, 2006); however, it is not very useful at the 

exploratory stage of research (Zhang et al., 2014). Kormos et al. (2016) and Zhang et al. 

(2014) both used path analysis to separate temperature effects from precipitation effects 

on historical streamflow variability. Kormos et al. (2016) focused on low flows and 

showed that, in the Pacific Northwest, the historical variability of annual summer 

minimum flows has been more closely related to precipitation than to temperature. 

Zhang et al. (2014) focused on peak flows and showed that, in the Kaidu River 

watershed of Xinjiang, China, temperature has a large indirect effect the spring 

snowmelt peak flow. 

Temporal analogs use regression analysis, where, for example, interannual 

climate data are regressed against a hydrological variable of interest. The general logic 

behind temporal analogs is that warmer futures will resemble warmer years/days in the 

historical record (Sankarasubramanian et al., 2001; Mote, 2006; Luce et al., 2014). 

Temporal analogs have been used to isolate the effects of temperature on April 1 SWE 

(Howat & Tulaczyk, 2005; Mote, 2006; Casola et al., 2009; Luce et al., 2014) and annual 

streamflow (e.g., Nash & Gleick, 1991; Ng & Marsalek, 1992; Risbey & Entekhabi, 1996; 
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Fu et al., 2007) and have also been used to isolate the effect of peak SWE on summer 

minimum flows (Godsey et al., 2014; Jenicek et al., 2016).  

Spatial analogs also rely on regression analysis; however, instead of using 

interannual data, climatological averages are regressed against a variable of interest. 

Spatial analogs are sometimes called “space-for-time” substitutions and rely on the logic 

that a warmer future may look like historically warmer places do now (Luce et al., 2014). 

Spatial analogs have been used to model the sensitivity of snowpack to precipitation and 

temperature (Luce et al., 2014) and the sensitivity of streamflow to vegetation expansion 

(Goulden & Bales, 2014) and snowfall fraction (Berghuijs et al., 2014). Neither temporal 

analogs or spatial analogs have yet been used to quantify the climate sensitivity of low 

flows or hydrological drought. 

Process-based (upward) approach 

Process-based (upward) studies use hydrologic models to simulate future 

changes to water resources based on outputs from global climate models (GCMs). Many 

studies have used a process-based approach to study climate change impacts on water 

resources; however, only a small portion of these studies have analyzed impacts on low 

flows and/or hydrological drought. Existing process-based studies of climate change 

impacts on hydrological drought have been completed at the global scale (e.g., 

Hirabayashi et al., 2008; Prudhomme et al., 2014; Van Huijgevoort et al., 2014), at the 

continent and nation scale (e.g., Feyen & Dankers, 2009; Prudhomme et al., 2012; Leng 

et al., 2015), and at the catchment scale (Wanders & Van Lanen, 2015). 

The type of hydrological model used for these process-based studies is partially 

dependent on the scale of the study, and each type of model has its own set of 

advantages and disadvantages. Hirabayashi et al. (2008), Van Huijgevoort et al. (2014), 

and Prudhomme et al. (2014) all used global hydrological models (GHMs) and found 

significant increases in drought for many regions across the globe. While the global-

scale studies make it easier to identify large-scale trends, the projections from GHMs are 

coarser in both the spatial domain and the degree of process realism. Additionally, 

GHMs are the main source of uncertainty in the global scale studies, with the GCMs 

providing the second largest source of uncertainty (Hagemann et al., 2013; Prudhomme 

et al. 2014). 
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Continent- and nation-scale studies typically use regionalised rainfall-runoff 

models which are often not specifically parameterised for low flows. Most rainfall-runoff 

models were designed to simulate average and high flows, and the application of 

regional rainfall-runoff models to low flow and drought events has been much more 

limited (Smakhtin, 2001). To my knowledge, Wanders & Van Lanen (2015) is the only 

study to use catchment scale hydrological models to investigate climate change impacts 

on hydrological drought. In that study, the authors used lumped conceptual hydrological 

models of synthetic catchments representing randomly selected locations throughout the 

world. Results of the study showed a decrease in drought frequency but an increase in 

average drought duration and deficit volume for all major climates around the world. 

Streamflow during low flow and drought events is often dominated by 

groundwater discharge, i.e. baseflow. Since surface water and groundwater systems 

exhibit important feedbacks, the modelling procedure used to simulate drought events 

should take into account both the groundwater and surface water systems. Hewlett & 

Troendle (1975) stated that accurate prediction of the streamflow hydrograph implies 

adequate modelling of the sources, flowpaths, and residence time of the water. It follows 

that adequate modelling requires adequate representation of the physics of water flow, 

i.e. spatially and temporally distributed deterministic hydrological models.   

Freeze & Harlan (1969) provided the first guidelines for what is often considered 

adequate physics-based hydrological modelling. In the last fifteen years, the guidelines 

of Freeze & Harlan (1969) have been realised with the development of several physics-

based fully integrated (or coupled) surface water-groundwater (GW-SW) models. 

Examples include InHM (VanderKwaak & Loague, 2001), MODHMS (HydroGeoLogic, 

2006), HydroGeoSphere (HGS) (Therrien et al., 2010), ParFlow (Kollet & Maxwell, 

2006), and MIKE SHE (Danish Hydraulic Institute [DHI], 2007). Fully integrated (or fully 

coupled) GW-SW models model water flow through the entire system and should 

therefore provide an accurate simulation of drought propagation processes. While 

catchment scale studies using GW-SW models are widespread (e.g., Jones et al., 2008; 

Goderniaux et al., 2009, 2011; Li et al., 2008), this type of model is typically not used to 

model streamflow time series, likely due to the high data requirements and long 

processing times. Previous studies (Li et al., 2008; Partington et al., 2011; 

Golmohammadi et al., 2014; Foster & Allen, 2015) have shown that GW-SW models can 

be used to adequately model stream discharge; however, to my knowledge, no studies 
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have used a fully coupled/integrated GW-SW model to study hydrological droughts, 

drought propagation, or climate change impacts on drought. Moreover, no studies have 

used a GW-SW model to complete a combined analysis of climate change impacts on 

snow drought and hydrological drought. 

1.2. Purpose and Objectives 

This research aims to test the hypothesis that, in catchments with seasonal snow 

cover, snow drought regimes are directly related to low flow and streamflow drought 

regimes, and, consequently, climate warming will have related impacts on snow drought, 

low flows, and streamflow drought.  

The specific objectives of this study are as follows:  

1. Identify the dominant climate controls on runoff and low flows in 
mountain catchments; 

2. Quantify the historical frequency, severity, and risk of snow drought 
over western North America; 

3. Develop a methodology for snow drought susceptibility mapping in the 
context of a warming climate; 

4. Estimate how climate change may impact snow drought, low flows, 
and streamflow drought regimes; and 

5. Complete a case study of the potential for water scarcity in the Peace 
River watershed in the context of future climate change and growing 
industrial water demand. 

1.3. Scope of Work 

The following work was undertaken to achieve the research objectives: 

• To meet objective 1: 

o Develop and test a methodology for process-based separation of low 
flows in catchments with seasonal snow cover. 

o Identify the dominant climate controls on the inter-annual variability of 
runoff and low flows using bivariate and partial correlation analysis. 
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o Quantify the relative sensitivity of runoff and low flows to precipitation 
and temperature using the dominant climate controls identified using 
the correlation analysis. 

• To meet objectives 2 and 3: 

o Develop and test a methodology for classification of snow droughts 
based on climatic causes. 

o Map the sensitivity of peak snow water equivalent to precipitation and 
temperature. 

o Quantify the historical frequency, severity, and risk of snow drought at 
the grid-cell and ecoregion scale. 

o Develop a method for snow drought susceptibility mapping in the 
context of climate warming using the results of the grid-cell scale 
quantification of snow drought risk. 

• To meet objective 4: 

o Develop generic coupled groundwater-surface water models of 
headwater catchments in four major ecoregions of British Columbia 
using the MIKE-SHE modelling code. 

o Use global climate change projections to assess climate change 
impacts on snow drought, low flows, and snow drought related 
streamflow droughts. 

• To meet objective 5: 

o Develop hydrologic models of two headwater catchments in shale gas 
region of the Peace River watershed in northeast British Columbia. 

o Use global climate change projections to assess climate change 
impacts on annual and monthly water quantity and compare to future 
estimates of shale gas industry freshwater demand. 

o Compare simulated monthly runoff from the hydrologic models to the 
monthly runoff estimates from the British Columbia Northeast Water 
Tool. 

1.4. Thesis Overview 

This thesis is comprised of six chapters. 

Chapter 1 introduces the main concepts and outlines the objectives and scope of 

the research. Chapters 2 through 5 were prepared primarily as papers and have been 

submitted for publication, as described below. Chapters 2 and 3 present the papers as 
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submitted, with minor formatting changes. Chapter 4 has been prepared for journal 

publication but has not yet been submitted. Chapter 5 is an expanded version of a 

published book chapter, and Chapter 6 summarizes the conclusions and provides 

recommendations for future research. All papers were co-authored with my thesis 

supervisors, Dr. Diana Allen and Mr. Paul Whitfield; however, I completed the research 

and prepared the paper, with Dr. Allen and Mr. Whitfield providing technical input, 

guidance, and editing. Chapters 2 through 5 are described in more detail below. 

Chapter 2 – Climate Controls on Runoff and Low Flows in Mountain Catchments of 

Western North America.  

In the mountainous regions of western North America (WNA), snowmelt 

recharges groundwater and provides ecosystem-sustaining baseflow during low 

flow periods. Continued warming is expected to have large impacts on snowmelt 

hydrology and on low flow regimes, but the relative impact of temperature and 

precipitation on low flows is unclear. To address this knowledge gap, the 

dominant climate controls on summer and winter season low flows in 63 near-

natural catchments in mountainous ecoregions of WNA are identified with 

correlation analysis, and low flow sensitivity to temperature and precipitation is 

quantified with multiple linear regression analysis. Results show that precipitation 

is the dominant control on the inter-annual variability of annual runoff and on the 

duration and severity of summer and winter low flows. The temperature-

sensitivity of low flows, however, is up to two times higher than that of annual 

runoff. Annual runoff and low flows are most sensitive to winter climate 

conditions, particularly winter precipitation and winter thawing degrees. Warm 

winters correspond to significantly lower runoff, significantly longer, more severe 

summer low flows, and significantly shorter winter low flows. This highlights the 

importance of winter climate conditions for runoff and low flows in these mountain 

catchments and provides another line of evidence regarding the impacts of 

climate change on snowmelt hydrology. 

This paper was submitted for publication in Water Resources Research, 

authored by J.R. Dierauer, P.H. Whitfield, and D.M. Allen.  
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Chapter 3 – Winter Temperature Controls on Snow Drought Risk in Western North 

America.  

In western North America (WNA), mountain snowpack supplies much of the 

water used for irrigation, municipal and industrial uses. Thus, snow droughts (a 

lack of snow accumulation in winter) can have drastic ecological and 

socioeconomic impacts. In this study, the historical (1951-2013) frequency, 

severity, and risk of dry, warm, and warm and dry snow droughts are quantified 

at the grid-cell and ecoregion scale for the major mountainous regions in WNA. 

Based on multiple linear regression analysis, relationships between mean winter 

temperature, snow drought risk, and snow water equivalent (SWE) sensitivity are 

explored. Piecewise linear regression is used to identify temperature thresholds 

for mapping temperature-related snow drought susceptibility. Results highlight 

spatial differences in snow drought regimes across WNA and reveal that a critical 

temperature-threshold exists, above which the warm snow drought risk increases 

more rapidly. Three percent of the non-glaciated snow storage in WNA has high 

susceptibility to temperature-related snow drought, representing 11 km3 of water. 

Under a +2°C climate scenario, an additional 8% (28 km3) of the WNA snow 

storage volume will transition to high susceptibility.  

This paper was submitted for publication in Water Resources Research, 

authored by J.R. Dierauer, D.M. Allen, and P.H. Whitfield. 

Chapter 4 – Climate Change Impacts on Snow and Streamflow Drought Regimes. 

In many regions with seasonal snow cover, summer streamflow is primarily 

sustained by groundwater that is recharged during the snowmelt period. 

Therefore, below-normal snowpack (snow drought) may lead to below-normal 

summer streamflow (streamflow drought). Summer streamflow is important for 

supplying human needs and sustaining ecosystems, and while climate change 

impacts on snow have been widely studied, the relationship between snow 

drought and streamflow drought is not well understood. In this study, a combined 

investigation of climate change impacts on snow drought and streamflow drought 

was completed using generic groundwater – surface water models for four 

headwater catchments in different ecoregions of British Columbia. Results show 
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that, in response to increased precipitation and temperature, the snow drought 

regime changes substantially for all four catchments. Warm snow droughts, 

which are caused by above-normal winter temperatures, increase in frequency, 

and dry snow droughts, which are caused by below-normal winter precipitation, 

decrease in frequency. The shift toward more frequent and severe temperature-

related snow droughts leads to decreased summer runoff, decreased summer 

groundwater storage, and longer, more severe summer low flow periods. 

Moreover, snow droughts propagate into summer streamflow droughts more 

frequently in the future time periods (2050s, 2080s) as compared to the baseline 

1980s period. Thus, warm snow droughts not only become more frequent and 

severe in the future but also more likely to result in summer streamflow drought 

conditions.  

This paper is prepared as a manuscript and planned for submission to the journal 

Hydrology and Earth System Sciences. 

Chapter 5 – Case Study: Future Water Security in Northeast British Columbia.  

In recent decades, the Peace River watershed in Northeast British Columbia 

(NEBC) has experienced rapid growth in shale gas development activities, 

resulting in significant increases in surface water and groundwater use and a 

growing conflict over the use and protection of these water resources. Under a 

high development scenario, industrial water demand in the Peace River 

watershed is projected to increase by over 350% by 2030, and future water 

security in the context of the water-energy nexus is unknown, especially with 

continued climate warming. In this study, hydrological models are used to 

simulate the current and future water balance for two headwater catchments of 

the Peace River watershed, one in the foothills and one in the plains. Both 

catchments have been impacted by the recent shale gas development, and both 

contain oil and gas industry water use permits. Climate variables output from 

three Global Climate Models were used as inputs for the hydrologic models. 

Water quantity projections for future decades (2020s, 2030s, 2040s, and 2050s) 

were then compared to the projected water use for low, medium, and high shale 

gas development scenarios and used to estimate the potential for water scarcity 

in the region. Results from this study show that areas with high levels of oil and 
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gas industry development may experience water scarcity if rapid industrial growth 

continues, and improved water management policies will be needed to mitigate 

the high industrial water demand.  

This chapter is an expanded version of a book chapter that has been published 

in: Endo, A. and Oh, T. (Eds) Water-Energy-Food Nexus: Human-Environmental 

Security in the Asia-Pacific Ring of Fire. Springer. 

1.5. Significant Contributions 

The key findings/contributions of this research include the following: 

Chapter 2 – Climate Controls on Runoff and Low Flows in Mountain Catchments 

of Western North America.  

1. Higher mean annual temperatures correspond to longer, more 
severe summer low flows and shorter, less severe winter low 
flows. 

2. Warm winters correspond to significantly lower runoff, significantly 
longer, more severe summer low flows, and significantly shorter 
winter low flows. 

3. Compared to annual streamflow, low flows are up to two times 
more sensitive to temperature, particularly winter temperatures 
above 0°C. 

Chapter 3 – Winter Temperature Controls on Snow Drought Risk in Western 

North America.  

1. Warm and dry winter conditions occurring together produce the 
most severe snow droughts while warm winter conditions alone 
produce the least severe snow droughts. 

2. The severity and frequency of warm snow droughts is dependent 
on mean winter (1-Nov to 1-Apr) temperature, and warm snow 
drought risk increases with increasing mean winter temperatures. 

3. The relationship between warm snow drought risk and mean 
winter temperature is non-linear, and critical temperature 
thresholds exist, above which warm snow drought risk increases 
more rapidly. 
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Chapter 4 – Climate Change Impacts on Snow and Streamflow Drought 

Regimes. 

1. In response to the projected increases in precipitation and 
temperature, the snow drought regime changes substantially for 
all catchments. Warm snow droughts increase in frequency, and 
dry snow droughts decrease in frequency. 

2. Snow droughts propagate into summer streamflow droughts more 
frequently in the future time periods (2050s, 2080s) as compared 
to the baseline 1980s period. Thus, warm snow droughts not only 
become more frequent and severe in the future but are also more 
likely to result in summer streamflow drought conditions. 

3. The response of snow drought risk to climate warming is non-
linear. A +2°C change in the mean winter (1-Nov to 1-Apr) 
temperature has a larger impact on the snow drought regime in 
catchments with winter temperatures near zero compared to 
catchments with winter temperatures far below zero. 

Chapter 5 – Case Study: Future Water Security in Northeast British Columbia. 

1. Continued climate warming will likely lead to decreased summer 
runoff for the plains and foothills regions of the Peace River 
watershed in northeast British Columbia. Without significant 
commitment on the part of industry to re-use and recycle water for 
hydraulic fracturing, this decrease in summer runoff will likely co-
occur with substantial increases in oil and gas industry freshwater 
demand. 

2. While larger watersheds will likely have sufficient water quantity to 
meet future shale gas industry freshwater demands, smaller 
watersheds in areas with high levels of oil and gas development 
may experience water scarcity, especially during drought 
conditions. 

3. The Northeast Water Tool (NEWT), a decision support tool that 
provides guidance on natural water supply and availability, does 
not capture heterogeneity in the hydrological processes of smaller 
catchments. Differences between the NEWT-estimated monthly 
runoff and the actual monthly runoff, especially with regards to 
runoff timing and earlier than estimated freshet peaks, may result 
in an over-estimation of summer water supplies in small 
headwater catchments. 
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Chapter 2. Climate Controls on Runoff and Low 
Flows in Mountain Catchments of Western North 
America 

This chapter was submitted as a paper to Water Resources Research and is 

cited in other chapters of this thesis as:  

Dierauer, J.R., Whitfield, P.H., & Allen, D.M. (in review-a). Climate controls on runoff and 

low flows in mountain catchments of western North America. Water Resources 

Research.  

Supplemental figures, tables, and text for this chapter are included in Appendix A. 

2.1. Introduction  

In mountain regions of the western North America (WNA), much of the annual 

precipitation falls as snow, and thus, snow accumulation and melt are the dominant 

controls on the within-year distribution of streamflow. Streamflow in these mountain 

regions is highly seasonal, with low flow periods occurring in winter and/or summer. 

Winter and summer low flows are generated by different hydrologic processes (Waylen 

& Woo, 1987; Laaha & Blöschl, 2006; Burn et al., 2008). During the winter season, 

below freezing temperatures lead to snow accumulation, thus increasing water storage 

and decreasing flows until the occurrence of the spring freshet. Conversely, summer low 

flows occur when temperatures are above freezing, snowpack storage is largely 

depleted, and the evapotranspiration rate exceeds the precipitation rate. Streamflow is 

often sustained by groundwater discharge during low flow periods. Thus, sustained 

recharge to the groundwater system is necessary for sustaining streamflow during low 

flow periods. Depending on climate and physiography, a catchment may have a summer 

low flow period, a winter low flow period, or both. 

While low flow periods are a normal, annually recurring component of the natural 

flow regime (Smakhtin, 2001), longer and/or more severe low flow periods are 

synonymous with streamflow droughts and may have significant impacts on water 

supply, agricultural production (Wilhite, 2000), electricity generation (Wilhite, 2000; van 

Vliet et al., 2012; Bartos & Chester, 2015), and human (Charron, et al., 2004) and 
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aquatic ecosystem (Lake, 2003) health. Recent studies (Teuling et al., 2013; 

Diffenbaugh et al., 2015) have highlighted the role of temperature in streamflow and 

groundwater droughts, demonstrating that above-average temperatures can increase 

drought duration and severity. Other studies have shown that above-average 

temperatures have substantial impacts on snow hydrology, including a shift in the 

snowmelt season toward earlier spring and, consequently, decreased warm season 

runoff (Leith & Whitfield, 1998; Whitfield & Cannon, 2000; Adam et al., 2009; Déry et al., 

2009; Pederson et al., 2011; among others), as well as decreasing snowmelt rates 

(Harpold & Kohler, 2017; Musselman et al., 2017).  

Despite the documented role of temperature in streamflow and groundwater 

droughts and the recognized impacts on snowmelt hydrology, the relative impact of 

temperature and precipitation on summer and winter low flows remains unclear. Kormos 

et al. (2016) used path analysis to isolate temperature effects from precipitation effects 

and showed that, in the Pacific Northwest, the historical variability of annual summer 

minimum flows has been more closely related to precipitation than to temperature. 

Godsey et al. (2014) and Jenicek et al. (2016) showed that lower peak snow water 

equivalent corresponds to lower summer minimum flows. These studies, however, only 

analyzed minimum flows and did not separate the relative impact of precipitation versus 

temperature on the duration or severity of summer or winter low flows.  

Since summer and winter low flows have different causal mechanisms (i.e. high 

evapotranspiration rates versus below freezing temperatures, respectively), any analysis 

of the climate controls on low flows must first separate winter low flows from summer low 

flows. Previous studies have used an arbitrary standard “winter” classification (e.g., Nov 

1st to April 30th in Ehsanzadeh & Adamowski, 2007; Nov 16th to May 31st in Kormos et 

al., 2016) or a “drought year” with an April 1st start (e.g., Douglas et al., 2000). The use 

of a “drought year” ensures that the low flow period is not split between years but does 

not separate low flows generated by different hydrological processes. Similarly, a 

standard winter classification, based upon calendar dates, may effectively separate 

winter versus summer annual minimum flows, but is ineffective for separating the full 

summer versus winter low flow periods and ignores the realities of elevation and latitude.  

Without a robust methodology for low flow regime classification that includes a 

process-based separation of summer and winter low flows, the dominant climate 
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controls and, consequently, the relative impact of precipitation and temperature on low 

flow generation will likely remain poorly understood. With this in mind, the objectives of 

this study are to: (1) develop a robust methodology to classify low flow regimes and 

separate summer and winter low flows, (2) identify the dominant climate controls on low 

flow regimes and on the inter-annual variability of runoff and low flows, and (3) quantify 

the relative sensitivity of runoff and low flows to temperature and precipitation. 

2.2. Data and Methods 

The following sections describe the streamflow observations, meteorological 

data, and simulated fluxes used (sections 2.2.1 and 2.2.2) as well as the methods 

employed to characterize the low flow regime (section 2.2.3), define predictor and 

response variables (section 2.2.4), identify dominant climate controls (section 2.2.5), and 

quantify the precipitation- and temperature-sensitivity of runoff and low flows (section 

2.2.6). 

2.2.1. Streamflow Observations 

Streamflow records were obtained from the Canadian Reference Hydrometric 

Basin Network and the United States Hydroclimatic Data Network. These Reference 

Hydrometric Networks (RHNs) represent a collection of streamflow gauges that have 

stable conditions and/or a minimum of direct anthropogenic influence (Whitfield et al., 

2012). To remove catchments with complex streamflow regimes, catchment size was 

limited to less than 5,000 km2. Additionally, in order to have a consistent 

hydrometeorological dataset for all catchments, the maximum latitude was set to 52°N, 

matching the northern extent of the Livneh et al. (2015) dataset domain (see section 

2.2). A common analysis period of 1983-2012 was chosen to maximize the number of 

catchments included in the analysis, and only gauges having at least 29 years of flow 

data with no missing observations were included in the initial subset.  

After the initial subset of stations was selected, the streamflow regime for each 

catchment was visually screened using the R package “FlowScreen” (Dierauer & 

Whitfield, 2016; Dierauer et al., 2017), and catchments without a recognizable snowmelt 

peak were removed from the analysis. Remaining catchments were delineated from 

topographic maps and compared to level III ecoregion polygons for North America 
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(Commission for Environmental Cooperation [CEC], 2009). Catchments with less than 

~90% of their area within a single level III ecoregion were removed from the analysis to 

avoid mixed catchment types (e.g., half mountains, half plains). Additionally, since the 

goal of the study was to analyze climate controls on summer low flows and winter low 

flows, catchments without a substantial (<100 days) summer or winter season (based on 

the simplified seasonal classification scheme described in section 2.3) were removed 

from the analysis.  

With this selection strategy, the final subset of RHN gauging stations included 12 

stations in Canada and 51 stations in the contiguous United States, for a total of 63 

stations (Figure 2.1; Appendix A, Table S2.1). The catchments range in size from 9 km2 

to 3354 km2 and have a wide range of climate conditions. Mean annual precipitation 

ranges from 486 mm/year to 3100 mm/year. Mean annual temperature ranges from -

1.4°C to 6.9°C. 

 

Figure 2.1 Study region elevation in meters above sea level (MASL) with the 
locations of selected hydrometric gauging stations indicated by 
white circles. Additional station information is included in Appendix 
A, Table S2.1. 
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2.2.2. Meteorological Data and Simulated Fluxes 

The climate data used for this analysis were obtained from the Livneh et al. 

(2015) gridded hydrometeorological dataset. This dataset contains gridded observation-

based daily meteorological forcings and simulated Variable Infiltration Capacity (VIC) 

model states and fluxes at 1/16° resolution for the 1950 to 2013 period. The VIC model 

(Liang et al., 1994) is a physically based land-surface model capable of simulating 

energy and water balance. The parameterization and validation of the VIC model is 

described in Livneh et al. (2015). The Livneh et al. (2015) dataset was chosen because 

it has a larger domain and finer spatial resolution than previous datasets (e.g., Maurer et 

al., 2002; Livneh et al., 2013).  

In mountainous terrain, gridded datasets may represent over-smoothed 

topography and thus introduce biases into the climate data. To account for the effects of 

topography, the Livneh et al. (2015) dataset uses a constant temperature lapse rate of -

6.5 °C/km and incorporates orographic scaling across the entire domain. Gridded 

datasets fail to reproduce station observations completely; however, Behnke et al. 

(2016) showed that the Livneh et al. (2013) dataset, the domain of which was extended 

by Livneh et al. (2015), is one of the better-performing gridded climate datasets currently 

available. Temperature accuracy was an important consideration since the gridded 

climate data were used to define catchment-specific hydrologic year start days (see 

section 2.3). The Livneh et al. (2013) dataset has minimal bias (<1°C) for minimum and 

maximum daily temperatures within ±10° of 0°C (Behnke et al., 2016). With the 

exception of the Maurer et al. (2002) dataset, other gridded datasets analyzed by 

Behnke et al. (2016) exhibited higher temperature and precipitation biases. The Livneh 

et al. (2015) dataset was chosen over the Maurer et al. (2002) dataset because of its 

higher spatial resolution, and thus the possibility for increased accuracy for data-scarce 

regions of WNA. 

For this study, time series of maximum daily temperature, minimum daily 

temperature, daily precipitation, and daily snow water equivalent (SWE) from the Livneh 

et al. (2015) dataset were calculated for each catchment by extracting data for all grid 

cells within each catchment and calculating the average value per day. Mean daily 

temperature was calculated as the average between the minimum daily temperature and 

the maximum daily temperature. 
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2.2.3. Low Flow Regime Characterization 

To separate summer low flows from winter low flows, a catchment-specific 

seasonal classification was used, where days occurring after the start of the frost season 

and before the spring freshet peak were classified as “winter”, and days occurring after 

the spring freshet peak and before the onset of the frost season were classified as 

“summer”. Low flow periods in the two seasons (summer and winter) were then defined 

using Mean Daily Runoff (MDR) as the upper bound (Figure 2.2). With this method, the 

length and timing of the simplified “winter” versus “summer” seasons are unique to each 

catchment and based on catchment climate. Using the freshet peak (as opposed to an 

arbitrary date or the end of a temperature-defined frost-season) to separate the “winter” 

season from the “summer” season effectively separates summer low flows from winter 

low flows even with inter-annual shifts in freshet timing (Appendix A, Figure S2.1). 

Within this catchment-specific seasonal classification scheme, the start of the 

frost season was defined for each catchment based on the 30-year (1983-2012) average 

climate, where the start of the frost season was defined as the first day of the year 

occurring after the warmest day of the year and with a 30-year mean temperature less 

than 0°C. The catchment-specific frost season start was used to define the start of the 

hydrologic year for all calculations. In many years, temperatures may oscillate above 

and below the freezing point for days or weeks, and the actual “boundary” between the 

summer and winter periods in any one year may be substantially different from the 

defined boundary. The methodology presented here is based on the average climate of 

each individual catchment and is applied in the same manner in all catchments. Thus, 

using these temperature criteria provides a fairer comparison than using an arbitrary 

calendar date, especially for this large and topographically complex region of WNA, 

where latitude and elevation strongly affect the timing and duration of the frost season. 

For all hydrometric time series, the observed mean daily streamflow values 

(m3/s) were converted to daily runoff values (mm/day) and then smoothed with a 15-day 

centered moving average filter to eliminate day-to-day variations and reduce the effect of 

individual, potentially spurious values in the raw data. The average timing of the freshet 

peak, hereafter referred to as the “freshet peak”, for each catchment was defined based 

on the 30-year (1983-2012) hydrograph, calculated as the mean daily runoff from the 

smoothed time series. The freshet peak for each catchment was defined as the day of 
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the year with the highest 30-year mean daily runoff within the set of days occurring after 

the mid-point of the frost season and before the mid-point of the non-frost season. 

Defining the freshet peak using this subset of days ensures that the peak is occurring 

due to snowmelt and not due to late-summer or fall rain. 

 

Figure 2.2 Example low flow regime classifications: (a) Flathead River, gauge 
ID 12358500, and (b) Newhalem Creek, gauge ID 12178100. Winter 
low flow period shown in blue; summer low flow period shown in 
pink. Dashed horizontal line is equal to the mean daily runoff (MDR) 
and is used as the upper-bound for defining the low flow periods. 
The gray areas above the MDR line are equal to the blue and pink 
areas when not plotted with a logarithmic y-axis. 

2.2.4. Predictor and Response Variables 

To analyze climate controls on the low flow regimes, nine streamflow response 

variables and eight climate predictor variables were chosen (Table 2.1). The streamflow 

response variables include the duration (DUR), average magnitude (MAG), severity 

(SEV), and maximum deficit (MAX) of the summer (denoted with subscript “s”) and 

winter (denoted with subscript “w”) low flow periods. DUR was calculated as the 

cumulative number of days when the smoothed streamflow was less than MDR. SEV 

was calculated as the cumulative water deficit below MDR, and MAG was calculated as 

SEV divided by DUR. MAX was calculated as the maximum deviation below MDR and 

represents the maximum intensity of the low flow period. Low flow duration is directly 

comparable between catchments and therefore is expressed in units of days. The 

magnitude, maximum deficit, and severity of the seasonal low flow periods, however, are 

dependent on the magnitude of catchment MDR. Therefore, to aid in comparison 

between catchments, magnitude and maximum deficit are normalized by MDR. Severity 
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is a cumulative value, and therefore is normalized by Mean Annual Runoff (MAR). The 

full list of streamflow response variables and the associated abbreviations are provided 

in Table 2.1; equations used to calculate the variables are included in Appendix A, Table 

S2.2. 

The eight chosen climate predictors include both seasonal and annual variables. 

The seasonal climate variables, summer mean temperature (Ts), summer precipitation 

(Ps), winter mean temperature (Tw), winter precipitation (Pw), and winter thawing degrees 

(TDw), were calculated using the simplified summer versus winter seasonal 

classification, as defined in section 2.3 and as shown in Figure 2.2. The annual climate 

variables, mean temperature (Ta), precipitation (Pa), and snow fraction (Sf), were 

calculated using the catchment specific winter season start (i.e. the start of the frost 

season, see Figure 2.2) as the start of the hydrologic year. Sf was calculated using a 

threshold of 0°C, and TDw was calculated as the sum of mean daily temperatures for all 

winter days with a mean temperature above 0°C. 

Table 2.1 Climate predictor variables and low flow regime response variables 
used in the analyses. 

Predictor variables Abbreviation Units 

Annual Precipitation Pa cm 
Mean Annual Temperature Ta °C 

Summer Precipitation Ps cm 
Summer Mean Temperature Ts °C 

Winter Precipitation Pw cm 
Winter Mean Temperature Tw °C 

Winter Thawing Degree Days TDw °C 
Snow Fraction Sf Fraction of Pa 

Response variables Abbreviation Units 

Mean Daily Runoff MDR mm 
Summer low flow duration DURs days 

Summer low flow average magnitude MAGs Fraction of MDR 
Summer low flow severity SEVs Fraction of MAR 

Summer low flow deficit max MAXs Fraction of MDR 
Winter low flow duration DURw days 

Winter low flow average magnitude MAGw Fraction of MDR 
Winter low flow severity SEVw Fraction of MAR 

Winter low flow deficit max MAXw Fraction of MDR 

2.2.5. Identification of Dominant Climate Controls 

Identification of the dominant climate controls on low flows provides a basis for 

understanding what might occur under future climate change, particularly separating 
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responses to changes in temperature from responses to changes in precipitation. In this 

study, two analyses were completed: (1) a regional analysis of climate controls on low 

flow regimes and (2) a catchment-scale analysis of climate controls on the inter-annual 

variability of runoff and low flows. The regional analysis provides insight into how a 

catchment’s low flow regime may change due to an overall shift in the average climate. 

The catchment-scale analysis reveals which climate conditions lead to more severe 

summer/winter low flows and/or decreased runoff and is therefore synonymous with the 

identification of the primary climatic causes of streamflow drought.  

For the regional analysis of climate controls on low flow regimes, the predictor 

and response variables were calculated for each catchment as the mean over the 30-

year analysis period (1983-2012). For the catchment-scale analysis of climate controls 

on the inter-annual variability of runoff and low flows, predictor and response variables 

were calculated for each hydrologic year, using the same hydrologic year start and 

seasonal classification scheme as defined by the common 30-year analysis period. The 

equations used to calculate the 30-year regime values and the yearly values are 

included in Appendix A, Table S2.2. Godsey et al. (2014) documented significant 

memory effects in snow-dominated catchments in the Sierra Nevada Mountains; 

therefore, climate conditions of the preceding year were also included in the catchment-

scale correlation analysis and are denoted with a [-1] superscript. For the winter low flow 

season, climate predictors that include information about the following season climate 

conditions (Ts, Ps, Ta, Pa) were excluded.  

Dominant climate controls were identified using correlation analysis. The regional 

analysis employed bivariate correlation while the catchment-scale analysis employed 

bivariate and partial correlation. Dominant climate controls on the low flow regime were 

identified as those exhibiting the strongest correlations with the streamflow response 

variables. Dominant climate controls on the inter-annual variability of runoff and low 

flows were identified as those with a high percentage of catchments exhibiting significant 

correlations and a high mean percent variance explained. The methods used to 

calculate the percent variance explained by each predictor variable are included in 

Appendix A, Text S2.1. 
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2.2.6. Precipitation and Temperature Sensitivity 

After using the correlation analysis to identify the dominant predictor (climate) 

variables, multiple linear regression (MLR) analysis was used to quantify the sensitivity 

of the streamflow response variables to each of the dominant predictor variables. All 

predictor and response variables were standardized by subtracting the mean and 

dividing by the standard deviation (SD). By using standardized values, i.e. z-scores, for 

all variables, the MLR analysis produces standardized regression coefficients that 

represent the change in the response variable for every 1 SD change in the predictor 

variable. Standardized regression coefficients can be directly compared between 

predictor variables that have different non-standardized units, e.g., precipitation (cm) and 

temperature (°C), and thus give an indication of the relative sensitivity of a response 

variable to each of the predictor variables. To isolate the dominant climate controls, only 

significant variables (p < 0.05) with standardized regression coefficients a magnitude 

larger than the standard error values were kept in the final MLR models. See Appendix 

A, Text S2.2 for handling of collinearity. 

Based on results of the MLR analysis, the Mann-Whitney U test was used to 

further quantify the impact of the dominant climate controls on runoff and low flows in 

these catchments. The Mann-Whitney U-test (Mann & Whitney, 1947), also known as 

the Wilcoxon rank-sum test (Wilcoxon, 1945), is a non-parametric statistical hypothesis 

test used to determine if there is a significant difference between two independent 

samples. 

2.3. Results 

The following sections summarize the main findings of this study. Section 3.1 

presents the results of the low flow regime characterization (Objective 1). Sections 3.2 

and 3.3 identify the dominant climate controls on low flow regimes and on the inter-

annual variability of runoff and low flows, respectively (Objective 2). Sections 3.4 and 3.5 

quantify the relative sensitivity of runoff and low flows to temperature and precipitation 

(Objective 3).  
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2.3.1. Low Flow Regime Characterization 

All catchments exhibit both summer and winter low flow periods. The low flow 

response variables are inter-related (Figure 2.3). Catchments with longer winter 

(summer) low flow seasons tend to have shorter summer (winter) low flow seasons, as 

illustrated by the strong negative correlation (Spearman’s rho = -0.81) between DURs 

and DURw. Additionally, catchments with longer low flow periods, i.e. higher DURs or 

DURw values, tend to have more severe low flows. Interestingly, catchments with higher 

runoff (i.e. higher MDR values) tend to have shorter, less severe winter low flow periods 

but no tendency toward shorter or less severe summer low flow periods. 

 

Figure 2.3 Response variable bivariate plots. Spearman’s rho reported for 
significant (p < 0.05) correlations. Red (blue) points indicate 
significant negative (positive) correlation; gray points indicate non-
significant results. Abbreviations and units are as in Table 2.1. 
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2.3.2. Regional Analysis: Climate Controls on the Low Flow Regime 

As expected, warmer catchments have longer, more severe summer low flows, 

and shorter, less severe winter low flows compared to cooler catchments. All seasonal 

low flow response variables exhibit the highest correlation with temperature-related 

climate predictors (Figure 2.4). For summer low flows, the correlation is positive, while 

for winter low flows, the correlation is negative. For example, Ta is positively correlated 

with the DURs and negatively correlated with the DURw. Similarly, Ts is positively 

correlated with SEVs and negatively correlated with SEVw.  

While MDR is primarily controlled by precipitation, the low flow regime is primarily 

controlled by temperature. Except for the significant negative correlation (rho = -0.25) 

between Ps and MAGs, there are no significant correlations between the summer low 

flow regime and precipitation (Figure 2.4). Regardless of the magnitude of annual 

precipitation, warmer catchments have longer, more severe summer low flows. This is 

further illustrated by Figure 2.5, which shows four catchments (two each from two 

different ecoregions) with different Pa and Ta values. For both ecoregion pairs, the 

warmer, wetter catchment exhibits a longer, more severe summer low flow season 

compared to the cooler, drier catchment. 
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Figure 2.4 Predictor and response variable bivariate correlation plots. 
Spearman’s rho reported for significant (p < 0.05) correlations. Red 
(blue) points indicate significant negative (positive) correlation; gray 
points indicate non-significant results. Abbreviations and units are 
as in Table 2.1. 



33 

 

Figure 2.5 Low flow regimes for catchments with different mean annual 
temperatures (Ta) and mean annual precipitation (Pa) – two each 
from two level III ecoregions. (a) Cataract Creek, gauge ID 05BL022, 
(b) Flathead River, gauge ID 12358500, (c) Merced River, gauge ID 
11264500, (d) Duncan Canyon Creek, gauge ID 11427700. 

2.3.3. Catchment-scale Analysis: Climate Controls on Inter-annual 
Variability 

Figure 2.6 shows the relative importance of each climate predictor variable 

quantified by calculating both the fraction of stations with significant correlations (p < 

0.05) and the mean percent variance explained by each climate predictor. The mean 

percent variance explained was calculated using the subset of significant correlations. 

The dominant climate controls are identified as those with a high fraction of significant 

correlations and a high mean percent variance explained, i.e. taller bars and with higher 

color saturation in Figure 2.6. 
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Figure 2.6 (a) Fraction of stations exhibiting significant correlation (p value < 
0.05) between the streamflow response variables and the climate 
predictor variables. (b) Fraction of stations exhibiting significant 
partial correlations (p < 0.05) – control variable marked with a star. 
For (a) and (b): Red gradient indicates an increase in the climate 
predictor variable is associated with a decrease in water quantity 
(e.g., longer duration low flow season, lower runoff) while blue 
gradient indicates increased water quantity (e.g., shorter duration 
low flow season, higher runoff). Color saturation, shown in bottom 
legend, indicates mean percent variance explained for the subset of 
stations with significant correlations. Streamflow response variable 
and climate predictor variable abbreviations are as in Table 2.1, with 
the addition of preceding year climate variables, as indicated with “-
1” postscript. 
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Mean daily runoff (MDR) 

Precipitation is the dominant control on the inter-annual variability of MDR 

(Figure 2.6a). MDR is significantly correlated to Pa in 100% of the catchments and with 

Pw in 62 out of the 63 catchments. Ps exhibits less control on MDR and is significantly 

correlated with MDR in less than 24% of catchments (Figure 2.6a). Temperature, 

particularly winter thawing degrees (TDw), is a significant secondary control on MDR in 

the majority (69%) of catchments. Considering two years with equal precipitation (Pa), as 

represented by the partial correlation analysis (Figure 2.6b), MDR tends to be lower in 

years with warm winters (i.e. years with high TDw values). Snow fraction (Sf) is also a 

significant secondary control in the majority (68%) of catchments. However, Sf cannot be 

used to isolate the separate roles of temperature and precipitation because the Sf in any 

one year is dependent on both winter temperatures and precipitation timing.   

Summer low flows 

Unlike the regional analysis (section 3.2), which indicated that temperature is the 

dominant control on the low flow regime, the catchment-scale analysis shows that 

precipitation is the dominant control on the inter-annual variability of summer low flows. 

Wet years (high Pa values) tend to have shorter, less severe summer low flow periods. 

However, winter temperature (TDw) is a significant secondary control on DURs and SEVs 

in the majority of catchments (90% and 87%, respectively). Considering two years with 

equal precipitation (Pa), as represented by the partial correlation analysis (Figure 2.6b), 

the severity and duration of summer low flows tends to be higher in years with warm 

winters (i.e. years with high TDw values). Temperature control is higher for DURs and 

SEVs than for MAGs and MAXs, and summer precipitation (Ps) is the dominant secondary 

control on MAGs and MAXs in the majority of catchments (73% and 62%, respectively; 

Figure 2.6b).  

Winter low flows 

Like MDR and summer low flows, the inter-annual variability in winter low flows is 

primarily controlled by precipitation. Ps
-1 is the strongest control on MAGw and MAXw, 

with 65% and 78% of the catchments exhibiting significant negative correlations between 

Ps
-1 and MAGw and MAXw, respectively. DURw and SEVw are more strongly controlled by 

within-season precipitation (Pw; Figure 2.6a). For both predictor variables Pw and Ps
-1, 

higher precipitation corresponds to shorter, less severe winter low flows. A substantial 
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portion (76%) of stations also exhibit significant partial correlations between DURw and 

TDw (Figure 2.6b), illustrating that warm winters have shorter low flow periods while cool 

winters have longer low flow periods. In general, the correlation analysis shows that 

winter low flows are shorter and less severe in years with warm, wet winters and wet 

preceding summers than in years with cool, dry winters and dry preceding summers. 

2.3.4. Low Flow Sensitivity to Precipitation and Temperature 

The MLR models show that temperature-sensitivity of low flows is up to two times 

higher than the temperature-sensitivity of MDR (Table 2.2). MDR is sensitive to winter 

season temperatures, with a 1 SD increase in TDw corresponding to a 0.21 SD decrease 

in MDR. Summer low flows exhibit the highest sensitivity to temperature, with a 1 SD 

increase in TDw corresponding to a 0.42 SD increase in DURs and a 0.35 SD increase in 

SEVs. For the winter low flow season, DURw exhibits the highest temperature-sensitivity 

(-0.34 SD DURw per +1 SD TDw). For SEVw, TDw and TDw
-1 act in opposition to one 

another, and a warm winter (high TDw) corresponds to a less severe low flow period 

within the season (lower SEVw) but longer duration low flows for the following winter 

season (i.e. higher SEVw
+1).  

While the temperature-sensitivity of low flows is higher than the temperature-

sensitivity of annual streamflow (represented here by MDR), precipitation is the 

dominant control on the inter-annual variability of both annual streamflow and low flows 

(Table 2.2). Summer low flows and annual streamflow are most sensitive to Pa. 

However, the seasonal distribution of precipitation also matters, especially for MAGs and 

MAXs, and abnormally wet summers (i.e. low Pw) correspond to lower intensity summer 

low flows (i.e. lower MAGs and MAXs). For winter low flows, duration and severity are 

most sensitive to within-season season precipitation (Pw), while intensity (i.e. MAGw, 

MAXw) is most sensitive to the preceding season precipitation (Ps
-1). 
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Table 2.2 Streamflow response variable sensitivity to selected climate 
variables, estimated by standardized regression coefficients. 

 MDR DURs SEVs MAGs MAXs DURw SEVw MAGw MAXw 

Pa
 0.71 

±0.02 
-0.53 
±0.02 

-0.55 
±0.01 

-0.48 
±0.02 

-0.53 
±0.02 

-- -- -- -- 

Pw
 a 0.13 

±0.02 
-- 0.19 

±0.01 
0.32 
±0.02 

0.26 
±0.02 

-0.49 
±0.02 

-0.49 
±0.02 

-0.32 
±0.02 

-0.24 
±0.02 

Ps
-1 

-- -- --  -- -- -0.16 
±0.02 

-0.29 
±0.02 

-0.33 
±0.02 

-0.40 
±0.02 

TDw
 -0.21 

±0.02 
0.42 
±0.02 

0.35 
±0.02 

0.16 
±0.02 

0.19 
±0.02 

-0.34 
±0.02 

-0.22 
±0.02 

-- -- 

TDw
-1 

-- -- -- -- -- -- 0.19 
±0.02 

0.19 
±0.02 

0.21 
±0.02 

Ts
 

-- -- 0.14 
±0.01 

0.15 
±0.02 

0.13 
±0.02 

-- -- -- -- 

y-int. ~0.0 
±0.01 

~0.0 
±0.02 

~0.0 
±0.01 

~0.0 
±0.02 

~0.0 
±0.02 

~0.0 
±0.02 

~0.0 
±0.02 

~0.0 
±0.02 

~0.0 
±0.02 

r2 0.67 0.59 0.65 0.48 0.52 0.27 0.35 0.27 0.29 
F 1282 1372 876.9 437.6 510.3 227 253.3 236.5 252.2 
DF 1886 1887 1885 1885 1885 1886 1885 1886 1886 

Note: “--” indicates that the variable was not included in regression equation for the corresponding response variable. 
Standard error values are listed beneath the standardized regression coefficients. Variable abbreviations are as 
defined in Table 2.1, with [-1] superscripts denoting preceding hydrologic year (see section 3.3). All variables and 
models are significant at the p < 0.05 level. a For MDR, DURs, MAGs, SEVs, and MAXs, the standardized residuals of 
Pw ~ Pa are used as input to the regression models (see Text S2.2 for details). For DURw, MAGw, SEVw, and MAXw, Pa 
is not part of the regression models, and the standardized Pw values are used as inputs to the regression models.  

2.3.5. Winter Climate Impacts on SWE, Runoff, and Low Flows 

The correlation and MLR analyses (sections 3.3 and 3.4) show that, in these 

mountain catchments, runoff and low flows are sensitive to winter climate conditions, 

particularly winter precipitation (Pw) and winter thawing degrees (TDw). To further 

analyze the impact of winter climate on SWE, runoff, and low flows, particularly the co-

occurrence of warm and dry conditions, the winter season was classified into four types 

based on the standardized Pw and TDw values (i.e. z-scores) as shown in Figure 2.7. 

This classification scheme was then used in combination with Mann-Whitney tests to 

quantify the impact of warm winter conditions (i.e. above average TDw) on streamflow, 

runoff, and low flows. Two comparisons for each streamflow response variable were 

made to isolate the impact of warm winters: 1) years with warm and dry (W-D) winters 

versus years with cool and dry (C-D) winters, and 2) years with warm and wet (W-W) 

winters versus years with cool and wet (C-W) winters. Since studies have shown 

correlations between snow fraction and annual runoff (Berghuijs et al., 2014) and 

between peak SWE and summer low flows (Godsey et al., 2014; Jenicek et al., 2016), 
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winter climate impacts on peak and April 1st SWE were also analyzed. Results of the 

Mann-Whitney U test are presented in Table 2.3. 

Results of this analysis show that, in these mountain catchments, W-D winters 

occur 1.5 times more often than C-D winters (Figure 2.7). Additionally, years with W-D 

winters and have significantly lower annual runoff, significantly longer, more severe 

summer low flows, significantly shorter, less severe winter low flows, and significantly 

lower SWE compared to years with C-D winters (Table 2.3). The lower water quantity in 

years with W-D winters (compared to years with C-D winters) is at least partially due to 

significantly lower precipitation (Pa). However, the median absolute difference in Pa (0.06 

SD) is substantially smaller than the median absolute difference in annual runoff (0.33 

SD) and summer low flow variables (0.37-0.71 SD).  

The differences between W-W winters and C-W winters are similar, and years 

with W-W winters have significantly lower runoff, significantly longer, more severe 

summer low flows, significantly shorter winter low flows, and significantly lower SWE 

compared to years with C-W winters (Table 2.3). W-W winters occur approximately half 

as often as C-W winters (Figure 2.7) and have significantly lower precipitation than C-W 

winters (Table 2.3). The median absolute difference between W-W and C-W years is 

highest for DURs (0.79 SD), which is in direct agreement with the MLR analysis which 

showed that, out of all response variables, DURs exhibits the highest sensitivity to TDw. 



39 

 

Figure 2.7 Winter season classification based on standardized values (z-
scores) for winter precipitation (Pw) and winter thawing degrees 
(TDw). Number of years in each quadrant indicated by n values. 

Table 2.3 Effect of winter climate conditions on the median z-scores of runoff 
and low flows. Significance assessed with the Mann-Whitney U test. 

 Warm Cool  Warm Cool  
 Dry Dry Difference Wet Wet Difference 

n 622 408  295 565  

Pa -0.71 -0.61 -0.06 0.55 0.79 -0.24 
Pw -0.71 -0.66 -0.05 0.47 0.94 -0.36 
Peak SWE -0.73 -0.56 -0.17 0.29 0.94 -0.59 
April 1 SWE -0.73 -0.51 -0.19 0.32 0.90 -0.57 
MDR -0.78 -0.45 -0.33 0.25 0.88 -0.61 
DURs 0.79 0.11 +0.71 -0.02 -0.84 +0.79 
SEVs 0.81 0.11 +0.69 -0.14 -0.76 +0.63 
MAGs 0.59 0.22 +0.35 -0.02 -0.45 +0.35 
MAXs 0.63 0.30 +0.37 -0.03 -0.46 +0.37 
DURw 0.08 0.60 -0.48 -0.50 -0.10 -0.38 
SEVw 0.28 0.54 -0.37 -0.35 -0.35 -0.01 
MAGw 0.32 0.49 -0.17 -0.16 -0.38 +0.21 
MAXw 0.37 0.44 -0.10 0.02 -0.18 +0.21 

Note: Abbreviations are as defined in Table 2.1. Winter classification as in Figure 2.7. All tests were one-tailed, in 
accordance with the alternative hypothesis that the medians of X1 are either lower (X1 < X2; negative [-] difference) or 
higher (X1 > X2; positive [+] difference) than the medians of X2. Null hypothesis: the distributions of the two groups are 
equal. Bold values denote Mann-Whitney U Test was significant at the p < 0.05 level. 
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2.4. Discussion 

Precipitation as the dominant control on the inter-annual variability of annual 

runoff has been documented by many previous studies (Fu et al., 2007; Nash & Gleick, 

1991; Ng & Marsalek, 1992; Risbey & Entekhabi, 1996; among others). These studies 

also reported lower, but significant, temperature control on annual runoff, with the 

temperature-sensitivity of individual catchments ranging from a 1 to 15% decrease in 

mean annual runoff per 2°C increase in mean annual temperature. In the mountain 

catchments in this study, annual runoff was found to be more sensitive to winter thawing 

degrees than to mean annual temperature. To our knowledge, no other studies have 

quantified runoff sensitivity to thawing degrees, and the higher sensitivity to thawing 

degrees (relative to mean annual temperature) documented here suggests that the 

temperature-sensitivity of annual runoff is higher for catchments with seasonal snow 

cover.  

The significant negative relationship between winter thawing degrees and mean 

daily runoff documented here (Table 2.2) is consistent with recent studies (Berghuijs et 

al., 2014; Barnhart et al., 2016), which have concluded that a warmer climate with less 

snow will lead to a significant decrease in mean annual streamflow. Barnhart et al. 

(2016) argue that lower snowmelt rates lead to lower streamflow, while Berghuijs et al. 

(2014) show that a decrease in Sf corresponds to a decrease in streamflow. In this 

study, the control of TDw on MDR is shown to be stronger than that of Sf, suggesting that 

temperature deviations above 0°C have a larger impact on streamflow than does a shift 

from snow towards rain. Further study is needed to clarify which mechanism, TDw, Sf, or 

snowmelt rate, has the largest control on annual streamflow. However, TDw captures the 

temperature-related snowpack variability due to late frost season onset, mid-season melt 

events, and early spring melt, and thus is a promising climate metric for exploring the 

temperature impacts on snowmelt hydrology. 

Precipitation as the dominant control on the inter-annual variability of summer 

minimum flows has also been documented by previous studies (Godsey et al., 2014; 

Jenicek et al., 2016; Kormos et al., 2016). In this study, precipitation is shown to be the 

dominant control not only on summer minimum flows, but also on the duration, severity, 
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and mean magnitude of summer low flows. Further, the seasonal distribution of 

precipitation is also important, and a shift toward drier summers (with the same annual 

precipitation amount) will likely lead to a lower summer minimum flows.  

Temperature is recognized as an important control on the seasonal distribution of 

runoff in mountain catchments (Adam et al., 2009; Pederson et al., 2011) and thus is an 

important control on the inter-annual variability of both summer and winter low flows. As 

shown in Table 2.2 and Table 2.3, warming, particularly increased winter thawing 

degrees, increases the duration and severity of summer low flows and decreases the 

duration of winter low flows. Summer low flow duration is the most temperature-sensitive 

low flow variable and is directly related to both the timing and magnitude of the snowmelt 

peak (illustrated in Appendix A, Figure S2.1). The high sensitivity of summer low flow 

duration to winter thawing degrees is consistent with previous studies (Leith & Whitfield, 

1998; Hamlet & Lettenmaier, 1999; Whitfield & Cannon, 2000; Adam et al., 2009; Déry 

et al., 2009; Pederson et al., 2011; among others), which show that climate warming is 

leading to earlier snowmelt onset, earlier peak in river runoff (e.g., early spring as 

opposed to late spring), and decreased warm season runoff.  

Temperature exhibits important, but more complicated, controls on winter low 

flows. Warmer winters correspond to shorter, less severe winter low flows, but more 

severe, higher intensity winter low flows in the following hydrologic year (i.e. higher 

SEVw, MAGw, MAXw; Table 2.2). The increased severity and intensity of winter low flows 

following a warm winter season can be explained by the longer recession period. In 

years with warm winters, peak snow water equivalent is lower and snowmelt occurs 

earlier. Thus, the period of groundwater recession is longer, resulting in lower summer 

low flows and lower winter low flows for the following hydrologic year.  

In light of the results presented here, warming temperatures are expected to lead 

to longer, more severe summer low flows, and shorter winter low flows. In WNA, 

decreasing summer runoff and decreasing summer minimum flows have already been 

documented (Aguado et al., 1992; Ehsanzadeh & Adamowski, 2007; Luce & Holden, 

2009; Dittmer, 2013; Kormos et al., 2016; among others). Trends in winter flows, 

however, are less studied and less clear. Novotny and Stefan (2007) documented trends 

toward less severe winter low flows in Minnesota, attributing the change to more 

frequent snow melt events. Ehsanzadeh and Adamowski (2007) documented shifts 



42 

toward earlier winter low flow timing in Canada, suggesting a trend toward shorter winter 

low flow periods. Kormos et al. (2016) found minimal evidence for significant trends in 

winter low flows for the Pacific Northwest.  

Detecting trends in winter low flows is more difficult than summer low flows for 

many mountain watersheds, and the quality of winter low flow measurements may 

influence the results of low flow analyses (Whitfield & Hendrata, 2006). Daily discharge 

measurements have greater error during the cold season under ice conditions than 

during open-water conditions (Moore et al., 2002; Whitfield & Hendrata, 2006; Hamilton, 

2008). An in-depth analysis of hydrometric data uncertainty is beyond the scope of this 

paper. However, the uncertainty in winter and summer low flow measurements was 

partly overcome by using smoothed time series and the attributes of entire low flow 

periods rather than only annual minimum flows. Future research on temporal trends in 

winter low flows may benefit from the low flow period classification scheme presented 

here, as well as the knowledge that winter warming has confounding effects on winter 

low flows, causing decreased severity within the winter season, but increased severity 

and intensity for the winter season in the following hydrologic year. 

Overall, the results presented show that runoff and low flows are sensitive to 

winter climate conditions, particularly winter precipitation and winter thawing degrees. 

With continued climate warming, winter thawing degrees will increase, resulting in 

decreased runoff, longer more severe summer low flows, and shorter winter low flows. 

Compared to annual runoff, low flows, particularly summer low flows, are more sensitive 

to climate warming. Summer low flow duration is the most temperature-sensitive 

streamflow response variable analyzed here and thus may represent a useful streamflow 

metric for future trend detection and attribution studies. 

2.5. Conclusions 

Climate controls on annual runoff and low flows were investigated using bivariate 

and partial correlation analysis and standardized multiple linear regression models. 

Results show that precipitation is the dominant control on the inter-annual variability of 

annual runoff and on the duration and severity of summer and winter low flows. The 

temperature-sensitivity of low flows, however, is up to two times higher than the 

temperature-sensitivity of annual runoff. Annual runoff and low flows are most sensitive 
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to winter climate conditions, particularly winter precipitation and winter thawing degrees. 

The results provide another line of evidence regarding the impacts of continued global 

warming on snowmelt hydrology. An increase in winter temperatures above the 0°C 

threshold has a much greater impact on the hydrologic regime than just a shift in the 

snowmelt peak. Warm and dry winters correspond to significantly lower runoff and 

significantly longer, more severe summer low flows than cool and dry winters. With no 

change in precipitation, continued warming in these mountain catchments will likely yield 

longer, more severe summer low flows, shorter winter low flows, and an overall 

decrease in annual runoff.  



44 

Chapter 3. Winter Temperature Controls on Snow 
Drought Risk in Western North America 

This chapter was submitted as a paper to Water Resources Research and is 

cited in other chapters of this thesis as:  

Dierauer, J.R., Allen, D.M., & Whitfield, P.H. (in review-b). Winter temperature controls 

on snow drought risk in western North America. Water Resources Research. 

Supplemental figures and tables for this chapter are included in Appendix B. 

3.1. Introduction 

In western North America (WNA), much of the water used for agriculture and 

human consumption comes from snow. The winter snow accumulation provides natural 

storage, with the following spring and summer snowmelt filling reservoirs and sustaining 

streamflow when precipitation is low and evapotranspiration rates are high. Thus, snow 

drought (i.e. a lack of snow accumulation in winter) can have drastic ecological and 

socioeconomic impacts. For example, the April 1st snowpack in 2015 in the Pacific 

Northwest was 50% of normal, and snowpack in the Sierra Nevada – a key water source 

for much of California – was even lower, at only 5% of normal on 1 April 2015 (Harpold 

et al., 2017). California’s agricultural economy depends on snowpack for water supply, 

and the 2015 drought resulted in an estimated $1.84 billion in agricultural losses (Howitt 

et al. 2015). 

While both regions (Pacific Northwest and Sierra Nevada) exhibited below-

normal 2015 snowpack, the Pacific Northwest received near-normal precipitation (70-

120%), while the Sierra Nevada received only 40-80% of the normal precipitation 

(Harpold et al., 2017). Harpold et al. (2017) labeled the 2015 drought as a “warm snow 

drought” in the Pacific Northwest and a “dry snow drought” in the Sierra Nevada. These 

different snow drought types have different hydrologic and economic impacts. Dry snow 

droughts reduce streamflow year-round, resulting in low reservoir levels, reduced 

hydropower production, and, in severe cases, drinking and irrigation water supply 

shortages. Warm snow droughts increase flood risk (Allamano et al., 2009; Harpold et 

al., 2017) and create a mismatch between water availability and need. Both warm snow 
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droughts and dry snow droughts cause below-normal summer streamflow (Harpold et 

al., 2017; Dierauer et al., in review-a). Warm and dry winter conditions occurring 

together cause the most severe snow droughts and, consequently, the most severe 

summer streamflow drought conditions (Dierauer et al., in review-a).  

The predominance of warm versus dry snow drought is likely related to climate 

controls on the inter-annual variability of snow water equivalent (SWE). In cold, 

continental regions, the inter-annual variability of SWE is dominantly controlled by 

precipitation variability (Cline, 1997; Male & Granger, 1981). In maritime regions, 

however, the inter-annual variability of SWE is often dominantly controlled by 

temperature variability (Cooper et al., 2016; Harpold et al., 2012; Harpold & Kohler, 

2017). Recent studies (Morán-Tejeda et al., 2013; Sospedra-Alfonso et al., 2015) have 

shown that elevation thresholds exist above which SWE is temperature-dominated (T-

dominated) and below which SWE is precipitation-dominated (P-dominated). Given the 

documented differences in SWE sensitivity and the existence of elevation thresholds 

between T-dominated and P-dominated areas, the predominance of dry versus warm 

snow drought likely varies between ecoregions and with temperature/elevation. Previous 

studies have mapped snow sensitivity to climate warming (e.g., Nolin & Daly, 2006), but 

no studies have quantified regional differences in snow drought regimes or investigated 

the relationship between SWE temperature-sensitivity and snow drought risk.  

In this study, the historical (1951-2013) frequency and severity of dry, warm, and 

warm and dry snow droughts are quantified at the grid-cell and ecoregion scale for the 

major mountainous regions in WNA. Risk to each snow drought type is quantified, and 

the temperature-sensitivity (T-sensitivity) and precipitation-sensitivity (P-sensitivity) of 

peak SWE is quantified. Further, the relationships between mean winter temperature, 

snow drought risk, and SWE sensitivity are explored. Piecewise linear regression is then 

used to identify temperature thresholds and map susceptibility to temperature-related 

snow drought. Results of this study highlight spatial and ecoregion differences in snow 

drought regimes across WNA and reveal that a critical temperature-thresholds exist, 

above which the warm snow drought risk and SWE T-sensitivity increase more rapidly.  

The region of study and the data used are discussed in section 3.2, including the 

methodology used to classify snow droughts and quantify peak SWE temperature and 
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precipitation sensitivity. The results are described and discussed in sections 3.3 and 3.4, 

and conclusions are provided in section 3.5.  

3.2. Materials and Methods 

3.2.1. Data and Domain 

Daily precipitation, mean daily temperature (calculated as the average between 

the minimum daily temperature and the maximum daily temperature), and daily SWE 

data used in this study were obtained from the Livneh et al. (2015) gridded 

hydrometeorological dataset. This dataset contains gridded observation-based daily 

meteorological forcings and simulated Variable Infiltration Capacity (VIC) model states 

and fluxes at 1/16° resolution for the 1950 to 2013 period. The VIC model (Liang et al., 

1994) is a physically based land-surface model capable of simulating energy and water 

balance. Feng et al. (2008) showed that VIC-simulated SWE agreed well with simulated 

SWE from models with higher complexity. Several recent studies have used (or trained 

datasets on) the Livneh et al. (2015) dataset to investigate snow hydrology in WNA 

(Barnhart et al., 2016; Li et al., 2017). The parameterization and validation of the VIC 

model is described in Livneh et al. (2015).  

The Livneh et al. (2015) dataset was chosen over other gridded datasets (e.g., 

Livneh et al., 2013; Maurer et al., 2002) because of it has a larger domain and finer 

spatial resolution. To account for the effects of topography, the Livneh et al. (2015) 

dataset used a constant temperature lapse rate of -6.5 °C/km and incorporated 

orographic scaling across the entire domain, thereby providing a better representation of 

precipitation and improving the accuracy of snow estimates in mountain areas (Livneh et 

al., 2013, 2015).  

Grid cells were excluded from the analysis if [1] there was minimal snow cover (< 

10 cm mean peak SWE [1951-2000]), [2] the frost season was typically less than 30 

days in length, or [3] the cells were flagged within Livneh et al. (2015) for possible 

unrealistic inter-year SWE accumulations. The flagged cells represent areas where the 

VIC-simulated SWE “glaciates” and was defined in Livneh et al. (2015) as cells where 

SWE never reaches 0.0 or where SWE > 6000 mm. The final masked area contained 

24,759 VIC simulation grid cells covering an area of more than 824,000 km2 (Figure 3.1). 
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To aid in regional analysis, results were further summarized for the 15 level III 

ecoregions (Commission for Environmental Cooperation [CEC], 2009) with the greatest 

snow storage (Figure 3.1). 

 

Figure 3.1 Ecoregions (CEC, 2009) and mean peak snow water equivalent 
(SWE; 1951-2000) for masked analysis domain. Ecoregions are 
outlined in black and include: (1) Pacific and Nass Ranges, (2) North 
Cascades, (3) Cascades, (4) Eastern Cascades Slopes and Foothills, 
(5) Klamath Mountains, (6) Sierra Nevada, (7) Wasatch and Uinta 
Mountains, (8) Southern Rockies, (9) Middle Rockies, (10) Idaho 
Batholith, (11) Blue Mountains, (12) Canadian Rockies, (13) 
Columbia Mountains / Northern Rockies, (14) Thompson-Okanagan 
Plateau, (15) Chilcotin Ranges and Fraser Plateau. Glaciated cells as 
flagged in Livneh et al. (2015). MASL = meters above sea level. 

3.2.2. Snow Drought Classification 

To separate warm snow droughts from dry snow droughts, a robust classification 

scheme is needed – one that works for a range of climate conditions. Harpold et al. 

(2017) suggest distinguishing warm versus dry snow droughts based on 1-Apr SWE and 

1-Nov to 1-Apr cumulative precipitation, where winters with below-normal SWE and 
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above-normal precipitation are classified as warm snow droughts and years with below-

normal SWE and below-normal precipitation are classified as dry snow droughts. While 

the classification scheme proposed by Harpold et al. (2017) is straightforward and easy 

to use, it does not account for the co-occurrence of warm and dry conditions, which have 

been shown to result in significantly more severe summer low flow periods than only dry 

conditions alone (Dierauer et al., in review-a). Additionally, it doesn’t account for spatial 

and temporal variations in the timing of peak SWE, which varies substantially between 

and within mountain ranges (Wrzesien et al., 2018). 

In this study, winters with below-normal peak SWE are classified as warm, dry, or 

warm and dry snow droughts based on winter precipitation (P) and winter thawing 

degrees (TD) using the following conditional statements: 

𝑖𝑓 {(𝑆𝑊𝐸𝑖 < 𝑆𝑊𝐸̅̅ ̅̅ ̅̅ ̅) & (𝑃𝑖 < �̅�) & (𝑇𝐷𝑖 < 𝑇𝐷̅̅ ̅̅ )} 𝐷𝑡𝑦𝑝𝑒 = 𝐷𝑅𝑌                               [3.1] 

𝑖𝑓 {(𝑆𝑊𝐸𝑖 < 𝑆𝑊𝐸̅̅ ̅̅ ̅̅ ̅) & (𝑃𝑖 > �̅�) } 𝐷𝑡𝑦𝑝𝑒 = 𝑊𝐴𝑅𝑀                                                [3.2] 

𝑖𝑓 {(𝑆𝑊𝐸𝑖 < 𝑆𝑊𝐸̅̅ ̅̅ ̅̅ ̅) & (𝑃𝑖 < �̅�) & (𝑇𝐷𝑖 > 𝑇𝐷̅̅ ̅̅ )} 𝐷𝑡𝑦𝑝𝑒 = 𝑊𝐴𝑅𝑀 & 𝐷𝑅𝑌                [3.3] 

where 𝑆𝑊𝐸𝑖, 𝑃𝑖, and 𝑇𝐷𝑖 are the peak SWE, winter precipitation, and winter thawing 

degrees in year i, respectively; 𝑆𝑊𝐸̅̅ ̅̅ ̅̅ ̅, �̅�, and 𝑇𝐷̅̅ ̅̅ , are the associated normals for the 

1951-2000 period; and 𝐷𝑡𝑦𝑝𝑒 is the snow drought type. Thawing degrees (TD) were 

calculated as the sum of mean daily temperatures for all winter days with a mean daily 

temperature above 0°C. Peak SWE was used (as opposed to 1-April SWE) because of 

the variability in the date of peak snowpack over the large and topographically complex 

region of WNA. A 50-year reference period (1951-2000) was used to calculate the 

climate and peak SWE normals because it spans the range of natural climate variability 

while excluding the recent extremes.  

Using 𝑆𝑊𝐸̅̅ ̅̅ ̅̅ ̅ as the threshold to define snow droughts results in the identification 

of many “minor” snow drought events, where winter season peak SWE levels are near-

normal. Warm snow droughts are likely to be relatively minor events; therefore, the use 

of a high threshold, i.e. 𝑆𝑊𝐸̅̅ ̅̅ ̅̅ ̅, was deemed appropriate, as a lower threshold would likely 

exclude many temperature-based SWE anomalies. 
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For the snow drought classification, a grid-cell-based definition of the winter 

season was used, where “winter” was defined based on the 25th percentile of the mean 

daily temperature (�̅�25). With this method, the set of days with a �̅�25 (1951-2000) less 

than 0°C was defined as “winter”. The start of the winter season was then defined as the 

first day of the year occurring after the warmest day of the year with a �̅�25 less than 0°C. 

The grid-cell-based definition of the winter season is based on the climate of each 

individual grid-cell and is applied in the same manner across the entire analysis domain. 

The use of the temperature criteria, �̅�25, provides a fairer comparison than an arbitrary 

calendar date and follows recommendations of Cannon (2005) to define seasons based 

climatological data. 

To classify snow droughts, TD was used as the temperature metric, as opposed 

to mean winter temperature (Tw), because of the non-linear response of SWE to Tw. For 

example, in regions with a normal Tw near 0°C, a positive Tw anomaly will have a large 

influence on SWE, while a negative Tw anomaly may have minimal impact on SWE. This 

grid-cell-based approach using TD as a predictor variable is more complicated than the 

common 1-Oct/1-Nov to 1-April winter classification used in previous studies (e.g., Luce 

et al., 2014; Mote, 2003). A methodological comparison showed that a grid-cell-based 

winter definition with TD and P as predictor variables had the highest predictive ability for 

peak SWE (Table S3.1). Additionally, the temperature metric (TD) had the highest 

regression slope (Table S3.2) and lowest standard error (Table S3.3) for the warmer 

maritime regions, where temperature is expected to play a large role in the snow drought 

regime.  

After classifying each winter season with below-normal peak SWE as a warm, 

dry, or warm and dry snow drought, the severity, frequency, and risk of each snow 

drought type was calculated. Severity was calculated from normalized peak SWE as the 

fraction below the mean. Frequency was calculated as the fraction of total years (n = 63) 

exhibiting the associated snow drought type. The risk to each snow drought type was 

then calculated as the mean severity multiplied by the frequency and termed RD, RW, 

and RWD, for warm, dry, and warm and dry snow drought risk, respectively. Thus, risk 

has units of fractional deficit per year and is equal to the expected annual deficit in peak 

SWE for each drought type.  
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To quantify large-scale spatial patterns in snow drought regimes, snow droughts 

were also classified and quantified at the ecoregion scale. For the ecoregion analysis, 

time series of average peak SWE, P, and TD were first calculated for each ecoregion as 

the average for all grid cells within the ecoregion. Snow drought classification and 

calculation of severity, frequency, and risk were then carried out in the same manner as 

the grid-cell scale analysis. 

3.2.3. Precipitation (P) Versus Temperature (T) Sensitivity 

Risk of warm versus dry snow drought is likely related to the temperature and 

precipitation sensitivity of peak SWE, with regions with higher peak SWE T-sensitivity 

exhibiting greater risk to warm snow drought. To test this hypothesis, peak SWE 

sensitivity was quantified using multiple linear regression (MLR) analysis. Variables were 

kept consistent with the snow drought classification, and the predictor variables (TD and 

P) were standardized by subtracting the mean and dividing by the standard deviation 

(SD). Peak SWE was normalized by dividing by the mean. The MLR analysis thus 

produces regression coefficients that represent the percent change in SWE for every 1 

SD change in the predictor variables; the T-sensitivity and P-sensitivity of peak SWE are 

termed ST and SP, respectively. With this method, regression coefficients can be directly 

compared between grid cells, with results highlighting spatial patterns and ecoregion 

differences in peak SWE sensitivities, ST and SP. 

3.2.4. Temperature Thresholds and SWE Susceptibility Mapping 

Because of the non-linear relationship between temperature and snowpack, a 

critical temperature threshold likely exists, above which ST and RW increase sharply. To 

objectively identify such temperature thresholds, piecewise linear regression was 

implemented with the R package “segmented” (Muggeo, 2008). Mean winter (1-Nov to 

1-Apr) temperature (Tw) was used as the predictor, with snow drought risk (RD, RW, RWD) 

and peak SWE sensitivities (ST and SP) as the response variables. Based on visual 

assessment of the scatterplots, piecewise regression models with two break-points were 

investigated, and final models were chosen based on the R2 values, break-point 95% 

confidence intervals (< ±0.2°C), and standard error of the piecewise regression slopes 

(magnitude less than corresponding slope). 
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Based on the break-points, or “thresholds”, identified from this analysis, the 

susceptibility of peak SWE to temperature-related snow drought was ranked as low, 

medium, or high. This classification was completed at the grid-cell scale using the 

following Tw ranges: 

 𝐿𝑜𝑤:            𝑇𝑤 ≤  𝐵𝑃1                                                                                         [3.4] 

𝑀𝑒𝑑𝑖𝑢𝑚:    𝐵𝑃1 <  𝑇𝑤 ≤  𝐵𝑃2                                                                              [3.5] 

𝐻𝑖𝑔ℎ:            𝑇𝑤 >  𝐵𝑃2                                                                                        [3.6] 

where 𝐵𝑃1 is the dominant break-point separating regression segments 1 and 2 and 𝐵𝑃2 

is the dominant break-point separating regression segments 2 and 3. For this analysis, 

Tw, as opposed to TD, was used to classify susceptibility because it is more easily 

calculated and requires only widely available climate data, thus allowing for the potential 

transfer of this susceptibility-mapping methodology to other places. Additionally, this Tw 

threshold approach allows for the evaluation of temperature-related snow drought 

susceptibility under simple climate warming scenarios. For example, in this study, the 

impact of a +2°C climate scenario on the temperature-related snow drought 

susceptibility was quantified by subtracting 2°C from each of the break-points and 

reclassifying the grid cells.  

3.3. Results 

Figure 3.2 shows the spatial variation of snow drought frequency, severity, and 

risk, and Figure 3.3 shows the snow drought regimes for the major mountainous 

ecoregions in WNA. Substantial spatial variation exists both between and within 

ecoregions. Dry, and warm and dry, snow droughts occur throughout the entire analysis 

domain, while warm snow droughts have a more limited spatial occurrence (Figure 3.2). 

Warm snow droughts do not occur at some high elevation locations and tend to be more 

frequent and severe at lower elevations. Similarly, warm and dry snow droughts tend to 

have higher severity at lower elevations (Figure 3.2).  

Overall, warm snow drought is the least frequent and least severe of the three 

snow drought types, and thus exhibits the least risk. Warm snow droughts are most 

frequent in the Cascades, Pacific and Nass Ranges, and the Klamath Mountains; least 
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frequent in the Thompson-Okanagan Plateau and the Chilcotin Ranges and Fraser 

Plateau; and most severe in the Klamath Mountains. Warm and dry winter conditions 

occurring together correspond to the most severe snow drought type. Warm and dry 

snow droughts are also the most frequent drought type in 12 of the 15 ecoregions, with 

dry snow drought dominating the Pacific and Nass Ranges, Klamath Mountains, and 

Canadian Rockies. Warm and dry snow droughts exhibit the highest risk of the three 

drought types in all ecoregions except the Klamath Mountains, where RD is highest, and 

the Pacific and Nass Ranges and Canadian Rockies, where RD and RWD are 

approximately equal (Figure 3.3). Excluding the Klamath Mountains, RWD increases 

southward along the coastal mountain ranges (Figure 3.3), and, compared to the other 

ecoregions, RWD is substantially higher in Sierra Nevada, where the expected annual 

peak SWE deficit is 14% per year.  

 

Figure 3.2 Frequency, severity, and risk for dry, warm, and warm & dry snow 
droughts, 1951-2013. 
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Figure 3.3 Snow drought severity, frequency, and risk by ecoregion, 1951-2013. 
For severity, the gray vertical lines represent individual years, the 
black horizontal lines span the inter-quartile range, and the symbols 
coincide with the mean. Ecoregion numbering as in Figure 3.1. See 
Table S3.4 for values of mean severity, frequency, and risk in table 
format. 

While Figure 3.2 and Figure 3.3 highlight the large spatial and ecoregion 

differences in snow drought risk, plots of risk (RD, RW and RWD) and SWE sensitivities (ST 

and SP) versus mean winter temperature (Tw; Figure 3.4) reveal that temperature 

controls RW and ST in WNA. Moreover, RW exhibits a strong positive correlation (r = 0.91, 

p < 0.01) with ST, confirming the hypothesis that regions with higher peak SWE T-

sensitivity exhibit greater risk to warm snow drought. Both metrics (RW and ST) tend to 

be higher at lower elevations, as illustrated in Figure 3.2 and in Figure S3.1, 

respectively. RD, on the other hand, exhibits no substantial correlation with ST but is 
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strongly correlated (r = 0.67, p < 0.01) with SP, and regions with higher peak SWE P-

sensitivity exhibit greater risk to dry snow drought. As expected from these relationships, 

and shown in Figure 3.4, temperature-related risk and sensitivity (RW and ST) are 

strongly correlated with Tw, while precipitation-related risk and sensitivity (RD and SP) 

exhibit no substantial correlation with Tw. RWD is related to both precipitation and 

temperature and exhibits a weak with Tw. 

Tw has a non-linear relationship with both RW and ST (Figure 3.4). Piecewise 

linear regression analysis confirms the presence of temperature-thresholds, above which 

ST and RW increase sharply (Figure 3.4b and Figure 3.4d). Linear regression slopes 

increase substantially at the identified break-points, increasing from 0.1% °C-1 to 4.1% 

°C-1 for RW and from 1.2% °C-1 to 13.0% °C-1 for ST at the low (S1) and high slopes (S3), 

respectively (Figure 3.4b and Figure 3.4d). Both metrics (RW, ST) have break-points 

located between -2.9°C and -2.5°C, showing that temperature has larger negative 

impacts on SWE in locations where Tw is greater than -2.9°C. RW and ST have an 

additional break-point located at 1.3°C, where the regression slopes of RW and ST 

increase by an order of magnitude. Based on these results, thresholds of -3°C and 1.3°C 

were chosen for the susceptibility mapping, corresponding to BP1 and BP2 in equations 

3.4-3.6 (see section 3.2.4), respectively.  
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Figure 3.4 Snow drought risk and peak SWE sensitivities versus mean winter 
(1-Nov to 1-Apr) temperature [TW]. Top row: (a) RD [dry], (b) RW 
[warm], and (c) RWD [warm and dry] snow drought risk. Bottom row: 
Peak SWE sensitivity to (d) temperature [ST] and (e) precipitation 
[SP]. Piecewise linear regression lines are shown in red for variables 
with strong correlations with temperature (r values shown in top-left 
corners). Break-points (BPs) from the piecewise regression are 
shown with black vertical dashed lines. Slopes (S1, S2, S3) and 
associated standard errors are indicated for each linear regression 
segment. Model performance indicated by coefficient of 
determination (R2). 

Peak SWE susceptibility to temperature-related snow drought is shown in Figure 

3.5, and further summarized by ecoregion in Table 3.1 and Table S3.5. The high 

susceptibility category represents areas with the highest temperature-related snow 

drought risk (RW and RWD) and peak SWE T-sensitivity (ST) and the largest expected 

increases in risk per increase in Tw (i.e. S3 in Figure 3.4b and Figure 3.4d). Conversely, 

the low susceptibility category represents areas with the lowest temperature-related 

snow drought risk and peak SWE T-sensitivity and the lowest expected increases in risk 

per increase in Tw (i.e. S1 in Figure 3.4b and Figure 3.4d).  

The Cascades, Klamath Mountains, and Sierra Nevada have the highest 

susceptibility to temperature-related snow drought, while the Middle Rockies, Canadian 
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Rockies, and Chilcotin Ranges/Fraser Plateau have the lowest susceptibility (Table 3.1). 

Overall, peak SWE is more susceptible to temperature-related snow droughts in the 

maritime ecoregions (ecoregions 1-6) and less susceptible in the continental ecoregions 

(ecoregions 7-15). In total, 3% of the non-glaciated snow storage volume in WNA is 

highly susceptible to temperature-related snow droughts (Table 3.1), representing 11 

km3 of water. Under a +2°C climate scenario, an additional 8% (28 km3) of the WNA 

snow storage volume will transition to high susceptibility. 

 

Figure 3.5 Peak SWE temperature-related snow drought susceptibility under (a) 
historical [1951-2000] and (b) +2°C climate scenario. Ecoregion 
numbering as in Figure 3.1. Results are summarized by ecoregion in 
Table 3.1 and Table S3.5. 
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Table 3.1 Temperature-related snow drought susceptibility summarized by 
ecoregion. SWE = mean snow water equivalent; Vol. = mean 
snowpack water volume. Ecoregion numbering as in Figure 3.1. 
“Other” includes all grid cells not within the 15 ecoregions. Table 
S3.5 presents the same data in terms of area as opposed to volume. 

  Historical +2°C Warming 

Ecoregion 
Vol. Low Med High Low Med High 
[km3] [% Volume] [% Change] 

1. Pacific & Nass Ranges 25.8 68% 30% 2% -26% +17% +9% 
2. North Cascades 26.2 61% 37% 2% -25% +15% +10% 
3. Cascades 26.8 18% 71% 10% -16% -15% +31% 
4. Eastern Cascades Slopes & Foothills 8.6 28% 70% 2% -22% +1% +20% 
5. Klamath Mountains 10.3 6% 66% 28% -6% -31% +36% 
6. Sierra Nevada 20.8 33% 57% 10% -14% -7% +21% 
7. Wasatch & Uinta Mountains 8.9 96% 4% 0% -16% +16% 0% 
8. Southern Rockies 24.8 99% 1% 0% -6% +6% 0% 
9. Middle Rockies 33.7 100% 0% 0% -2% +2% 0% 
10. Idaho Batholith 31.1 96% 4% 0% -13% +13% 0% 
11. Blue Mountains 10.5 67% 33% 0% -40% +38% +2% 
12. Canadian Rockies 35.0 100% 0% 0% -3% +3% 0% 
13. Columbia Mountains / N. Rockies 72.5 89% 11% 0% -18% +17% +1% 
14. Thompson-Okanagan Plateau 13.9 98% 2% 0% -13% +13% 0% 
15. Chilcotin Ranges & Fraser Plateau 8.7 100% 0% 0% -6% +6% 0% 
       Other 18.2 41% 47% 12% -16% -6% +22% 

Total 375.8 75% 22% 3% -15% +7% +8% 
Note: SWE and Vol. are calculated from the study domain (see Figure 3.1) and therefore do not represent the entire 
ecoregion, rather the masked domain used in this study. Volume (vol.) refers to the mean volume of water stored as 
snow within the study domain, calculated by multiplying grid-cell mean peak SWE (1951-2000) by the corresponding 
grid-cell area then summing the result. “Glaciated” cells and cells with less than 10 cm mean peak SWE [1951-2000] 
were excluded from the analysis domain; therefore, Vol. is an under-estimate of the average volume of water stored as 
snow/ice in each ecoregion. 

3.4. Discussion 

Defining snow drought types by climatic causes is a relatively new concept 

(Harpold et al., 2017). While several recent studies have increased our understanding of 

snow drought (Cooper et al., 2016; Mote et al., 2016; Sproles et al., 2017; Hatchett & 

McEvoy, 2018), a regional assessment of snow drought risk has never before been 

completed. In this study, the dry versus warm snow drought definition proposed by 

Harpold et al. (2017) was expanded to include snow droughts that are caused by the co-

occurrence of warm and dry conditions. A regional scale analysis of historical snow 

drought severity, frequency, and risk showed that warm and dry snow droughts 
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dominate the snow drought regime in WNA, while warm snow droughts are the least 

common and least severe snow drought type. The severity and frequency of warm snow 

droughts, however, is dependent on mean winter temperature. Temperature-thresholds 

identified with piecewise linear regression show that the risk of warm snow droughts is 

substantially higher for locations where the mean winter (1-Nov to 1-Apr) temperature 

(Tw) is above -3°C, and higher still for locations where Tw is above 1.3°C.  

Spatial variation in snow drought risk is primarily driven by elevation, latitude, and 

proximity to the onshore flow of moisture. Warm snow drought risk (RW), warm and dry 

snow drought risk (RWD), and peak SWE T-sensitivity (ST) all exhibit significant positive 

correlations with mean winter temperature (Tw), indicating these metrics tend to 

decrease with increasing elevation. The relationship between these metrics (RW, RWD, 

ST) and elevation, however, is also dependent on latitude, as isotherms increase in 

elevation as latitude decreases. Dry snow drought risk (RD) is dominantly controlled by 

the onshore flow of moisture. The leeward sides of mountain ranges tend to exhibit 

higher RD, especially for the interior plateaus of British Columbia and the Eastern 

Cascades (ecoregions 14, 15, and 4 in Figure 3.1/Table 3.1). The tendency for ST to 

decrease with elevation and increase with temperature has been documented by many 

previous studies (Mote et al., 2005; Mote, 2006; Safeeq et al., 2016; Sospedra-Alfonso 

et al., 2015; Morán-Tejeda et al., 2013; Sospedra-Alfonso & Merryfield, 2017; Jenicek et 

al., 2018; among others); however, no previous studies have documented the inter-

relationships between ST, Tw, elevation, and temperature-related snow drought risk (RW, 

RWD). The spatial patterns in RD are consistent with precipitation pathways and anomaly 

patterns for WNA (e.g., Sellers, 1968; Alexander et al., 2015; Swales et al., 2016). 

Snow drought risk in WNA has not been quantified before, nor has risk to any 

temperature-influenced drought type (e.g., agricultural, hydrologic, socioeconomic) ever 

been quantified based on climatic causes. Verdon-Kidd & Kiem (2010) call for drought 

risk assessments that are derived from an understanding of the climate mechanisms that 

drive periods of elevated risk, pointing out that, in a nonstationary climate, future drought 

risk may not resemble the past. Using the temperature-thresholds, identified at Tw values 

of -3°C and 1.3°C, to complete the susceptibility mapping in this study identifies regions 

that [1] historically exhibit relatively high levels of temperature-related snow drought 

susceptibility and [2] are likely to exhibit the largest negative impacts on peak SWE from 

continued climate warming. In the context of climate warming, the historical versus +2°C 
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susceptibility mapping (Figure 3.5, Table 3.1, and Table S3.5), can be used to identify 

regions where the snow drought regimes may shift toward more temperature-related 

snow droughts in the near future. Thus, the methodology presented in this study is a first 

step toward snow drought risk assessment in the context of a non-stationary climate.  

Based on the strong positive correlation between warm snow drought risk (RW) 

and mean winter temperature (Tw), it is clear that temperature drives elevated snow 

drought risk. Moreover, the non-linear relationship between RW and Tw and the presence 

of critical temperature-thresholds at -3°C and 1.3°C indicate that the relationship 

between temperature and snow drought risk changes with increasing temperatures. The 

temperature thresholds identified in this study differ from previous elevation/temperature 

thresholds (Morán-Tejeda et al., 2013; Sospedra-Alfonso et al., 2015; Sospedra-Alfonso 

& Merryfield, 2017) in that they do not separate P-dominated from T-dominated SWE 

regions, but rather identify break-points at which the relationship between mean winter 

temperature (Tw) and peak SWE changes. As Tw increases, warm snow drought risk and 

SWE T-sensitivity increase; however, the rate of increase is not constant. Once a 

temperature-threshold is crossed, temperature-related decreases in peak SWE can be 

expected to “accelerate”, and a 1°C increase in Tw has a larger negative impact on peak 

SWE for regions where Tw is above the temperature-thresholds versus regions where Tw 

is below the temperature-thresholds. This non-linear relationship between temperature 

and SWE T-sensitivity is stronger than the modest nonlinearity observed by Luce et al. 

(2014); however, the proposed acceleration of temperature-related changes in SWE at 

the identified temperature-thresholds is consistent with the near-term acceleration of 

hydroclimatic change in the western United States documented by Ashfaq et al. (2013).  

Shifts in snow drought regimes have large implications for water resources 

planning, as different types of snow drought have different impacts and thus require 

different preparation measures and mitigation strategies. Warm snow droughts reduce 

the annual flood peak due to increased rain versus snow proportion and a lengthening of 

the melt interval before the peak flow (Rood et al., 2016) but also increase flood risk due 

to rain on snow events (Allamano et al., 2009; Rood et al., 2016). Hatchett & McEvoy 

(2018) showed that, in Sierra Nevada watersheds, warm snow droughts correspond to 

lower snow fractions and often include midwinter flood events. Warm snow droughts and 

the associated lower snow fractions lead to decreased lower annual runoff (Berghuijs et 

al., 2014; Dierauer et al., in review-a) and a shift in water supply away from summer and 
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towards winter (Leith & Whitfield, 1998; Whitfield & Cannon, 2000; Adam et al., 2009; 

Déry et al., 2009; Pederson et al., 2011; among others), negatively impacting water 

quantity, water quality, hydropower operations, winter snow sports, and summer 

recreation (Sproles et al., 2017).  

In the context of historical (1951-2000) climate conditions, warm snow drought 

impacts are likely to be most severe at lower elevations and in the Klamath Mountains 

ecoregion, where warm snow drought severity and frequency are high. In the context of 

climate warming, the maritime ecoregions (1-6 in Table 3.1 and Table S3.5) will likely 

experience the largest increases warm snow drought risk, and thus increased midwinter 

flood events, decreased annual runoff, and shifts in the seasonal timing of streamflow. 

This is consistent with the recent study by Mote et al. (2018), which showed that 

declines in western US snowpack are largely temperature driven, with the largest 

downward trends in SWE in locations with mild, wet climates. 

Unlike warm snow droughts, which often correspond to increased winter 

streamflow (Dierauer et al., in review-a), dry snow droughts reduce streamflow year-

round (Harpold et al., 2017; Dierauer et al., in review-a). Impacts from dry snow droughts 

include low reservoir levels, reduced hydropower production, and, in severe cases, 

drinking and irrigation water supply shortages. Regions with higher dry snow drought risk 

(RD) would thus have a higher risk of water quantity shortages. With continued climate 

warming, dry snow droughts are likely to transition, in part, to warm and dry snow 

droughts, which cause significantly more severe summer low flow periods than only dry 

conditions alone (Dierauer et al., in review-a), as well as overall reductions in annual 

runoff (Berghuijs et al., 2014; Dierauer et al., in review-a). Regions with medium or high 

susceptibility to temperature-related snow drought along with relatively high risk to dry 

snow drought (i.e. Klamath Mountains and Sierra Nevada) are likely to have the largest 

risk to water quantity shortages in the near future. 

The Livneh et al. (2015) gridded hydrometeorological dataset data used in this 

study was created using meteorological stations that do not span the full temporal 

period, and thus the dataset is not suitable for trend analysis. Further study with datasets 

appropriate for trend analysis are needed to determine if snow drought regimes are 

changing as our climate continues to warm. Additionally, this study relied entirely on 
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VIC-simulated snow water equivalent and further study is needed to verify the presence 

of temperature-thresholds using observed SWE data. 

This study presented a novel approach to snow drought classification and to the 

quantification of SWE temperature sensitivity. While the grid-cell-based winter season 

definition using thawing degrees (TD) and precipitation (P) as the predictor variables 

exhibited the greatest predictive ability for peak SWE, the gains in R2 values were not 

large (+0.03 R2 domain wide; Table S3.1) compared to the other, simpler methods (i.e. 

T, P with 1-Nov to 1-Apr winter season). Thus, it could be argued that the simpler 

method should be used. Previous work (Dierauer et al., in review-a) using observed 

streamflow data from mountain catchments in WNA, however, showed that runoff and 

low flows are more sensitive to TD than Tw. As the duration and severity of low flow 

periods are highly dependent on snowmelt hydrology in mountain catchments, the 

observations of Dierauer et al. (in review-a) suggest that snow accumulation and melt 

are also more sensitive to TD than to Tw. Additionally, SWE T-sensitivities estimated 

from the grid-cell-based approach using TD and P as the predictors were higher than the 

other methods in the warmer, maritime ecoregions (Table S3.2) and standard error 

estimates were lower (Table S3.3), supporting the use of the more complicated 

methodology and suggesting T-sensitivity may be under-estimated in the warmer 

maritime regions using the more conventional methods. 

3.5. Conclusions 

This study provides new detailed insight into the spatial and ecoregion 

differences in snow drought regimes across WNA. The relationships between mean 

winter temperature, snow drought risk, and SWE-sensitivity demonstrate that critical 

temperature-thresholds exist, above which warm snow drought risk and SWE T-

sensitivity increase at a greater rate. While previous studies have shown that the T-

sensitivity of SWE tends to decrease with elevation and increase with mean winter 

temperatures, the “acceleration” in hydroclimatic change at distinct temperature-

thresholds has not been demonstrated before. Identified temperature-thresholds at 

mean winter (1-Nov to 1-Apr) temperature values of -3°C and 1.3° were used to map 

temperature-related snow drought susceptibility, revealing that 3% of the volume of 

western North America’s non-glaciated snowpack is highly susceptible to warm snow 

droughts, and an additional 22% exhibits medium susceptibility. The susceptibility 
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mapping presented in this study is a first step toward a snow drought risk assessment in 

the context of a non-stationary climate and can be transferred to other mountainous 

regions and used to inform snow drought mitigation strategies and water resource 

management planning.  
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Chapter 4. Climate Change Impacts on Snow and 
Streamflow Drought Regimes 

This chapter has been prepared as a manuscript entitled “Climate change 

impacts on snow and streamflow drought regimes in four ecoregions of British Columbia” 

and is planned for submission to Hydrology and Earth System Sciences.  

Supplemental figures and tables for this chapter are included in Appendix C. 

4.1. Introduction 

If temperatures rise as expected (Intergovernmental Panel on Climate Change 

[IPCC], 2013), precipitation will be more likely to fall as rain than to fall as snow. 

Warming alone is expected to have large impacts on the hydrologic regimes of 

catchments with seasonal snow cover (Barnett et al., 2005), with decreased annual 

snowpack leading to earlier snowmelt and diminished and potentially warmer late 

summer flows (Barnett et al., 2008; Wu et al., 2012; Seager et al., 2013; Godsey et al, 

2014; Reynolds et al., 2015; Service, 2015; Jenicek et al., 2016). Compared to 

rainwater, snowmelt more effectively infiltrates below the root zone (Earman et al., 

2006), and snowmelt often compromises a large fraction of groundwater recharge 

(Winograd et al., 1998; Earman et al., 2006; Ajami et al., 2012). Therefore, in 

catchments with seasonal snow cover, summer streamflow droughts can be directly 

related to snow drought, i.e. a lack of snow accumulation in winter. 

Snow drought (Ludlum, 1978; Wiesnet, 1981) can be caused by below-normal 

precipitation and/or above-normal temperatures (Harpold et al., 2017), and both warm 

snow droughts and dry snow droughts cause below-normal summer streamflow (Harpold 

et al., 2017; Dierauer et al., in review-a). Streamflow droughts can propagate directly 

from snow droughts, with warm and dry winter conditions leading to longer, more severe 

summer low flow periods (Dierauer et al., in review-a). While the role of temperature in 

snowmelt hydrology has been widely studied (Leith & Whitfield, 1998; Whitfield & 

Cannon, 2000; Adam et al., 2009; Déry et al., 2009; Pederson et al., 2011; among 

others), no studies have explicitly quantified the impact of different snow drought types, 

i.e. dry, warm, or warm and dry, on the severity and duration of summer streamflow 
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droughts. Moreover, no studies have completed a combined analysis of snow drought 

and streamflow drought regimes in the context of climate change.  

Recent work by Dierauer et al. (in review-b) has highlighted the relationship 

between mean winter temperature and temperature-related snow drought and identified 

critical temperature thresholds above which hydroclimatic change “accelerates”. As 

temperatures rise, increased frequency and severity of temperature-related snow 

drought will likely lead to increased frequency and severity of summer streamflow 

droughts. The magnitude of these changes, however, will likely depend on a catchment’s 

starting point, i.e. its baseline mean winter temperature. To investigate climate change 

impacts on snow drought and the subsequent impacts on summer streamflow drought, 

this study combines climate change projections with generic groundwater surface water 

models for four headwater catchments located in different ecoregions of British 

Columbia, Canada. These headwater catchments span a large range of baseline climate 

conditions, and thus should exhibit different responses to climate warming. The study 

locations and the reasons for choosing each catchment are discussed in section 4.2. 

The development of groundwater-surface water models, the choice of climate change 

scenarios, and the assessment of low flows and snow drought are discussed in section 

4.3. Results are presented in section 4.4 and discussed in section 4.5, and conclusions 

are stated in section 4.6. 

4.2. Study Locations 

Four headwater catchments spanning a range of climate conditions were chosen 

for this study – each is located in a different level I ecoregion (Commission for 

Environmental Cooperation [CEC], 2011) of British Columbia (Table 4.1, Figure 4.1) and 

each represents a municipal, agricultural, or industrial surface water supply source. The 

coldest catchment has a mean annual temperature of -0.6°C and is in the Taiga 

ecoregion in the headwaters of the Fort Nelson River. The second coldest catchment 

has a mean annual temperature of 0°C and is in the headwaters of the Blueberry River 

in Northern Forests ecoregion. Both catchments have relatively cold, dry winters, and, 

on average, receive less than 15 cm of snow per year. Additionally, both catchments are 

in Northeast British Columbia (NEBC) – an area of rapidly expanding shale gas 

development where multi-stage hydraulic fracturing operations require large volumes of 

water over short time periods. In 2015, 45% of the 7.74 million m3 of water used for 
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hydraulic fracturing in NEBC was sourced from surface water sources (British Columbia 

Oil and Gas Commission, 2016), with the highest water demand occurring in the warmer 

months from May to September.  

Whiteman Creek headwater catchment has a mean annual temperature of 2.1°C 

and is in the Thompson-Okanagan Plateau, which is part of the North American Deserts 

level I ecoregion. The Okanagan has a dry continental climate and is in the rain-shadow 

of the Coast and Cascade Mountain Ranges; however, the region supports a strong 

agricultural industry that has a high irrigation demand, which accounts for 75% of the 

consumptive water use (Neilsen et al., 2006). Tributary streams, like Whitman Creek, 

are the main source of water for the Okanagan Valley, and most streams in the 

Okanagan are fully allocated, with no leeway for further allocations (Brewer et al., 2001).  

The warmest catchment in this study has a mean annual temperature of 5.9°C 

and is in the headwaters of the Capilano River in the North Shore Mountains of the 

Marine West Coast Forests ecoregion. The North Shore Mountains have a wet maritime 

climate, and the headwater catchment in this study has a mean annual precipitation of 

more than 200 cm. The headwaters of the Capilano River fill the Capilano Reservoir, 

which supplies one-third of the water supply for the 2.5 million Metro Vancouver 

residents (Metro Vancouver, 2017). 

Table 4.1  Catchment characteristics, including baseline 1980s (1970-1999) 
mean annual precipitation (P), snow fraction (Sf), mean annual 
temperature (T), and mean winter (1-Nov to 1-Apr) temperature (Tw). 
MASL = meters above sea level. 

Ecoregion Watershed Latitu
de 

Longitude Elevation 
[MASL] 

Slope P 
[cm] 

T 
[°C] 

Tw 

[°C] 

Taiga Fort Nelson 
River 

58.45 -123.04 564 2° 45.9 -0.6 -15.1 

Northern 
Forests 

Blueberry 
River 

56.97 -121.88 935 3° 49.8 0.0 -11.7 

North American 
Deserts 

Whiteman 
Creek 

50.23 -119.69 1572 10° 65.0 2.1 -6.1 

Marine West 
Coast Forests 

Capilano 
River 

49.49 -123.17 1320 35° 234.6 5.9 0.0 
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Figure 4.1 Headwater catchment locations and Level I ecoregions (CEC, 2011). 

4.3. Materials and Methods 

The following sections describe the groundwater-surface water (GW-SW) models 

that were developed for the study (section 4.3.1), the climate change scenario models 

that were chosen (section 4.3.2), and the methodology used to assess impacts on the 

snow drought and low flow regimes.  

4.3.1. Groundwater - Surface Water (GW-SW) Modelling 

Groundwater discharge during low flow and drought periods is dependent on the 

amount of snow that accumulates during winter and on the timing and rate of snowmelt 

and resulting groundwater recharge in the spring and summer (Tague & Grant, 2009; 

Godsey et al., 2014; Meixner et al., 2016). Therefore, a comprehensive approach for 

analyzing climate change impacts on snow drought and streamflow drought requires the 

application of a distributed, physically-based groundwater-surface water model. With this 

type of model, parameters are directly related to the physical characteristics of the 
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catchment. Compared to the two other main types of hydrological models, i.e. empirical 

models and lumped conceptual models, distributed physically based models are more 

appropriate for simulating ungauged catchments (Refsgaard & Knudsen, 1996) and for 

use where significant changes in catchment conditions are expected (Klemes, 1985; 

Refsgaard & Knudsen, 1996), e.g., climate change scenario modelling. Therefore, this 

study uses the distributed physically based GW-SW modelling code MIKE SHE – MIKE 

11 (Danish Hydraulic Institute [DHI], 2007). MIKE SHE has been used in previous 

climate change scenario modelling studies, including studies in catchments with 

seasonal snow cover (Liu et al., 2011; Thompson, 2012; Foster & Allen, 2015), and has 

been compared to other modelling codes and shown to adequately model stream 

discharge (Vansteenkiste, 2013; Golmohammadi et al., 2014).  

MIKE SHE is a deterministic, distributed hydrologic modelling system that can 

simulate actual evapotranspiration (AET), overland flow, one-dimensional (1D) 

unsaturated flow, and three-dimensional (3D) variably saturated groundwater flow. 

Rivers, lakes, and other channels are simulated by the one-dimensional MIKE 11 model, 

which is coupled directly to the MIKE SHE model through the use of river links (h-points). 

Further details on the comprehensive modelling capabilities of the MIKE SHE software 

can be found in the user manual (i.e. DHI, 2007).  

Model boundary conditions were consistent between all models and consisted of:  

1.  zero flux boundaries at the catchment boundaries – representing 
topographical divides; 

2.  zero flux boundaries at the bottom of the saturated bedrock layer (200 
metres below ground surface); 

3.  closed (zero flux) boundaries at the upstream end of the stream 
network branches; 

4.  open (head-dependent flux) boundary defined by a discharge-
elevation (Q-h) rating curve at the downstream outflow.  

The assigned boundary conditions route precipitation onto the model domain and out via 

evapotranspiration or surface water flow through the downstream flux boundary. Initial 

groundwater levels were assigned to coincide with the ground surface. The models were 

run for 150-year periods (1950-2100), using the first 20 years (1950-1969) as the spin up 

period to achieve a dynamically stable state. 
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The GW-SW models in this study were developed to explore the relationship 

between snow drought and hydrological drought in idealized systems, each representing 

a different ecoregion in British Columbia. While real-world topography, stream networks, 

etc. were used, all models in this study are generic and were not put through any 

calibration or validation procedures. The modelling code used in this study meets the 

guidelines laid out by Freeze & Harlan (1969) for adequate physics-based hydrological 

modelling and the climate change application criteria of Klemes (1985). Beven (1989) 

and Grayson et al. (1992), however, warn against the overparameterization of physically 

based models. Therefore, this study aimed to represent the hydrologic systems in the 

simplest way possible and used homogenous land cover, soils, and geology for each 

catchment. Additional details on the model setups, including land surface, saturated 

zone, and unsaturated zone parameters and stream network data are included in the 

following sections.  

Land surface data and overland flow 

Actual transpiration and soil evaporation were calculated using the equations 

from Kristensen and Jensen (1975). Required inputs include leaf area index (LAI), 

canopy interception, root characteristics, and empirical coefficients. Leaf area index 

(LAI) for each catchment was estimated using the 10-day interval LAI dataset from 

Gonsamo and Chen (2014). The required root characteristics include root depth and a 

root mass distribution parameter Aroot. Aroot was left at the default value (0.25 m-1
; DHI, 

2007). Root depth was set at 400 mm for all catchments based on a study by Curt et al. 

(2001), which showed that the majority of root mass is concentrated within the top 400 

mm of soil, regardless of soil quality. The canopy interception parameter Cint and the 

empirical coefficients C1, C2, C3 were left at the default values (0.05 mm and 0.3, 0.2, 

and 20 mm/day, respectively; DHI, 2007), following Voeckler et al. (2014) and Foster 

and Allen (2015).  

Overland flow occurs when the infiltration capacity of the soil is exceeded or 

when groundwater discharges to the surface. Within MIKE SHE, overland flow is routed 

by surface topography at a rate dependent on the diffusive wave approximation of the 

Saint-Venant equation. The resistance to overland flow is controlled by the roughness of 

the land surface. Topography for all models was assigned using the Canadian Digital 

Elevation Model (CDEM; Natural Resources Canada, 2017). Land cover data (DataBC, 
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2013) were used to define surface roughness values (Manning’s M). Manning’s M is the 

reciprocal of Manning’s n; therefore, Manning’s n values from Chow (1959) were used to 

estimate Manning’s M values (Table S4.1).   

Unsaturated and saturated zone 

The unsaturated zone (UZ) within MIKE SHE is the zone through which the water 

table rises and falls. Vertical flow in the UZ was modelled using Richards’ equation 

(Richards, 1931). Three-dimensional groundwater flow in the saturated zone (SZ) is 

based on Darcy’s equation and is solved implicitly using a finite difference technique. 

The UZ and SZ are explicitly coupled, and the upper boundary of the SZ is a flux 

boundary which receives recharge from the SZ. Flux from the unsaturated to the 

saturated zone varies in time and is computed at the interface of the two zones. 

Because of the coupling between the two zones, the UZ and SZ must overlap, with the 

UZ extending to a depth of the lowest possible groundwater head. Depth to groundwater 

in the catchments is unknown; therefore, to ensure coupling between the UZ and SZ 

zones, the UZ and SZ zones were assigned the same number of layers, with the same 

depths, and the same hydraulic properties, extending from ground surface to 200 metres 

depth. 

UZ and SZ layer depths, bulk densities, and vertical and horizontal saturated 

hydraulic conductivities (Kz, Kxy) were assigned based on British Columbia (BC) soil 

descriptions (Agriculture and Agri-Food Canada, 2013). Textural classes were 

determined from the BC soil descriptions and used assign values of effective porosity 

(θs), residual porosity (θr), and empirical constants α and n based on values in Carsel 

and Parrish (1988). Specific yield values were estimated from Morris and Johnson 

(1967). Parameters for the organic soil layers in the Fort Nelson (Taiga ecoregion) 

catchment were based on values from Letts et al. (2000). Soil names, bedrock geology, 

and the associated parameters are provided in Tables S2 to S5.  

MIKE 11 stream network 

Stream routing was modelled within MIKE 11 and requires four main 

components: a stream network, cross-sections, boundary conditions, and hydrodynamic 

parameters. Stream networks and drainage boundaries were obtained from British 

Columbia Freshwater Atlas (British Columbia, 2013). Stream cross-sections were 
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digitized from surface topography (i.e. from the CDEMs). For each catchment, stream 

network boundary conditions consisted of closed (zero-flux) boundaries at the upstream 

ends of the stream network branches and an open (head-dependent) flux boundary at 

the downstream outflow. Rating curves for the downstream head-dependent flux 

boundaries were calculated using Manning’s equation, shown in Equation 4.1. 

𝑄 = 𝐴 ×
1

𝑛
× 𝑅ℎ

2

3 × √𝑆                                                                                 [4.1] 

where Q [m3/s] is the discharge leaving the model domain, A [m2] is the cross-sectional 

area, n is Manning’s roughness coefficient, R is the hydraulic radius, and S [m/m] is the 

channel slope. For each catchment, the channel slope was calculated from the CDEM 

and the hydraulic radius was calculated from the downstream cross-section for a range 

of possible stream stages spanning low flow to high flow conditions. A value of Q was 

determined for each stage value using Equation 4.1, thereby creating the rating curve 

required for the head-dependent flux boundary. 

The global bed resistance Manning’s roughness coefficient (Manning’s n) was 

set to 0.05 for all catchments based on values in Chow (1959). Conductance values, 

which control the flow of water between the stream network and the saturated zone, 

were estimated from the subsurface hydraulic conductivity values (Tables S4.2-S4.5).  

4.3.2. Climate Change Scenario Modelling 

Statistically downscaled forcing datasets based on three models from Phase 5 of 

the Coupled Model Intercomparison Project (CMIP5) under representative concentration 

pathways (RCPs) 4.5 and 8.5 were used for the climate change scenarios in this study. 

RCPs 4.5 and 8.5 represent different trajectories of anthropogenic radiative forcing, 

leading to radiative forcing levels of 4.5 and 8.5 W/m2 by the end of 21st century (van 

Vuuren et al., 2011). RCP 4.5 represents a medium stabilization scenario, and RCP 8.5 

represents a very high baseline emissions scenario (van Vuuren et al., 2011). The three 

models from the CMIP5 ensemble (CNRM-CM5-1, CanESM2-r1, ACCESS1-0-r1) were 

selected to capture the widest spread in projected future climate while using a small 

subset of the full ensemble, following Cannon (2015). Daily climate time series 

(maximum temperature, minimum temperature, and precipitation) downscaled with the 

bias-correction/constructed analogues with quantile mapping reordering (BCCAQ) 
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method were obtained from the Pacific Climate Impacts Consortium (PCIC) data portal 

(PCIC, 2014) covering the period of 1950 to 2100. Werner and Cannon (2016) showed 

that, out of the seven downscaling methods tested, BCCAQ performed best for 

reproducing hydrologically relevant climate extremes. Mean daily temperature was 

calculated as the average of the minimum and maximum daily temperature and used as 

the input for MIKE SHE. A comparison of climate data between the baseline 1980s 

(1970-1999) and two future periods, 2050s (2041-2069) and 2080s (2070-2099) is 

included in results section 4.4.1. 

4.3.3. Evapotranspiration and Snow 

In addition to mean daily temperature and daily precipitation, MIKE SHE requires 

estimates of potential evapotranspiration (PET). Potential evapotranspiration (PET) was 

calculated with the FAO Penman-Monteith method (Allen et al., 1998) using the R 

package “sirad” (Bojanowski, 2016). Daily solar radiation inputs for the Penman-

Monteith method were estimated from daily maximum and minimum temperature using 

the Hargreaves and Samani (1985) model, following recommendations in Aladenola and 

Madramootoo (2012). Estimates of daily mean wind speed were unavailable, and a 

constant wind speed of 5 km/hr was used for all PET calculations, which is within the 

range of climate normals for the nearby climate stations (Environment and Climate 

Change Canada, 2018). Wind speed exhibits relatively minor impacts on PET 

(McKenney & Rosenberg, 1993; Gong et al., 2006; Tabari & Talaee, 2014; Córdova et 

al., 2015); therefore, the use of a constant wind speed was deemed appropriate.  

Within MIKE SHE, snow accumulation and melt are modelled using a threshold 

melting temperature, a maximum wet snow storage fraction, and a degree-day 

coefficient. The threshold melting temperature for all catchments was set to 0°C, and the 

maximum wet snow storage fraction was set to 0.2, which is in the mid-range of values 

used in previous studies (Wijesekara et al., 2014; Voeckler et al., 2014; Foster & Allen, 

2015). A value of 2.74 mm/degree-day C was used for the degree-day coefficient in all 

models based on recommendations in United States Department of Agriculture (USDA) 

National Engineering Handbook (Van Mullem & Garen, 2004). The minimum snow 

storage was set to 0 mm for all catchments. 
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This snowmelt methodology, referred to as the temperature-index or degree-day 

method, assumes an empirical relationship between air temperatures and melt rates and 

has been widely applied due to its simplicity (e.g., Clyde, 1931; Corps of Engineers, 

1956; World Meteorological Organization [WMO], 1986; Van Mullem & Garen, 2004). 

However, the degree-day method does not account for several factors that are important 

for snowmelt, including wind speed, humidity, topography (slope, aspect, shading), cloud 

cover, and vegetation (Male & Granger, 1981; Gray & Landine, 1988; Harding & 

Pomeroy, 1996; Pomeroy et al., 1998; Marks et al., 1999; among others). Despite the 

over-simplification and documented short-comings of this method, temperature-index 

methods often perform well at the catchment scale (World Meteorological Organization 

[WMO], 1986; Sand, 1992; Rango & Martinec, 1995; Hock, 2003) and can match the 

performance of energy balance models (WMO, 1986). While further study using energy 

balance models should be completed to investigate within-catchment spatial differences 

in the response of snow drought regimes to climate warming, the degree-day method 

was deemed sufficient for modelling the average catchment conditions. Additionally, 

Rango & Martinec (1995) showed there is little difference in simulated runoff between 

the degree-day approach and the energy balance approach, and, therefore, the 

methodology used in this study was deemed appropriate for a combined investigation of 

snow drought and streamflow drought. 

4.3.4. Assessment of Snow Drought 

To investigate how different snow drought types impact seasonal low flows, snow 

droughts were classified using the methodology outlined Dierauer et al. (in review-b). 

With this method, winters with below-normal peak snow water equivalent (SWE) are 

classified as warm, dry, or warm and dry snow droughts based on winter precipitation 

(Pw) and winter thawing degrees (TDw). Years with below-normal peak SWE, below-

normal Pw, and below-normal TDw are classified as “dry” snow droughts; years with 

below-normal peak SWE and above-normal Pw are classified as “warm” snow droughts; 

and years with below-normal peak SWE, below-normal Pw, and above-normal TDw are 

classified as “warm and dry” snow droughts. Peak SWE, Pw, and TDw normals were 

defined using the baseline 1980s period (1970-1999). For each catchment, the winter 

season was defined based on the baseline 25th percentile of mean daily temperature 

(�̅�25), with days of the year with �̅�25 <0°C corresponding to “winter”. After classifying 
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each winter season with below-normal peak SWE as a warm, dry, or warm and dry snow 

drought, the severity (mean deficit below baseline normal), frequency (fraction of years), 

and risk (frequency x severity) of each snow drought type were calculated. 

4.3.5. Assessment of Low Flows and Streamflow Drought 

Winter and summer low flows are generated by different hydrological processes, 

i.e. below freezing temperatures and snow accumulation versus above freezing 

temperatures and high evapotranspiration rates (Waylen & Woo, 1987; Laaha & Blöschl, 

2006; Burn et al., 2008). To complete a combined analysis of snow drought and 

streamflow drought, summer low flows must first be separated from winter low flows. 

Substantial changes in climate occur over the 150-year (1950-2100) simulation period, 

including large decreases in the length of the snow accumulation period. Thus, a fixed 

definition of summer versus winter seasons would be ineffective for a process-based 

separation of low flows, and a flexible classification scheme was needed. To accomplish 

this, days with a mean daily temperature below 0°C or with ≥ 5 cm of snow cover were 

classified as “winter” days, and days with a mean daily temperature above 0°C and < 5 

cm of snow cover were classified as “summer” days. The hydrologic year start was set to 

the beginning of the winter season and allowed to vary between years. 

After separating the summer versus winter seasons, the severity and duration of 

low flows were quantified using four low flow regime indicators (Table 4.2). Low flow 

periods were defined using the baseline (1970-1999) Mean Daily Runoff (MDR) as the 

upper bound. Low flow duration (DUR) was calculated as the cumulative number of days 

when runoff was less than the baseline MDR. Low flow severity (SEV) was calculated as 

the cumulative water deficit below the baseline MDR. To aid in comparison between the 

catchments, SEV was normalized by the baseline Mean Annual Runoff (MAR). The 

mean 15-day minimum runoff (MAM15) and the mean 30-day minimum runoff (MAM30) 

were also calculated and used to quantify the magnitude of summer and winter low 

flows. Each metric (DUR, SEV, MAM15, and MAM30) was calculated for both the 

summer and winter season, indicated by “s” and “w” subscripts, respectively.  

To evaluate the propagation of snow drought into summer streamflow drought, 

the frequency and mean severity of summer streamflow droughts following a snow 

drought were tabulated, considering only years with above-normal (1980s baseline) 
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summer precipitation. By doing this, summer streamflow droughts caused by a summer 

precipitation deficit could be separated from summer streamflow droughts caused by 

snow droughts, and thus the propagation of snow drought into summer streamflow 

drought could be highlighted. Summer streamflow drought frequency and severity were 

analysed using each summer low flow regime indicator, using the thresholds indicated in 

Table 4.2. For DURs and SEVs, a baseline threshold of 20% exceedance frequency was 

used, i.e. summer low flow duration and severity that was exceeded 20% of the time 

during the baseline period. For MAM15s and MAM30s, a baseline threshold of 80% 

exceedance frequency was used, i.e. low flow magnitude that was exceeded 80% of the 

time during the baseline period. For DURs and SEVs, streamflow drought years occur 

when the values are above the threshold, and for MAM15s and MAM30s, streamflow 

drought years occur when values are below the threshold. 

Table 4.2 Low flow regime indicators, calculated yearly. Baseline = 1980s 
(1970-1999). MAR = mean annual runoff. 

Winter Summer Description Units Threshold 

DURw DURs Duration of low flow period days >20% exceedance 
SEVw SEVs Severity of low flow period fraction of baseline MAR >20% exceedance 
MAM15w MAM15s Mean 15-day minimum runoff mm/day <80% exceedance 
MAM30w MAM30s Mean 30-day minimum runoff mm/day <80% exceedance 

4.4. Results 

The following sections present and discuss the results of the GW-SW climate 

change scenario modelling, including climate change impacts on the annual and intra-

annual water balance (Section 4.4.1) and impacts on snow drought and low flow regimes 

(Sections 4.4.2 and 4.4.3). Section 4.4.4 analyses the impacts of snow drought on low 

flows, and section 4.5 provides further discussion of the results. 

4.4.1. Climate Change Impacts on the Annual Water Balance 

A water balance analysis was completed for each RCP-GCM combination, for a 

total of six 150-year water balance time series for each headwater catchment. The water 

balance components of interest for this study include precipitation, snow water 

equivalent (SWE), runoff, actual evapotranspiration (AET), and groundwater recharge. 

Groundwater recharge represents water that enters the SZ from the UZ; however, with 

the MIKE SHE water balance tool, both flux into and out of the SZ are tabulated. Thus, 
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recharge can be positive (outward flux to UZ) or negative (inward flux to SZ). With no 

change in groundwater storage, the inward fluxes in recharge zones would be balanced 

by outward fluxes in discharge zones, and total annual recharge would roughly equal 0. 

Therefore, a detailed saturated zone water balance was extracted for a small upland 

region of each catchment to analyse groundwater recharge in a recharge zone only. 

Runoff for each catchment was calculated as the volume of streamflow leaving the 

downstream head-dependent flux boundary, converted from m3/s to mm/day by dividing 

by catchment area.  

Water balance results for individual GCMs are not shown but rather lumped by 

RCP for simplicity. Results are summarized for a baseline period (1980s) and two future 

periods (2050s and 2080s) and are presented as both the absolute change (future – 

baseline) and relative change ([future – baseline] / baseline) for the three-member GCM 

ensemble (Figure 4.2, Table S4.6). Average annual water balance errors for all models 

were less than 3%; however, due to transient conditions and changes in subsurface 

storage, mean annual AET plus mean annual runoff is not equal to mean annual 

precipitation.  

The GCM ensemble projects increases in temperature and precipitation for all 

four catchments (Figure 4.2, Table S4.6). The relative increase in precipitation is highest 

in the two northern catchments (Fort Nelson and Blueberry), which have a cold, dry 

climate. The absolute increase (mm/year) in precipitation, however, is highest in the 

warmest, wettest catchment – Capilano. The seasonal distribution of precipitation does 

not change substantially under RCPs 4.5 and 8.5; however, in general, the fall (Sep to 

Nov) and spring (Mar to May) seasons exhibit the largest relative increases in 

precipitation (Figure S4.2), and summer (Jun to Aug) and winter (Dec to Feb) exhibit the 

smallest. Compared to the projected changes in precipitation, changes in temperature 

are more similar among all catchments (Table S4.6). Projected temperature increases 

are highest in winter and lowest in fall (Figure S4.3). As expected, increases in the mean 

annual temperature are greatest for the high emissions scenario (RCP 8.5), and by the 

2080s, mean annual temperature is projected to be 5.6 to 6.1 °C higher compared to the 

baseline 1980s period (Table S4.6). 

Annual runoff is projected to increase for all four catchments (Figure 4.2). 

Relative (%) increases in runoff are largest for the coldest, driest catchment (Fort 
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Nelson), while absolute (mm/year) increases in runoff are largest for the warmest, 

wettest catchment (Capilano; Figure 4.2 and Table S4.6). In addition to increases in 

annual runoff, the within-year distribution of runoff changes substantially. The spring 

freshet starts earlier for all catchments and decreases in magnitude for all but Fort 

Nelson (Figure S4.4), which is the northern-most and coldest catchment. In the warmest 

catchment (Capilano), the spring freshet disappears completely for both future time 

periods under both RCPs. In all catchments, the slope of the spring freshet rising limb 

decreases, indicating a lengthening of the melt interval before peak flow (Figure S4.4). 

These changes (declined spring freshet peak and lengthening of the melt interval) are 

consistent with observations of Rood et al. (2016), who tied spring flood moderation in 

Rocky Mountain rivers to winter and spring warming.  

In general, changes in the timing and magnitude of the spring freshet are directly 

related to changes in the length of the snow-covered period and the magnitude and 

timing of peak SWE (Figure S4.5). While the increased annual precipitation leads to 

increased peak SWE for the coldest catchment (Fort Nelson), the impact of increased 

temperatures outweighs the impacts of increased precipitation in the remaining 

catchments, leading to no significant change in peak SWE (Blueberry) or significant 

decreases in peak SWE (Whiteman and Capilano; Figure 4.2). The largest absolute and 

relative decreases in peak SWE occur in the warmest catchment, Capilano, which has a 

>90% decrease in peak SWE for the 2080s under RCP 8.5. In addition to changes in the 

magnitude of peak SWE, the average day of peak SWE and melt-out occur earlier, 

resulting in a shorter snow-covered period for all catchments for both future time periods 

under both RCPs (Figure S4.5). Additionally, snowmelt is slower for all catchments for 

both future periods, as illustrated by the shallower slope of the falling limbs (Figure 

S4.5). The earlier and slower snowmelt is consistent with the Musselman et al. (2017) 

study, which showed that snow melts more slowly in a warmer world due to an increase 

in winter and spring melt and longer snow-free periods during times of high energy (i.e. 

summer).  

As expected, the changes in temperature and precipitation, and associated 

changes in snow accumulation and melt, lead to significant changes in both the total 

annual AET (Figure 4.2) and the intra-annual patterns in AET (Figure S4.6). AET 

increases significantly for all catchments except Whiteman, located in the Okanagan 

Valley, which exhibits no significant change in annual AET (Figure 4.2). Seasonally, AET 
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increases most in late-winter and spring (Feb to May) and decreases (Whiteman and 

Capilano) or exhibits no substantial change (Fort Nelson and Blueberry) during summer 

(Figure S4.6). Decreased AET during the summer can be primarily attributed to the shift 

toward earlier snowmelt, which decreases summer water availability. This negative 

feedback between snowmelt timing and evapotranspiration has been discussed by 

Barnett et al. (2005) and documented by previous climate change modelling studies 

(e.g., Shrestha et al., 2012). Shifts in vegetation patterns will likely influence catchment 

response to climate change (Alo & Wang, 2008; Teutschbein et al., 2018); however, it is 

difficult to project and constrain possible vegetation shifts, and vegetation change was 

not included in the modelling efforts. Changes in wind speed, either due to climate 

change or vegetation change, would also impact AET, an effect which was not 

considered in this study. 

Within MIKE SHE, water that reaches the saturated zone (i.e., groundwater 

recharge) may then exit the saturated zone via evapotranspiration, baseflow to the river, 

or surface return. Groundwater recharge may be higher or lower than runoff, depending 

on catchment’s physical properties (e.g., soils, geology, vegetation, ground slope) which 

control the evapotranspiration dynamics and the magnitude of overland flow. In the Fort 

Nelson catchment, which has high porosity organic soils (Table S4.2) and shallow slope 

(Table 4.1), groundwater recharge is much higher than runoff (Table S4.6), and a large 

proportion of the water that reaches the saturated zone then leaves the system through 

evapotranspiration. In the Capilano catchment, which has lower porosity soils (Table 

S4.5) and steep slopes (Table 4.1), groundwater recharge is lower than runoff (Table 

S4.6) and a substantial portion of runoff is generated from overland flow. 

At the annual time scale, recharge increases significantly for all but the warmest 

catchment (Capilano; Figure 4.2). Intra-annually, the patterns in groundwater recharge 

are primarily affected by changes in the onset of snow accumulation and melt. In all 

catchments, the spring recharge peak starts earlier in the year and decreases in 

magnitude (Figure S4.7), resulting in higher winter groundwater storage, an earlier start 

to the spring/summer groundwater recession period, and thus decreased summer 

groundwater storage (Figure S4.8). Increased winter-season recharge for regions with 

seasonal snow cover is consistent with the results of previous climate change modelling 

studies (e.g., Eckhardt & Ulbrich, 2003; Jyrkama & Sykes, 2007; Kovalevskii, 2007). A 

shift toward more rain and less snow in combination with slower snow melt would 
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suggest an overall decrease in groundwater recharge (Earman et al., 2006; Barnhart et 

al., 2016). While it is difficult to separate the effects of increased temperatures from the 

effects of increased precipitation, the results of this study show an increasing ratio of 

recharge to precipitation (R:P ratio) for the Fort Nelson catchment, relatively constant 

R:P ratios for the Blueberry and Whiteman catchments, and a decreasing R:P ratio for 

the Capilano catchment (Table S4.6). The different responses of the R:P ratio (increase, 

no change, decrease) seem to be related to the catchment’s starting point (in terms of 

temperature), as the coldest catchment exhibits an increase in the R:P ratio and the 

warmest catchment exhibits a decrease in the R:P ratio. 
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Figure 4.2 Annual climate and water balance components for the 1980s 
baseline (1970-1999) versus 2050s (2040-2069) and 2080s (2070-
2099) for representative concentration pathway (RCP) 4.5 and RCP 
8.5, including mean annual temperature (Temp), annual precipitation 
(Precip), peak snow water equivalent (SWE), annual runoff, annual 
actual evapotranspiration (AET), and annual groundwater recharge. 
Blue and orange shading indicate a significant (p < 0.05) increase or 
decrease relative to the baseline period, as assessed with the two-
sided Mann-Whitney U test. Arrows are added for clarity where 
boxplot shading is unclear. Figure S4.1 shows the same data, 
plotted as absolute values, and Table S4.6 provides the 
corresponding mean annual values along with the absolute and 
relative change. 
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4.4.2. Snow Drought 

In response to the increased precipitation and temperature (Figure 4.2), the snow 

drought regime changes substantially for all catchments. Warm snow droughts increase 

in frequency and dry snow droughts decrease in frequency (Figure 4.3, Table S4.7). 

Additionally, warm, and warm and dry, snow drought severity increases for the two 

warmest catchments, Whiteman and Capilano (Figure 4.4, Table S4.8). In general, dry 

snow droughts transition to warm and dry snow droughts, and, by the 2080s, the 

frequency of dry snow drought drops to 0 for all catchments (Figure 4.3, Table S4.7). In 

terms of temperature, the magnitude of change in the snow drought regime is related to 

the catchment’s starting point, with the warmest catchment (Capilano) exhibiting the 

largest increase in the frequency and severity of snow drought and the coldest 

catchment (Fort Nelson) exhibiting no substantial increase in the frequency or severity of 

snow drought (Figure 4.3 and Figure 4.4). 

 

Figure 4.3 Frequency (fraction of years) of dry (D), warm (W), and warm and dry 
(W&D) snow droughts for the baseline 1980s (1970-1999) versus 
2050s (2040-2069) and 2080s (2070-2099) for representative 
concentration pathway (RCP) 4.5 and RCP 8.5. Table S4.7 provides 
the same data in tabular format. 
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Figure 4.4 Mean severity (fraction below baseline normal) of dry (D), warm (W), 
and warm and dry (W&D) snow droughts for the baseline 1980s 
versus 2050s (2040-2069) and 2080s (2070-2099) for representative 
concentration pathway (RCP) 4.5 and RCP 8.5. Table S4.8 provides 
the same data in tabular format. Note: Dry snow droughts transition 
to warm and dry snow droughts and therefore have no mean 
severity plotted for some future time periods. 

The increased frequency and severity of snow drought necessarily leads to 

increased snow drought risk, and overall, the changes in snow drought risk (Table 4.3) 

mirror the changes in snow drought severity (Figure 4.4). In general, snow drought 

regimes in all catchments shift toward more frequent, higher severity temperature-

related (warm, and warm and dry) snow droughts, and less frequent, lower severity dry 

snow droughts. However, as documented by Dierauer et al. (in review-b) and shown in 

Figure S4.9, the response of warm snow drought risk to increased winter temperature is 

non-linear. A 2°C increase in the mean winter (1-Nov to 1-Apr) temperature corresponds 

to a substantially larger increase in warm snow drought risk for the Capilano catchment 

as compared to the Fort Nelson catchment. The two warmest catchments, Whiteman 

and Capilano, exhibit the largest increases in total snow drought risk. Due to the 

transition of dry snow droughts to warm and dry snow droughts, dry snow drought risk 

decreases for all catchments for both future time periods under both RCPs. The coldest 

catchment, Fort Nelson, exhibits a slight decrease in total snow drought risk.  

 



82 

Table 4.3 Risk (severity x frequency) for dry (D), warm (W), and warm and dry 
(W&D) snow droughts. Baseline 1980s (1970-1999) versus 2050s 
(2040-2069) and 2080s (2070-2099) for representative concentration 
pathways (RCPs) 4.5 and 8.5. 

  Fort Nelson Blueberry Whiteman Capilano 

19
80

s 

D 3.0% 3.5% 3.2% 2.6% 
W 0.8% 1.4% 0.6% 14.6% 

W&D 7.4% 9.7% 5.5% 12.9% 
Total 11.2% 14.6% 9.3% 30.1% 

 RCP 4.5 8.5 4.5 8.5 4.5 8.5 4.5 8.5 

20
50

s 

D 1.0% -- <0.1% -- 0.2% -- 0.2% -- 
W 3.6% 3.0% 8.5% 10.4% 7.6% 17.6% 42.2% 52.0% 

W&D 6.5% 5.5% 11.5% 6.7% 10.0% 7.4% 32.9% 30.8% 
Total 11.1% 8.5% 20.0% 17.1% 17.8% 25.0% 75.5% 82.8% 

20
80

s 

D -- -- -- -- -- -- -- -- 
W 3.3% 6.1% 7.8% 29.2% 13.8% 41.9% 46.9% 55.2% 

W&D 4.8% 1.9% 7.8% 3.0% 8.2% 8.9% 33.1% 37.4% 
Total 8.1% 8.0% 15.6% 32.2% 22.0% 50.8% 80.0% 92.6% 

4.4.3. Low Flows and Summer Streamflow drought 

As the snow drought regime shifts toward more frequent, higher severity 

temperature-related (i.e. warm, and warm and dry) snow droughts, the streamflow 

regime shifts toward shorter, less severe winter low flow periods (Figure S4.10) and 

longer, more severe summer low flow periods (Figure 4.5). While low flows periods are a 

normal, annually recurring component of the natural flow regime (Smakhtin, 2001), 

longer and/or more severe low flows periods are synonymous with streamflow droughts. 

Thus, a shift toward longer, more severe summer low flows represents an increase in 

summer streamflow drought severity and duration, and a shift toward shorter, less 

severe winter low flows represents a decrease in winter streamflow drought severity and 

duration. The shift in the streamflow drought regime is further illustrated by empirical 

distribution functions plots (Figures S4.11 to S4.14). 

Different snow drought types have different impacts on summer and winter low 

flows. Consistent with findings of Dierauer et al. (in review-a), warm, and warm and dry, 

snow droughts lead to significantly longer, more severe summer low flows (Figure 4.6) 

and significantly shorter and less severe winter low flows (Figure S4.15). In the context 

of climate warming and considering the documented relationship between snow drought 

and low flows (Figure 4.6), summer streamflow drought regimes are likely to shift toward 

more frequent, higher severity snow-drought related events. Using a threshold-based 
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approach to define summer streamflow drought years for each low flow metric (see 

section 4.3.4) shows that, in the absence of summer precipitation deficit, snow droughts 

propagate into summer streamflow droughts more frequently in the future time periods 

as compared to the baseline 1980s (Figure 4.7 and Figure S4.16). Thus, warm snow 

droughts not only become more frequent and severe in the future (Figure 4.3 and Figure 

4.4) but are also more likely to result in summer streamflow drought conditions. Dry 

snow droughts, on the other hand, become less frequent in the future (Figure 4.3) and 

are unlikely to lead to summer streamflow droughts (Figure 4.7 and Figure S4.16).  

The warm snow season streamflow drought events identified in this study are 

strictly temperature-driven, as both winter and summer precipitation are above the 

baseline 1980s normal. Climate change impacts on the frequency of these events vary 

between catchments due to the baseline winter air temperature. The Fort Nelson 

catchment, which has winter air temperatures far below zero, exhibits minimal increase 

in the occurrence of warm snow season streamflow droughts, while Capilano catchment, 

which has winter air temperatures near zero, exhibits a large increase in the occurrence 

of warm snow season streamflow droughts (Figure 4.7 and Figure S4.16). 



84 

 

Figure 4.5 Summer low flow regime indicators for the 1980s baseline (1970-
1999) versus 2050s (2040-2069) and 2080s (2070-2099) for 
representative concentration pathway (RCP) 4.5 and RCP 8.5. Blue 
and orange shading indicate a significant (p < 0.05) increase or 
decrease relative to the baseline period, as assessed with the two-
sided Mann-Whitney U test. Figure S4.10 shows winter low flow 
regime indicators. 
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Figure 4.6 Snow drought impacts on summer low flows by snow drought type, 
including years without snow drought (None) and years with warm 
(W), dry (D), and warm and dry (W&D) snow droughts. Blue and 
orange shading indicate the values are significantly (p < 0.05) higher 
or lower relative to years without snow drought, as assessed with 
the two-sided Mann-Whitney U test. Abbreviations are as in Table 
4.2. Arrows are added for clarity where boxplot shading is unclear. 
Figure S4.15 shows the winter low flow regime indicators. 
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Figure 4.7 Frequency of snow drought propagation into summer streamflow 
drought, in the absence of summer precipitation deficit, by snow 
drought type: warm (W), Dry (D), warm and dry (W&D), RCP 8.5. 
Figure S4.16 shows the same plot for RCP 4.5. 

4.5. Discussion 

While recent studies have increased our understanding of snow drought 

(Dierauer et al., in review-b; Mote et al., 2016; Harpold et al., 2017) and its hydrological 

impacts (Cooper et al., 2016; Sproles et al., 2017; Hatchett & McEvoy, 2018), no 

previous studies have explicitly related climate change impacts on snow drought to 

subsequent impacts on summer low flows and summer streamflow drought. In this 

study, generic GW-SW models of headwater catchments were combined with 

downscaled climate change projections for two different RCPs. Climate change 

projections show increases in both precipitation and temperature, leading to decreases 

in the frequency and severity of dry snow droughts and increases in the frequency and 

severity of warm, and warm and dry, snow droughts. Climate warming and the 
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subsequent shifts in the snow drought regime result in decreased summer runoff, 

decreased summer groundwater storage, and longer, more severe summer low flow 

periods. Climate warming has the opposite effect on the winter season, with model 

results showing increased winter runoff, increased winter groundwater storage, and 

shorter, less severe winter low flow periods.  

Snow droughts have direct impacts on summer low flows (Figure 4.6), and 

temperature-related (i.e. warm, and warm and dry) snow droughts not only become 

more frequent and severe in the future but are also more likely to result in summer 

streamflow drought conditions (Figure 4.7). The shift to lower severity winter streamflow 

droughts and higher severity summer streamflow droughts is consistent with the results 

of previous hydrologic modelling studies (Feyen & Dankers, 2009; Wanders & Van 

Lanen, 2015) and with the general hypothesis that streamflow droughts with different 

causative factors will respond differently to climate change (Van Loon and Van Lanen, 

2012; Van Loon et al., 2015). In general, increased summer streamflow drought severity 

and decreased winter streamflow drought severity are consistent with an overall shift in 

the intra-annual distribution of runoff, an impact of climate warming on snowmelt 

hydrology which has been documented by many previous studies (Leith & Whitfield, 

1998; Whitfield & Cannon, 2000; Adam et al., 2009; Déry et al., 2009; Pederson et al., 

2011; among others).  

Consistent with the results of Dierauer et al. (in review-b), the response of snow 

drought risk to climate warming is non-linear (Figure S4.9), and the magnitude of change 

in the snow drought and low flow regime is related to the catchment’s baseline mean 

winter (1-Nov to 1-Apr) temperature. Due to the non-linear relationship between 

temperature and snow drought risk, a +2°C change in the mean winter temperature has 

a larger impact on the snow drought regime in catchments with winter temperatures near 

zero (e.g., the Capilano catchment) compared to catchments with winter temperatures 

far below zero (e.g., the Fort Nelson catchment). Because of the impacts of snow 

drought on summer low flows, warmer catchments also exhibit greater increases in the 

severity and duration of the summer low flow period compared to colder catchments.  

The shift toward more frequent and more severe temperature-related snow 

droughts and longer, more severe summer low flow periods will have widespread 

implications for terrestrial and aquatic ecosystems. Earlier snow disappearance will lead 



88 

to increased wildfire activity (Westerling et al., 2006), increased tree mortality (Bales et 

al., 2018), greater water stress for mountain ecosystems (Harpold, 2016), and 

decreased carbon uptake (Hu et al., 2010; Winchell et al., 2016). Since stream 

temperatures are positively associated with air temperature and negatively associated 

with streamflow rates (Hockey et al., 1982; Webb et al., 2003), climate warming and the 

subsequent shifts in the low flow regime will have compound impacts on stream 

temperature during the summer low flow period. Summer low flow periods are critical for 

aquatic ecosystem health (Fleming et al., 2007; Moore et al., 2013), and increased 

stream temperatures have direct impacts on species distributions and growth rates 

(Beschta et al., 1987, Eaton & Scheller, 1996). Further, summer low flows that are lower 

than normal, i.e. drought conditions, correspond to reduced dissolved oxygen levels 

(Sprague, 2005; van Vliet & Zwolsman, 2008; Ylla et al., 2010), reduced hydrological 

connectivity and habitat availability (Lake, 2003), and increased pollutant concentrations 

through decreased dilution capacity (Mosley, 2015). 

Shifts in snow drought, low flows, and streamflow drought regimes will also have 

widespread implications for surface water supply security. Increased frequency of warm 

snow droughts will likely lead to an increased frequency of mid-winter melt events 

(Hatchett & McEvoy, 2018), which will create challenges for reservoir management. 

Winter melt events should be of low intensity (e.g., Musselman et al., 2017); however, 

climate change may also result in increased rain on snow events and thus high intensity 

flows, i.e. floods (Yan et al., 2018). Reservoirs may require higher flood control due to 

the increased winter flows and increased risk to rain on snow events, while 

simultaneously requiring larger storage capacity to combat decreasing summer flows. As 

summer low flow periods become more severe and snow-drought related summer 

streamflow droughts become more frequent, the potential for more severe summer water 

shortages increases. The most severe shortages will likely occur due to a combination of 

different drought types (Van Loon et al., 2015) and the co-occurrence of warm and dry 

conditions (AghaKouchak et al., 2014) – as illustrated by the recent multi-year California 

drought (AghaKouchak et al., 2014; Howitt et al., 2015). 

The GW-SW models in this study are generic, and, therefore, represent 

interpretive tools (Anderson et al., 2015). Like all GW-SW models, they are simplified 

numerical representations of natural flow systems and cannot duplicate the natural flow 

system exactly. However, the models are physically-based, and the documented 
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consistency with previous studies indicates that the results can provide general insights 

into future water management challenges. Additionally, this study could be used as a 

base for identifying areas of interest and designing subsequent snow drought and 

streamflow drought modelling studies. While the models should not be used to forecast 

future water availability, results are discussed, in general terms, in relation to regional 

water management challenges in the following paragraphs. 

In NEBC, where the Fort Nelson and Blueberry catchments are located, shifting 

snow and streamflow drought regimes will likely lead to decreased freshwater security 

for oil and gas industry. Since 2005, oil and gas industry development in NEBC has 

expanded rapidly due to technological advancements made in hydraulic fracturing and 

directional drilling (Rivard et al., 2014). The multi-stage hydraulic fracturing operations 

put high demands on local watersheds, requiring large volumes of water in concentrated 

areas over short time periods (Rivard et al., 2014). Without significant commitment on 

the part of industry to re-use and recycle water for hydraulic fracturing, industrial water 

demand is likely to increase substantially – with the possibility of a more than 350% 

increase by 2030 compared to 2015 levels under a high development scenario 

(Kniewasser & Horne, 2015). Industrial freshwater abstractions are suspended during 

streamflow drought conditions, and the British Columbia Oil and Gas Commission has 

issued water use suspensions four times in the last eight years 

(https://www.bcogc.ca/directives). As summer low flows decrease, water use 

suspensions are likely to become more frequent, and balancing increasing demand with 

decreasing security will be a significant challenge for the region in the future. 

In the Okanagan Valley, where the Whiteman catchment is located, surface 

water sources supply 67% of the annual water demand (Summit Environmental 

Consultants Inc., 2010). Most streams in the Okanagan are fully allocated, with no 

leeway for further allocations (Brewer et al., 2001). The greatest proportion water is used 

for agriculture, and irrigation, which accounts for 75% of regional consumptive water 

use, is expected to increase considerably with continued climate warming (Neilsen et al., 

2006). Additionally, average per person water use is high (Summit Environmental 

Consultants Inc., 2010) and population is expected to grow at a rate of 0.2 to 0.7% per 

year (BCstats, 2017). Population growth in the Metro Vancouver region, where the 

Capilano catchment is located, is expected to be even higher at 0.9 to 1.4% per year 

(BCstats, 2017). Significant opportunities exist for demand-side reductions in water use 
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for the Okanagan (DHI Water and Environment, 2010; Neale et al., 2007) and Metro 

Vancouver (Metro Vancouver, 2011) regions. However, water shortages have already 

occurred both regions (Okanagan Water Stewardship Council, 2008; Metro Vancouver, 

2015), and, considering the results presented in this study and others (DHI Water and 

Environment, 2010; Harma et al., 2012), summer water shortages are likely to occur 

more widely and frequently in the future. 

4.6. Conclusions 

Climate change impacts on snow drought, low flows, and summer streamflow 

drought were investigated using generic coupled GW-SW models for four headwater 

catchments in British Columbia. Results show that increased precipitation and 

temperature lead to decreased dry snow drought risk and increased temperature-related 

(i.e. warm and warm and dry) snow drought risk. Climate warming and the subsequent 

shifts in the snow drought regime result in decreased summer runoff, decreased summer 

groundwater storage, and longer, more severe summer low flow periods. Snow droughts 

have direct impacts on summer low flows, and temperature-related snow droughts not 

only become more frequent and severe in the future but are also more likely to result in 

summer streamflow drought conditions.  

The response of snow hydrology to climate warming is non-linear, and 

catchments with winter temperatures near 0°C exhibit substantially larger impacts from 

+2°C of warming compared to catchments with winter temperatures far below 0°C. The 

shift toward more frequent and more severe temperature-related snow droughts will 

decrease water availability during the summer for agricultural and industrial uses – 

potentially leading to decreased freshwater supply security, and the increased frequency 

of warm snow droughts will likely lead to an increased frequency of mid-winter melt 

events that will affect reservoir management. Changes in the low flow regimes will affect 

the ecology of river systems, and increased rain on snow events may require higher 

flood control. 
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Chapter 5. Case Study: Future Water Security in 
Northeast British Columbia 

This chapter is an expanded version of a book chapter that was published as: 

Dierauer, J.R., Allen, D.M., & Whitfield, P.W. (2018). Exploring future water demand and 

climate change impacts on water availability in the Peace Region of British Columbia, 

Canada. In A. Endo & T. Oh (Eds.), The Water-Energy-Food Nexus: Human-

Environmental Security in the Asia Pacific Ring of Fire. (pp. 45-54). Springer Singapore, 

ISBN 978-981-10-7383-0 

Supplemental information for this chapter is included in Appendices D and E. 

5.1. Introduction  

Shale gas development in Northeast British Columbia (NEBC) has occurred 

rapidly in recent decades due to technological advancements made in hydraulic 

fracturing and directional drilling. Hydraulic fracturing requires large volumes of water – 

on the order of 2,000-100,000 m3 per hydraulic fracturing event for well pads in NEBC 

(Rivard et al., 2014). While the region has abundant water resources, these multi-stage 

hydraulic fracturing operations put high demands on local watersheds, requiring large 

volumes of water in concentrated areas over short time periods. With such sporadic 

high-volume water demand, water availability is a key issue in NEBC. The short-term, 

high volume water demands by the oil and gas industry are managed by the British 

Columbia Oil and Gas Commission (BCOGC) through the use of short-term water use 

approvals (ST-approvals). These ST-approvals have a maximum duration of 2 years. In 

2015, there were 294 active ST-approvals with 1027 approved withdrawal locations 

totaling 19 million m3 of water – approximately 0.015% of the region’s average annual 

runoff volume (BCOGC, 2016). 

These ST-approvals create a fast-changing system of water withdrawals in 

NEBC. To aid in the management of the region’s water resources, the BCOGC 

developed the Northeast Water Tool (NEWT). NEWT is a Geographic Information 

System (GIS)-based hydrology decision support tool that combines hydrometric data 

(estimates of monthly and annual runoff volumes) with water license and permitting 

records (Chapman et al., 2012). NEWT represents an important step forward in water 
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resource management for this data-scarce region and is used by the BCOGC to manage 

water allocations – with the goal of balancing environmental flow needs (EFNs) with 

other industrial, municipal, and agricultural water demands. The EFNs of a stream are 

defined as the volume and timing of water flow required for proper functioning of the 

aquatic ecosystem (British Columbia, 2018). 

NEWT is used by decision-makers as a guidance on natural water supply and 

availability, and it is recognized to have several limitations and uncertainties. The 

primary limitation is that the estimated runoff volumes represent 30-year averages 

(Chapman et al., 2012). The hydrologic regime in NEBC is snowmelt-dominated, and 

streamflow is highly variable. Thus, in any one year, the observed conditions may differ 

significantly from the 30-year average runoff and from the annual and monthly runoff 

estimates in NEWT. NEWT also has a large amount of uncertainty associated with the 

underlying hydrologic modelling used to derive the monthly and annual runoff estimates. 

Mean error, median error, and mean absolute error for the annual runoff estimates were 

reported as 5.5%, 3.7%, and 16.1%, respectively, with 42 out of the 53 (77.8%) 

calibrated basins having annual runoff estimates within ±20% of the observed mean 

annual runoff values (BCOGC, 2017). Additional uncertainty is present in the monthly 

runoff estimates from NEWT, which were calculated as a percentage of the estimated 

annual runoff using a multivariate regression model (Chapman et al., 2012).  

These two limitations are inherent to the underlying data and methodology on 

which NEWT was built. However, NEWT’s limitations are partially overcome by the 

consideration of additional data and the issuance of directives to suspend water 

withdrawals from lakes, rivers, and streams in specified watersheds during drought 

conditions. However, if annual runoff in a watershed is over-estimated by 20%, the 

potential for over-allocation and/or water scarcity is high, especially in the drier plains 

region of NEBC. The combination of uncertain water quantity combined with the highly 

variable hydrologic regime makes it difficult to identify reliable surface water sources for 

the high-volume fracking operations in NEBC – especially during drought conditions 

when industrial water abstractions from rivers and lakes are often limited or suspended.  

Due to the high variability of streamflow, as well as the difficulty in hauling water 

from streams to well pads, other surface water sources are used to meet the shale gas 

industry water demands. In NEBC, many oil and gas companies currently rely on water 
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source dugouts, i.e. ponds or pits where water from snowmelt, rainfall, or groundwater 

inflow accumulates (BCOGC, 2016). The water source dugouts used by the oil and gas 

industry store excess precipitation and runoff from wet periods (spring snowmelt) for use 

in dry periods (late summer) when streamflow is insufficient. Unlike abstractions from 

streams and lakes, the use of oil and gas industry dugout water is not suspended during 

drought conditions. While the exact amount of water used by the oil and gas industry 

from source water dugouts in NEBC is unknown, it was roughly estimated at 2.2 million 

m3 for 2015 (Mattison, 2017). The BCOGC reports that 7.74 million m3 of water was 

used for hydraulic fracturing in 2015 (BCOGC, 2016); thus, approximately 28% of the 

water used in 2015 was sourced from dugouts.  

With continued climate warming and a shift in the snow-to-rain ratio, the reliability 

of dugout water sources and summer streamflow in NEBC is uncertain. Continued shale 

gas industry development may lead to increased freshwater demand, and in the context 

of this water-energy nexus, future water security in the region is unknown. To address 

this knowledge gap, this study aims to estimate the potential for water scarcity in the 

Peace River watershed in the context of future climate change and growing water 

demand. 

5.2. Study Area 

The Peace River region of NEBC extends from the Rocky Mountains to the west, 

through the foothills, to the low-lying plains to the east (Figure 5.1a). Most of the shale 

gas development is focused in the low-lying plateau area, although some activity 

extends into the foothills. Of the four major shale gas plays in NEBC, the Montney Play 

exhibits the highest levels of development (Figure 5.1a). 

For this study, two small headwater catchments within the Montney Play area 

were chosen, the 2.3 km2 Graham River headwater catchment in the foothills and the 3.2 

km2 Blueberry River headwater catchment in the plains (Figure 5.1b). Both catchments 

are located upstream of active gauging stations, the watershed boundaries of which are 

shown in Figure 5.1b. Land use in each catchment was digitized from satellite imagery 

(Google Earth, 2014, 2015) and is shown in Figure 5.1c,d. At the time of this study, both 

watersheds contained water source dugouts that were in use by the oil and gas industry. 

The Blueberry catchment contained 2 dugouts, with a combined total allocated (i.e. 
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approved abstraction) water volume of 26,136 m3/year. The Graham catchment 

contained 1 dugout with a total allocated water volume of 1,500 m3/year. 

 

Figure 5.1 Study area including (a) Peace River watershed and shale gas plays, 
(b) Graham and Blueberry watersheds, and current land use and oil 
and gas industry water source dugout locations in the (c) Graham 
headwater catchment and (d) Blueberry headwater catchment.  

5.3. Climate Change Projections 

Statistically downscaled forcing datasets based on three models from Phase 5 of 

the Coupled Model Intercomparison Project (CMIP5) under representative concentration 

pathways (RCPs) 4.5 and 8.5 were used for the climate change scenarios in this study. 

The three models from the CMIP5 ensemble (CNRM-CM5-1, CanESM2-r1, ACCESS1-

0-r1) were selected to capture the widest spread in projected future climate while using a 

small subset of the full ensemble, following Cannon (2015). Daily climate time series 

downscaled with the bias-correction/constructed analogues with quantile mapping 

reordering (BCCAQ) method were obtained from the Pacific Climate Impacts Consortium 
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(PCIC) data portal (PCIC, 2014) covering the period of 1950 to 2100. Werner & Cannon 

(2015) showed that, out of the seven downscaling methods tested, BCCAQ performed 

best for reproducing hydrologically relevant climate extremes. 

The global climate model (GCM) ensemble projects increases in temperature 

and precipitation for both the Blueberry (plains) and Graham (foothills) catchments. For 

both catchments, the mean annual temperature is projected to be 2°C warmer in the 

near future (2021-2050) as compared to the historical period (1971-2000). The largest 

increases in temperature are for the coldest (January) and warmest (July) months. Total 

annual precipitation is projected to increase by approximately 60 mm/year relative to the 

historical period. Figure 5.2 shows the historical and near future climate for the Blueberry 

headwater catchment. Historical and near future climate in the Graham catchment (not 

shown) exhibits similar seasonal climate patterns and projected changes. 

 

Figure 5.2 Boxplots of historical (1971-2000; shown in black) versus near 
future (2021-2050; shown in gray) climate from model ensemble for 
the Blueberry headwater catchment. (a) mean daily temperature, (b) 
monthly precipitation, (c) mean annual temperature, and (d) annual 
precipitation. Outliers not shown. 

GCM bias 

Despite the BCCAQ downscaling, significant bias exists between observed 

climate and the climate time series obtained from PCIC. To quantify this bias, we 

compared observed climate data to the downscaled GCM time series. This analysis was 

completed only for the Wonowon climate station (BC Hydro station, ID: 2509), near the 
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Blueberry catchment. Climate stations closer to the Graham catchment have insufficient 

data coverage. The observed data from the Wonowon station were subset to full years 

with no missing data (1982-2015). The downscaled GCM model output were subset for 

this date range for comparison. All three GCMs over-estimate January and February 

precipitation and under-estimate monthly dry days in most months (Figure 5.3). The 

downscaled GCM model output also under-estimate summer (JJA) daily maximum 

temperatures (Figure 5.4).  

While bias exists between the downscaled GCM model output and the observed 

climate data, the seasonal patterns closely match. Except for the positively biased 

January and February precipitation and the negatively biased monthly dry days, the 

median monthly values from the downscaled GCM model output are all within the inter-

quartile range of the observed monthly values. The under-estimation of monthly dry days 

corresponds to an under-estimation of rainfall intensity, common to GCMs, and may 

result in lower than expected runoff during summer months.  
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Figure 5.3 Observed (Wonowon climate station) versus simulated (BCCAQ 
downscaled data from three GCMs) comparison of (a) monthly 
precipitation and (b) monthly dry days (precipitation < 0.5 mm). 
Outliers are not shown.  
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Figure 5.4 Observed (Wonowon climate station) versus simulated (BCCAQ 
downscaled data from three GCMs) comparison of (a) daily 
maximum temperature and (b) daily minimum temperature. Outliers 
are not shown. 

5.4. Hydrologic Modelling 

Frozen soils, snow accumulation, and snowmelt are all important components of 

the hydrologic cycle in the Peace River region, and as noted above, much of the region 

is data scarce. The physically based cold regions hydrological modelling (CRHM) 

platform was chosen as the modelling code for this study because of its proven ability to 



99 

simulate snow processes in diverse settings such as prairie (Fang & Pomeroy, 2007; 

Pomeroy et al., 2007) and alpine basins (Pomeroy et al., 2012). CRHM is a “physically-

based, distributed, modular, object-oriented model development system” (Pomeroy et 

al., 2013). The CRHM models were structured as a set of four Hydrological Response 

Units (HRUs) corresponding to the major land cover features as listed in Table 5.1. 

Table 5.1 Graham and Blueberry headwater catchment Hydrological Response 
Units (HRUs) 

  
Blueberry Headwater 

Catchment 
Graham Headwater 

Catchment 

HRU Land Use Area 
(km2) 

% in Dugout 
Catchment 

Area 
(km2) 

% in Dugout 
Catchment 

1 Water Source Dugout 0.030 100% 0.005 100% 
2 Developed: Oil & Gas 0.169 21% 0.132 13% 
3 Clear Cut / Recent Burn 2.854 23% 0.861 1% 
4 Forest -- -- 1.315 3% 
5 Shrub 0.164 30% -- -- 

 Total 3.217 24% 2.314 3% 

Within each HRU, physically based modules were sequentially linked to simulate 

the dominant hydrological processes. Each HRU has a specific combination of 

vegetation, soils, drainage, and topographic parameters. Elevation, aspect, and slope 

were calculated from the 0.75 arc second Canadian Digital Elevation Model (CDEM; 

Natural Resources Canada, 2017). Both watersheds are primarily northeast facing. 

Aspect and slope values were averaged by land use type (i.e. HRU, see Table 5.2). 

Table 5.2 HRU aspect, slope, and elevation. 

 Blueberry Headwater Catchment Graham Headwater Catchment 
HRU Aspect 

degrees 
Slope 

degrees 
Elevation 

MASLa 

Aspect 
degrees 

Slope 
degrees 

Elevation 
MASLa 

1 63 0 925 69 0 851 
2 45 3.2 951 74 6.7 856 
3 280 3.1 934 115 10.5 912 
4 -- -- -- 103 10.5 991 
5 60 4.5 948 -- -- -- 

a meters above sea level 

Blowing snow, albedo, canopy, and soil parameters were based on the 

parameterization of HRUs with similar land cover in the Lower Smoky River CRHM 

model developed by Pomeroy et al. (2013). The modules used are described in Table 

5.3, and Figure 5.5 shows the schematic setup of the linked modules.  
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Table 5.3 Modules used in CRHM setups. 

Module Function/Notes 

Radiation Calculates theoretical global radiation, direct and diffuse solar radiation, and 
maximum sunshine hours based on latitude, elevation, ground slope, and azimuth 
(Garnier & Ohmura, 1970). 

Observation Reads forcing meteorological data and provides inputs to other modules. Phase of 
precipitation was determined by the psychrometric energy balance procedure 
(Harder & Pomeroy, 2013). Catchments in this study have minimal (<100 m) 
elevation range; therefore, precipitation and temperature lapse rates were not used. 

All-wave radiation Estimates the net all-wave radiation to snow-free surfaces using the Brunt equation 
(Brunt, 1932). 

Slope radiation Short-wave radiation is estimated from the theoretical global radiation based on 
daily maximum and minimum temperatures (Annandale et al., 2001) and then 
adjusted based on ground slope. 

Longwave 
radiation 

Estimates incoming longwave radiation using shortwave radiation on the slope 
(Sicart et al., 2006). 

Canopy Estimates the snowfall and rainfall intercepted by and sublimated or evaporated 
from the forest canopy and unloaded or dripped from the canopy (Ellis et al., 2010; 
2013). 

Blowing snow Estimates the wind redistribution of snow transport and blowing snow sublimate 
losses throughout the winter period (Pomeroy & Li, 2000). 

Albedo  Estimates snow albedo throughout the winter and into the melt period and indicates 
the beginning of melt for the energy-balance snowmelt module (Verseghy, 1991). 

Energy-balance 
snowmelt 

Estimates snowmelt by calculating the energy balance of radiation, sensible heat, 
latent heat, ground heat, advection from rainfall, and change in internal energy 
(Gray & Landine, 1987). 

Permafrost Estimates the ground surface temperature from air temperature, net radiation, and 
antecedent frost table depth, and tracks the depth of the freezing and thawing fronts 
(Xie & Gough, 2013). 

Infiltration Estimates infiltration into frozen and unfrozen soils (Ayers, 1959; Zhao & Gray, 
1999). Frozen soil infiltration is estimated using a parametric equation (Gray et al., 
2001). Unfrozen soil infiltration is estimated with macropores based on soil 
classification (Ayres, 1959). 

Evapotranspiration The Priestly and Taylor evaporation expression (Priestley & Taylor, 1972) estimates 
evaporation from saturated surfaces and was used to model actual 
evapotranspiration (AET) for the dugout HRUs. The Penman-Monteith method was 
used for all other HRUs and estimates AET from unsaturated surfaces based on 
available water, stomatal resistance, soil type, soil depth, and leaf area index. 

Soil and hillslope Estimates soil moisture balance, depression storage, surface/sub-surface flows in 
two soil layers, and groundwater discharge in a groundwater layer. Darcy’s Law is 
used to estimate lateral flow rate in soil layers and the groundwater layer, and the 
vertical flow rate of excess soil water to groundwater (i.e. groundwater recharge) 
based on hydraulic conductivity estimates, porosity, pore size distribution, and 
slope. 

Routing Routes runoff using Clark’s lag and route timing estimation method is used to route 
runoff (Clark, 1945). The catchments simulated in this study are small and runoff lag 
is minimal. Runoff was routed to the dugout HRUs based on the percentage of each 
HRU in the dugout catchment (see Table 5.1). The remaining runoff, and any over-
flow runoff from the dugout, was routed out of the catchment. 
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Figure 5.5 Flowchart of physically based hydrological modules used in the 
CRHM models. The model structure is the same for the Blueberry 
and Graham catchments. (abbreviations: Inf: Infiltration; Adj.: 
Adjusted) 

Within the CRHM modelling framework, dugout water storage was simulated as 

detention storage. In both watersheds, the following assumptions regarding dugout 

water storage and withdrawal were made:  

1) Each dugout has a maximum storage volume equal to the total annual 
allocated water, allowing dugouts to fill completely during the cool 
winter season. Additional storage to offset expected evaporation 
during the summer season was not considered. Actual storage 
volumes of the dugouts are unknown. 

2) The allocated water volume is withdrawn at a constant rate over the 
licensed withdrawal period (May 1st to August 31st). Actual patterns 
and volumes of withdrawal from the dugouts are unknown. 

3) The dugouts are clay-lined and above the groundwater table, allowing 
for no groundwater discharge to the dugouts to take place. Thus, 
dugout water is sourced entirely from precipitation and overland flow. 
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Actual dugout designs are unknown; however, aerial imagery 
indicates some type of lining material is present. 

5.5. Daily to Hourly Downscaling 

Required climate forcing data for the CRHM models includes temperature, 

precipitation, relative humidity, and wind speed at hourly time steps. The statistically 

downscaled forcing datasets obtained from PCIC included only daily maximum and 

minimum temperature and daily precipitation. Therefore, hourly time series were 

generated from the daily observations by resampling observed hourly data from nearby 

climate stations (Table 5.4). The resampling methodology employed a stochastic 

technique wherein one day (24 hours) was chosen from a subset of the observed record 

and used to disaggregate the daily values to hourly. The subset was based on seasonal 

occurrence (30-day centered window), wet versus dry conditions, and, if wet, quartile 

matching of the daily precipitation amount. One day (24 hours) was then chosen 

randomly from the subset. Hourly temperatures were re-scaled to match the projected 

daily minimum and maximum, and hourly precipitation amounts were re-scaled to match 

the projected daily precipitation. Humidity and wind values were used without 

adjustment. This resampling methodology preserves variations in diurnal temperature 

and relative humidity curves due to seasonality and wet versus dry conditions. Further 

details on climate disaggregation are included in Appendix D. 

Table 5.4 Climate stations used to generate hourly time series. 

 Blueberry Catchment Graham Catchment 

Station ID FLNRO-WMB 1703 FLNRO-WMB 1691 
Station Name Wonowon Graham 
Latitude & Longitude 56.7185, -121.7654 56.4347, -122.4575 
Record Start 1-May-1990 19-May-1995 
Hourly Variables Temperature, Precipitation, 

Wind Speed, Relative Humidity 
Temperature, Precipitation, Wind 
Speed, Relative Humidity 

5.6. Future Water Demand 

The shale gas industry development scenarios used in this study were developed 

by the Pembina Institute and correspond to scenario options 1 through 6 in Table 1 of 

Kniewasser and Horne (2015). These scenarios include current and improved water 

management policies, and low, medium, and high liquefied natural gas (LNG) 

development. The improved policy scenarios incorporate 25% water recycling and 25% 
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deep aquifer saline (non-potable) water use. The LNG development scenarios also 

assume 1, 3, and 5 LNG terminals (i.e. storage and distribution facilities) for the low, 

medium, and high development, respectively.  

Future shale gas industry freshwater demand is projected to peak in 2030 

(Figure 5.6), with the high development scenario exhibiting more than a 350% increase 

in freshwater demand compared to the 2015 levels. Improved water management 

policies have the potential to decrease future freshwater demand by almost 50%. 

 

Figure 5.6  Projected shale gas industry freshwater demand from Kniewasser 
and Horne (2015). High, medium, and low development correspond 
to 5, 3, and 1 Liquid natural Gas (LNG) plants, respectively. The 
improved water management scenario incorporates 25% water 
recycling and 25% saline water use.  

5.7. Results 

5.7.1. Simulated Versus Observed 

No observed snow water equivalent (SWE) or streamflow data exist for the two 

headwater catchments simulated in this study. Model results for the Blueberry 

headwater catchment are compared to observed data from a nearby climate station and 

nearby stream gauges. A comparison between Graham headwater catchment model 

results and observed data is not completed due to a lack of observations in the foothills 

region. The results are discussed in the context of the overall purpose of the study which 
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was to estimate the potential for water scarcity in the Peace River watershed in the 

context of future climate change and growing water demand. 

Snow water equivalent 

To evaluate the accuracy of snow accumulation and melt modelling in CRHM 

(forced with downscaled GCM model output), the simulated Blueberry catchment SWE 

was compared to observed daily snow depth measurements from the closest climate 

station (28 km south; Environment Canada Wonowon station; ID 1188973). For location-

specific comparison, simulated SWE from a CRHM model forced with the observed data 

and parameterized to represent the landscape around the Wonowon climate station was 

also compared to the observed snow depth measurements.  

The CRHM-simulated snow is in units of mm of SWE while the observed snow 

data are in cm of snow depth. The density of the observed snow is unknown, and an 

assumed snow depth to SWE ratio of 0.2 was used to compare the simulated SWE and 

observed snow depth measurements. Because of the uncertainty in snow density, the 

observed versus simulated SWE were visually analyzed for agreement between 

accumulation onset and melt-out timing rather than SWE magnitude (Figure 5.7 and 

Figure 5.8). Visual assessment shows that snow is simulated well at the Wonowon 

climate station, and, despite uncertainty in snow density, statistical performance 

measures show good agreement with the visual assessment. Between the observed and 

simulated SWE shown in Figure 5.7, mean absolute error (MAE) is 11.2 mm, root mean 

square error (RMSE) is 21.9 mm, and the Pearson correlation coefficient is 0.85.  

Figure 5.8 shows observed and simulated mean daily SWE values at the 

Wonowon climate station, highlighting the close agreement between snow accumulation 

onset and melt-out timing. Figure 5.8 also shows simulated mean daily SWE (1971-

2000) for the Blueberry catchment, which was forced with the downscaled GCM model 

output. Melt-out timing in the Blueberry catchment is later than at the Wonowon climate 

station; however, the GCM-simulated mean annual temperature at the Blueberry 

catchment is 1.6°C colder than the observed mean annual temperature at the Wonowon 

station, and thus later melt-out timing is expected. 
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Figure 5.7 Observed versus simulated snow water equivalent (SWE), Wonowon 
climate station. 

 

Figure 5.8 Mean daily snow water equivalent (SWE) observed at the Wonowon 
climate station versus simulated at the Wonowon climate (forced 
with observed data), and versus simulated SWE in the Blueberry 
headwater catchment (forced with downscaled GCM model output). 

Runoff 

To compare the runoff from the simulated Blueberry headwater catchment to 

observed streamflow data, the CRHM model was run without any dugout storage or 

water extraction. This was done by changing the dugout (HRU 1) parameters to match 

the shrubland (HRU 5) parameters.  
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Mean annual runoff in the naturalized (i.e. no dugouts) Blueberry catchment 

model was 145 mm/year. This is higher than the long-term mean annual runoff observed 

in the larger Blueberry watershed (gauge ID: 07FC003) of 95 mm/year. However, the 

simulated Blueberry headwater catchment is located on the northern edge of the larger 

gauged Blueberry watershed and thus has a cooler, wetter climate compared to the 

mean for the entire catchment, and a higher runoff compared to that observed in the 

entire catchment is expected.  

While there are no observed runoff data available for the simulated headwater 

catchment, estimates of mean annual and mean monthly runoff are available from 

NEWT. NEWT-estimated mean annual runoff for the Blueberry headwater catchment is 

107 mm/year (13% higher than the long-term mean of the larger gauged catchment of 

95 mm/year). Therefore, NEWT over-estimates mean annual runoff in the headwater 

catchment. As well, the simulated runoff is significantly higher than the NEWT-estimated 

runoff (145 mm/year versus 107 mm/year). These differences in runoff can be explained 

by the fact that CRHM model uses land use digitized from aerial imagery, including 

roads, dugouts, and developed areas (oil and gas industry structures), and a recently 

burned area, as shown in Figure 5.1. In contrast, the NEWT-estimated runoff is based 

on evapotranspiration (ET) estimates for a primarily (93.2%) shrubland landcover 

(BCOGC, 2017). Development, road construction, and vegetation changes due to fire 

are all associated with an increase in runoff, and the +38 mm/yr over the NEWT-

estimated mean annual runoff is within the range of documented runoff increases for this 

type of land use change (see Bosch & Hewlett, 1982, for example).  

To quantify the impact of land use on mean annual runoff, the CRHM model was 

re-run using 100% shrubland (HRU 5) as the land use, and the resulting mean annual 

runoff was 86 mm/yr. By simply changing land use from mixed to 100% shrubland, the 

simulated runoff decreased from 107 to 86 mm/year. These results clearly illustrate the 

importance of accurately representing land use in the model, and that the simplified land 

use used in NEWT likely underestimates runoff in the headwater catchment.  

Further comparison of simulated median daily runoff to observed median daily 

runoff in the gauged Blueberry catchment shows that the simulated Blueberry headwater 

catchment has an earlier freshet and lower summer (June-August) runoff compared to 

the larger gauged Blueberry catchment (Figure 5.10). The difference in runoff timing may 
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be due to scale effects – the gauged Blueberry catchment is much larger than the 

simulated headwater catchment (1,770 km2 vs 3.2 km2). To explore this potential scale 

effect, the simulated runoff was compared to observed runoff for a smaller (201 km2) 

gauged watershed, St. John Creek (ID: 07FC002). All three catchments (simulated 

Blueberry, gauged Blueberry, and gauged St. John Creek) are located in the plains of 

the Peace River region within the Beatton River watershed (Figure 5.9).  

 

Figure 5.9 Beatton River watershed and gauging station locations. 

The spring freshet timing in the simulated Blueberry catchment closely matches 

the freshet timing in the St. John Creek catchment (Figure 5.10). Comparison of 

observed daily runoff time series from the Beatton River (15,600 km2; ID 07FC001), 

Blueberry River (1,770 km2; ID 07FC003), and St. John Creek (201 km2; ID 07FC002) 

shows that hydrographs of the two sub-watersheds (St. John Creek and Blueberry River) 

differ significantly from each other and from the Beatton River watershed in which they 

are contained (see Appendix E for time series plots). St. John Creek, the smallest 

watershed, consistently exhibits an earlier spring snowmelt peak and lower summer rain 

event peaks compared to the Blueberry and Beatton watersheds. The hydrographs of 

the Blueberry and Beatton watersheds are more similar to each other than they are to 

the St. John Creek hydrographs (see Appendix E - Table S5.1), demonstrating that 

heterogeneity is larger at the smaller scale.  
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Figure 5.10 Simulated median daily runoff in the Blueberry catchment versus 
observed median daily runoff from two nearby stream gauges, St. 
John Creek (Gauge ID: 07FC002) and Blueberry River (Gauge ID: 
07FC003). Median daily runoff values are calculated for the observed 
record period of St. John Creek: 1962-1974. 

While the observed data show substantial differences in freshet timing between 

catchments (see Figure 5.10 and Appendix D), the NEWT-estimated monthly runoff 

values for the catchments show minimal differences in freshet timing (Figure 5.11a). 

NEWT-estimated runoff values are a close match to observed values in the Blueberry 

and Beatton watersheds (Figure 5.11b). NEWT-estimated runoff values differ 

substantially from the observed values for St. John Creek and from the CRHM-simulated 

runoff in the Blueberry headwater catchment. NEWT under-estimates April runoff and 

over-estimates June runoff in all four of the catchments (Figure 5.11b).  
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Figure 5.11 Monthly mean daily runoff (a) estimated by the North East Water 
Tool (NEWT) and (b) simulated for the Blueberry headwater 
catchment and observed at hydrometric gauging stations. Simulated 
and observed data are summarized for the 1971-2000 period for 
consistency with NEWT, with the exception of the St. John Creek 
gauge, which only covers the 1962-1974 period. 

Given the documented heterogeneity in observed runoff between watersheds 

and the skill of the CRHM for modelling snow accumulation and melt, as demonstrated 

in this study and in Fang & Pomeroy (2007), Pomeroy et al. (2007), and Pomeroy et al. 

(2012), the CRHM model results likely represent a reasonable, physically-based 

estimate of monthly runoff in the Blueberry headwater catchment. The differences 

between NEWT-estimated runoff and the simulated Blueberry headwater catchment 

runoff suggest that the NEWT does not capture heterogeneity in the hydrological 

processes of smaller catchments. 

5.7.2. Dugout Impacts on Runoff 

Of the two headwater catchments, the Blueberry headwater catchment has the 

larger percentage of annual runoff allocated for use by the oil and gas industry. 

Therefore, the impact of dugouts on runoff was analyzed for the Blueberry catchment 

only. The non-parametric, distribution insensitive, Wilcoxon signed-ranks test was used 

to determine if there is a significant difference in runoff between the CRHM model with 

the dugouts (dugout model) and the CRHM model without the dugouts (naturalized 

model). Results of the Wilcoxon signed-ranks test are presented in Table 5.5.  
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As stated previously, water is only withdrawn from the simulated dugouts during 

the licensed withdrawal period (May 1st to August 31st). Correspondingly, runoff in the 

dugout model is significantly lower than runoff in the naturalized model in all months, 

except May (Table 5.5). May runoff is higher in the dugout model due to differences in 

the model parameterization. The clay soils and no vegetation of the dugout HRU result 

in lower infiltration and reduced early summer evapotranspiration (higher runoff) 

compared to the loam soils and shrubland vegetation of the naturalized model. The 

median difference between annual runoff in naturalized model and annual runoff in the 

dugout model is 8.75 mm/year, which is slightly higher than the total withdrawn/allocated 

runoff of 8.07 mm/year due to higher (relative to naturalized model) total annual actual 

evapotranspiration (AET) caused by the dugout water storage.  

Table 5.5 Median monthly and annual runoff estimated by the naturalized 
model and the dugout model for the Blueberry headwater 
catchment. Median difference between models was estimated with 
the Wilcoxon signed-ranks test. 

 Units 
X1 

Naturalized Model 
X2 

Dugout Model 
Median 

Difference 
Alternative 
Hypothesis 

January mm/month 0.12 0.06 0.04 a 
February mm/month 0.88 0.83 0.27 a 
March mm/month 3.15 2.42 0.66 a 
April mm/month 54.76 54.15 0.83 a 
May mm/month 8.03 9.93 -1.43 b 
June mm/month 2.03 1.36 0.85 a 
July mm/month 9.85 7.08 2.60 a 
August mm/month 4.56 3.08 1.52 a 
September mm/month 4.67 3.30 1.16 a 
October mm/month 2.70 2.22 0.61 a 
November mm/month 0.97 0.78 0.25 a 
December mm/month 0.17 0.12 0.05 a 
Annual mm/year 134.98 125.73 8.75 a 

Note: All tests were one-tailed. Alternative hypothesis: a) medians of X1 are higher than the medians of X2, b) medians 
of X2 are higher than the medians of X1. Null hypothesis: the distributions of the two groups are equal. All tests are 
significant at the P < 0.01 level. 
 

In the small Blueberry headwater catchment simulated here, dugouts have the 

highest impact on runoff in summer (July-September; Table 5.5) when water demand 

and ecosystem needs are high. While the combined impact of many dugouts (tens to 

hundreds) on runoff in larger watersheds in the Peace River region is not known, a 

recent study by McGee et al. (2012) showed that the cumulative effects of small water 

diversions on runoff in four larger (158-256 km2) prairie watersheds in southern Alberta 

equal or exceed reported effects of climate change. McGee et al. (2012) report a more 
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than 5% decrease in annual runoff due to small diversions, suggesting that the 

widespread use of dugouts and stream diversions in Peace River region of NE BC will 

have a significant impact on annual runoff in the region. 

One of the assumptions in this study is that the total dugout storage volume is 

equal to the total annual ST-approval allocation volume. The reliability of water source 

dugouts could be improved by increasing the total storage volume to 1.5 or 2 times the 

total annual allocated volume, allowing for greater storage of snowmelt and spring runoff 

to use during the drier summer period and possible carry-over storage between wet and 

dry years. Although not quantified in this study, increased storage volumes would likely 

have larger impacts on runoff. Additional research is needed to quantify the relationship 

between dugout volume, water-source reliability, and runoff impacts.  

5.7.3. Near Future (2021-2050) Versus Historical (1971-2000) 
Hydrology 

In the simulated Blueberry and Graham headwater catchments, higher 

temperatures in the near future (relative to the historical period) result in decreased late-

season (April-May) snowfall (Figure 5.12a and Figure 5.13a), a shift towards earlier 

snowmelt as evidenced by reduced snow water equivalent (SWE) in March and April 

(Figure 5.12b and Figure 5.13b), and increased March runoff (Figure 5.12d and Figure 

5.13d). Despite an overall increase in annual precipitation, hydrologic modelling results 

show no significant changes in total annual runoff in the Blueberry catchment between 

the historical and near future periods (Figure 5.14a). This is because increases in total 

annual precipitation in the near future are offset by increased actual evapotranspiration 

(AET; Figure 5.14a), resulting in no net change in total annual runoff at the annual time 

scale. In the Graham catchment, however, precipitation increases are larger than AET 

increases, resulting in an increase in total annual runoff in the near future compared to 

the historical period (Figure 5.14a). 
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Figure 5.12 Blueberry headwater catchment (plains) simulated historical (1971-
2000) in black and near future (2021-2050) in gray (a) monthly 
snowfall (represented as mm of snow water equivalent - SWE), (b) 
mean monthly SWE, (c) monthly actual evapotranspiration (AET), 
and (d) monthly runoff. 
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Figure 5.13 Graham headwater catchment (foothills) simulated historical (1971-
2000) in black and near future (2021-2050) in gray (a) monthly 
snowfall (represented as mm of snow water equivalent - SWE), (b) 
mean monthly SWE (c) monthly actual evapotranspiration (AET), and 
(d) monthly runoff.  
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Figure 5.14 (a) Blueberry and (b) Graham headwater catchment annual snowfall, 
annual peak snow water equivalent (SWE), annual actual 
evapotranspiration (AET), and annual runoff. Simulated historical 
(1971-2000) is shown in black and near future (2021-2050) in shown 
in gray. 

 

5.8. Demand Versus Supply 

To determine the potential for future water scarcity, the simulated annual runoff 

from the naturalized model was compared to future water demand from the six shale gas 

development scenarios. Future water demand volumes were calculated by multiplying 

the 2015 allocation volumes by the projected percent change in water use relative to 

2015. The fraction of allocated runoff was then calculated as projected future water 

demand (converted to mm of runoff) divided by the simulated annual runoff. Currently, 

the BCOGC sets the maximum amount of water available for allocation at 15% of the 

MAR. Therefore, the fraction of mean annual runoff (MAR) needed to meet shale gas 

industry demands was also calculated using 10-year periods as shown in Figure 5.15. 
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Without improved water management, allocation levels in the Blueberry 

headwater catchment exceeded 15% of MAR (over-allocation) for all time periods under 

the high development scenario (Figure 5.15). Moreover, in dry years, the fraction of 

annual runoff allocated exceeded 15% under the current water management practices 

with even the low development level, as illustrated by the upper quartile and upper 

outliers of boxplots in the left-most panel of Figure 5.15. 

 

Figure 5.15 Blueberry headwater catchment fraction of annual runoff required to 
meet shale gas industry freshwater demands. Results are presented 
by centered 10-year periods (2020 = 2015-2024, 2030 = 2025-2034, 
etc.). Boxplots show the fraction allocated for individual years; black 
circles show the fraction allocated based on the 10-year mean 
annual runoff. 

The hydrological modelling results show no significant change in the total annual 

runoff for the Blueberry headwater catchment (Figure 5.14a). Therefore, the observed 

annual runoff from the Blueberry watershed gauge (ID: 07FC003) was used to estimate 

future water supply at the annual scale. Assuming mean total annual runoff will remain 

constant through the near future, allocation levels within the 1770 km2 Blueberry 

watershed do not exceed 3% under any of shale development scenario combinations. 

While the Blueberry water supply will likely be sufficient to meet demand at the annual 

time scale, water scarcity may occur during the warmer months following the spring 

freshet (May-August) when water demand is high. Modelling results show a decrease in 

summer (May-August) runoff (relative to historical) in the near future (Figure 5.12d) for 

the Blueberry headwater catchment. Median summer runoff in the historical and near 

future periods are 64.6 mm and 55.0 mm (a reduction of 14.8%) in the Blueberry 
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headwater catchment and 40.6 mm and 35.5 mm (a reduction of 12.6%) in the Graham 

headwater catchment, respectively.  

During drought periods, the BCOGC suspends shale gas industry water use from 

streams and lakes, but water stored in dugouts remains available for industrial use. With 

the projected decrease in summer streamflow volumes, dependency on water source 

dugouts may increase. Therefore, the future reliability of water source dugouts was 

analyzed by tabulating the CRHM-simulated monthly minimum dugout water levels 

(results not shown). During the 2020-2050 period, the simulated water source dugout 

maintained a minimum water level of at least 20% volume in the Graham catchment; 

however, minimum August dugout water levels decreased by up to 41% relative to the 

historic period. During late summer (August) in drought years, the dugout water supplies 

were exhausted in the Blueberry catchment in both the historical and near future 

periods. Low dugout water levels (less than 20% volume) occur 24% more frequently in 

the near future period than they do in the historical period. 

5.9. Conclusions 

Continued global warming will likely result in decreased summer runoff for the 

plains and foothills physiographic regions of the Peace River watershed in NEBC. This 

decrease in summer runoff will likely co-occur with increased oil and gas industry 

freshwater demand. Future increases in water demand may be met by water source 

dugouts or stream diversion points distributed throughout the shale gas development 

area and not focused only where development already exists. Thus, water quantity in 

larger watersheds in the Peace Region of NEBC will likely be adequate to meet the 

demands of the shale gas industry. Smaller watersheds in areas with high levels of oil 

and gas industry development may experience water scarcity, especially during drought 

conditions and under high development scenarios. If the shale gas industry in NEBC 

continues to expand, improved water management policies, e.g., water recycling and 

saline water use, will be needed to meet water demands, especially when competing 

interests (e.g., agricultural, domestic) are accounted for – which was not done in this 

study. 

Water source dugouts may not provide a reliable summer water source during 

drought years, and the reliability of water source dugouts is likely to decrease in the 
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future. A substantial portion (~28% in 2015) of short-term water use in this region is 

sourced from dugouts located in headwater catchments like the ones simulated in this 

study. Differences between the expected (i.e. NEWT-estimated) monthly runoff and the 

actual monthly runoff, especially with regards to runoff timing and earlier than estimated 

freshet peaks, may result in an over-estimation of summer dugout water supplies for the 

region. Additionally, the CRHM simulations completed in this study show that water 

extraction from dugouts has the largest negative impact on summer and early fall runoff, 

when water demand and ecosystem needs are highest. 
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Chapter 6. Conclusions 

This study tested and confirmed the hypothesis that, in catchments with seasonal 

snow cover, snow drought regimes are directly related to low flow and streamflow 

drought regimes, and, consequently, climate warming will have related impacts on snow 

drought, low flows, and streamflow drought. Two main research methodologies were 

employed: 1) a data-driven (downward) approach (Chapters 2 and 3) and 2) a process-

based (upward) approach (Chapters 4 and 5). Together, these two different approaches 

showed that snow drought, low flows, and streamflow drought are sensitive to winter 

climate conditions, particularly precipitation and thawing degrees. In the context of a 

warming climate, increased winter season thawing degrees leads to increased warm 

(temperature-driven) snow drought, shorter and less severe winter low flows, longer and 

more severe summer low flows, and increased summer streamflow drought risk in 

catchments with seasonal snow cover. The following sections summarize the major 

conclusions and contributions of this research and discuss recommendations for future 

research.  

6.1. Climate Controls on Low Flows / Hydrological Drought 

Two analyses were completed to identify the dominant climate controls on low 

flows: (1) a regional analysis of climate controls on low flow regimes and (2) a 

catchment-scale analysis of climate controls on the inter-annual variability of runoff and 

low flows. The regional analysis provides insight into how a catchment’s low flow regime 

may change due to an overall shift in the average climate. The catchment-scale 

analysis, on the other hand, reveals which climate conditions lead to more severe 

summer/winter low flows and/or decreased runoff, i.e. identifies the primary climatic 

causes of streamflow drought.  

At the regional-scale in western North America, the low flow regimes of mountain 

catchments with seasonal snow cover are dominantly controlled by temperature. 

Catchments with higher mean annual temperatures have longer, more severe summer 

low flow periods and shorter, less severe winter low flow periods compared to 

catchments with lower mean annual temperatures. Total annual runoff, however, is 
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dominantly controlled by precipitation, and catchments with higher mean annual 

precipitation have higher mean annual runoff. 

Conversely, at the catchment-scale, the inter-annual variability of runoff and low 

flows in mountain catchments with seasonal snow cover is dominantly controlled by 

precipitation. However, temperature plays an important secondary role. Annual runoff 

and summer low flows are dominantly controlled by annual precipitation and secondarily 

controlled by winter temperatures, particularly winter thawing degrees. Winter low flows 

are dominantly controlled by the preceding summer precipitation and the within-season 

(i.e. winter) precipitation and secondarily controlled by winter thawing degrees. For both 

winter and summer, higher precipitation corresponds to shorter, less severe low flow 

periods. Winter and summer low flows exhibit opposite responses to temperature, with 

warm winters corresponding to significantly longer, more severe summer low flows and 

significantly shorter, less severe winter low flows.  

6.2. Climate Controls on Snow Drought 

Based on multiple linear regression analysis, winter precipitation and winter 

thawing degrees were identified as the dominant climate controls on peak snow water 

equivalent (SWE) and thus determined to be the dominant climate controls on snow 

drought. The definition of the winter season was also important, and a climatologically 

based definition of winter, using the 25th percentile of mean daily temperature, had a 

higher predictive ability for peak SWE compared to a strictly calendar based winter 

season definition (e.g., 1-Oct/1-Nov to 1-Apr). Using winter precipitation and winter 

thawing degrees, snow drought years, i.e. years with below-normal peak snow water 

equivalent (SWE), can be classified into three categories based on climatic causes: 1) 

dry snow drought, caused by below-normal winter precipitation alone, 2) warm snow 

drought, caused by above-normal winter thawing degrees alone, and 3) warm and dry 

snow drought, caused by the co-occurrence of above-normal winter temperatures and 

below-normal winter precipitation. In western North America, warm and dry snow 

droughts are the most severe type, while warm snow droughts are the least severe. The 

severity and frequency of warm snow droughts, however, has a non-linear relationship 

with mean winter (1-Nov to 1-Apr) temperature, and warm snow drought risk is 

substantially higher for locations with mean winter temperatures above -3°C. 
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6.3. Snow and Streamflow Drought in the Context of a 
Warming Climate 

Two methods were used to investigate the impacts of climate warming on low 

flows, streamflow drought, and snow drought. The data-driven (downward) approach 

(Chapters 2 and 3) combined observed hydroclimatic time series with multiple statistical 

methods, including bivariate and partial correlation and temporal and spatial analogs. 

The process-based (upward) approach (Chapters 4 and 5) combined climate change 

projections and hydrological modelling. These approaches yielded consistent results and 

provide insight into the impacts of continued climate warming on snowmelt hydrology. 

The data-driven approach showed that low flow regimes and warm snow drought 

risk are strongly controlled by temperature. Thus, continued climate warming will likely 

lead to a shift in snow drought and low flow regimes, including increased frequency and 

severity of both warm snow droughts and summer streamflow droughts and decreased 

frequency and severity of winter streamflow droughts. The process-based approach 

confirmed these results, and showed that, in response to the projected increases in 

temperature, warm snow droughts and summer streamflow droughts increase in 

frequency and severity. Moreover, climate warming and the subsequent shifts in the 

snow drought regime result in decreased summer groundwater storage and a higher 

frequency of warm snow drought propagation into summer streamflow drought. 

Both approaches showed that the response of snow hydrology to climate 

warming is non-linear, and catchments with winter temperatures near 0°C exhibit 

substantially larger impacts from +2°C of warming compared to catchments with winter 

temperatures far below 0°C. This non-linear response is documented by the data-driven 

approach in Chapter 3, which showed that, as mean winter (1-Nov to 1-Apr) 

temperatures increase, warm snow drought risk and peak SWE temperature-sensitivity 

increase in a non-linear fashion. Critical temperature thresholds exist at -3°C and 1.3°C, 

and, once crossed, temperature-related decreases in peak SWE can be expected to 

“accelerate”. The non-linear response was further documented by the process-based 

approach in Chapter 4, which showed that the magnitude of change in the snow drought 

and low flow regimes is related to the catchment’s starting point, i.e. its baseline mean 

winter (1-Nov to 1-Apr) temperature. Consistent with the data-driven findings of Chapter 

3, the process-based approach in Chapter 4 showed that a 2°C increase in mean winter 
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temperature had a larger impact on the snow drought regime in the headwater 

catchment with winter temperatures near zero compared to the headwater catchment 

with winter temperatures far below zero. 

6.4. Contributions 

The main contributions of this research include the following: 

1. Development and testing of a methodology for the separation of 
winter low flows from summer low flows in catchments with seasonal 
snow cover. Previous studies have used an arbitrary standard “winter” 
classification based on calendar dates (Ehsanzadeh & Adamowski, 
2007; Kormos et al., 2016) or a “drought year” (Douglas et al., 2000) 
to separate summer low flows from winter low flows. However, these 
methodologies do not effectively separate low flows generated by 
different hydrological processes, i.e. high evapotranspiration rates 
(summer low flows) versus below freezing temperatures (winter low 
flows). This research is the first to develop a robust methodology to 
classify low flow regimes and separate summer versus winter low 
flows based on catchment climatology, allowing for improved 
understanding of climate controls on summer versus winter low flows. 

2. Quantification of precipitation- versus temperature-sensitivity of 
summer and winter low flows. Previous work has documented the role 
of temperature in streamflow and groundwater droughts (Teuling et 
al., 2013; Diffenbaugh et al., 2015) and the impact of temperature on 
snowmelt hydrology (Leith & Whitfield, 1998; Whitfield & Cannon, 
2000; Adam et al., 2009; Déry et al., 2009; Pederson et al., 2011; 
among others); however, the relative impact of precipitation versus 
temperature on summer and winter low flows remained unclear. This 
research shows that, while the inter-annual variability of low flows is 
dominantly controlled by precipitation, temperature, particularly winter 
temperatures above 0°C, plays an important secondary role.  

3. Development and testing of a methodology for classifying snow 
drought based on climatic causes. Harpold et al. (2017) called for the 
distinction between warm snow drought and dry snow drought but did 
not account for the co-occurrence of warm and dry winter conditions. 
No previous studies have tested snow drought classification 
methodologies at the regional scale, and no previous studies have 
accounted for the co-occurrence of warm and dry winter conditions. 
The snow drought classification methodology developed in this study 
uses winter precipitation and winter thawing degrees to classify years 
with below-normal peak SWE as dry, warm, or warm and dry snow 
drought years. The methodology is robust and transferrable to other 
regions where snow is an important part of the hydrologic cycle. 
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4. Development of snow drought risk and susceptibility maps for western 
North America. Previous studies have investigated snow sensitivity to 
climate warming (Nolin & Daly, 2006; Brown & Mote, 2009; Casola et 
al., 2009; Minder, 2010). However, no studies have completed 
regional mapping of snow drought risk based on climatic causes, and 
no previous studies have developed snow drought susceptibility 
maps. The snow drought susceptibility maps developed in this study 
are based on temperature-thresholds, above which the relationship 
between mean winter temperature and peak SWE changes. These 
susceptibility maps can be easily produced using widely available 
climate data, and, therefore, this methodology can be transferred to 
other regions where snow is important for regional water supplies. 

5. Combined analysis of climate change impacts on snow drought, low 
flows, and streamflow drought. While previous studies have 
investigated snow drought and its hydrological impacts (Cooper et al., 
2016; Mote et al., 2016; Harpold et al., 2017; Sproles et al., 2017; 
Hatchett & McEvoy, 2018), no previous studies have explicitly related 
climate change impacts on snow drought to subsequent impacts on 
summer low flows and summer streamflow drought. This research 
completed climate change scenario modelling using generic 
groundwater-surface water models for four headwater catchments in 
different ecoregions of British Columbia and explicitly focused on 
snow drought and its relationship with low flows and summer 
streamflow drought.  

6. Insight into future surface water quantity versus industrial freshwater 
demand in the Peace River shale gas region of northeast British 
Columbia. Previous research has estimated future shale gas industry 
freshwater demand in northeast British Columbia (Kniewasser & 
Horne, 2015) and others (Schnorbus et al., 2014) have completed 
hydrologic modelling of climate change impacts for a large portion of 
the Peace River watershed. However, no previous studies have 
completed a combined analysis of future shale gas industry 
freshwater demand versus future streamflow quantity. Further, no 
previous studies have focused on future freshwater supply security in 
small headwater catchments – the scale at which the shale gas 
industry sources at least 28% of the water used for hydraulic 
fracturing. 

6.5. Recommendations for Future Research 

This research provides important contributions to this field of study; however, 

further research that may improve, refine, or build upon this work include the following: 

• Non-linear regression methods. This research employed multiple linear 
regression analysis to 1) quantify the relative control of precipitation and 
temperature on the inter-annual variability of winter and summer low flows and 
annual runoff, and 2) identify the dominant climate controls on peak SWE. 
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While variables were standardized for all analyses, the relationships between 
predictor and response variables likely exhibit non-linearities, which were not 
quantified in this research. Future work could explore the use of non-linear 
regression methods, such as multivariate adaptive regression splines or 
generalized non-linear models. 

• Observation-based study of snow drought risk. The snow drought analysis and 
susceptibility mapping completed in this research relied entirely on VIC-
simulated SWE time series. While the gridded meteorological time series used 
to force the VIC model were created from observed data, further study using 
observed snow time series is needed to verify the utility of the snow drought 
classification methodology developed in this research and to verify the 
presence of the temperature thresholds that were used for the susceptibility 
mapping.  

• Temporal trend analysis. Snow drought, low flow, and streamflow drought 
regimes have likely already been impacted by climate warming. While many 
previous studies have completed temporal trend analyses on snow and 
streamflow metrics, no studies have completed separate trend analyses for 
different snow and streamflow drought types and few studies have 
investigated trends in low flows. A combined analysis of trends in snow 
drought and low flows, using long-term records of observed data and the 
classification methodologies developed in this research, would provide 
additional confirmation of the relationships between snow drought, low flows, 
and climate warming identified in this study.  

• Broader scale analysis of climate change impacts on snow drought regimes. 
This research investigated climate change impacts on snow drought regimes 
for four headwater catchments in British Columbia. Further analysis of climate 
change impacts on snow drought regimes should be completed. Specifically, a 
companion study to Chapter 3 using CMIP5 climate change modelling results 
would be a logical next step in this line of research. 

• Snow drought impacts on seasonal patterns of water balance components. 
This research quantified the impact of different snow drought types on winter 
and summer low flows. However, different snow drought types likely also have 
different impacts on the seasonal patterns of actual evapotranspiration (AET), 
soil moisture, groundwater recharge/storage, and streamflow. This further 
research could be completed using the existing model outputs from the 
climate change modelling presented in Chapter 4 and would be a useful 
extension of the snow drought and streamflow drought research theme by 
providing insight into the relationships between snow drought and soil 
moisture and groundwater drought. Further, it would help understand the role 
of temperature on the water balance during snow drought events through the 
analysis of seasonal patterns in AET. 
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Appendix A. 
 
Chapter 2 Supplemental Information 

Supplementary information, in text form, is included to provide additional details 

on the methods used to calculate the percent variance explained by climate predictor 

variables (Text S2.1) and to account for collinearity of predictor variables in the multiple 

linear regression analysis (Text S2.2). 

Supplementary information, in schematic form, is provided to illustrate the 

classification of summer and winter low flow periods with inter-annual shifts in the freshet 

peak (Figure S2.1). 

Supplementary information, in tabular form, is included to provide additional 

hydrometric station attributes (Table S2.1) and the equations used to calculate the 

streamflow response and climate predictor variables (Table S2.2). Mean annual 

temperature and mean annual precipitation for each catchment (Table S2.1) were 

calculated from the Livneh et al. (2015) hydrometeorological dataset (see section 2.2). 

Elevation, in meters above sea level (MASL), is indicated for the stream gauge location 

in Table S2.1.  

 

 

 

 

 

 

 

 

 



149 

Text S2.1 

The two-tailed Spearman’s correlation was used to assess the significance of all 

correlation tests as it provides a measure of the monotonic relationship between the 

variables and is robust to outliers. However, the conversion to ranked data makes 

Spearman’s rho inappropriate for deriving coefficients of determination. Therefore, the 

Pearson correlation coefficient was used to determine the percent variance explained by 

each predictor variable. For the bivariate correlation analysis, the percent variance 

explained by each predictor variable was calculated as the square of the Pearson 

correlation coefficient and is thus equal to the coefficient of determination. For the partial 

correlation analysis, the percent variance explained by each predictor variable is 

dependent on the variance explained by the control variable. For example, for the partial 

correlation analysis between a predictor variable (X) and a response variable (Y) with a 

control variable (Z), the percent of total variance in Y that is explained by X (and not 

explained by Z) is calculated as follows: 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑜𝑓 𝑇𝑜𝑡𝑎𝑙 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑖𝑛 𝑌 𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑏𝑦 𝑋 =  𝑅𝑋𝑌.𝑍 
2 × (1 −  𝑅𝑌𝑍 

2 )   

where  𝑅𝑋𝑌.𝑍 
2  is the coefficient of determination from the partial correlation of X 

and Y with control variable Z, and 𝑅𝑌𝑍 
2  is the coefficient of determination from the 

bivariate correlation of Y and Z. 

Text S2.2 

In MLR analysis, collinearity between independent variables can create 

inaccurate estimates of regression coefficients, inflate standard errors, and give false 

nonsignificant p-values. Bivariate correlation tests between the dominant climate 

predictor variables showed that Pa and Pw are very strongly correlated (r > 0.8) in 98% of 

the catchments. To remove the collinearity, the Pw residuals from the linear regression 

of Pw and Pa were used in place of Pw in the MLR models that had both Pa and Pw as 

predictor variables. The Pw residuals (Pw,r) represent the variance in winter precipitation 

that is not explained by the variance in total annual precipitation. With this control for 

collinearity, the variance inflation factors for all models were less than 3.2. 
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Figure S2.1 Low flow period separation under shifts in freshet peak timing. 
Winter low flow period shown in blue; summer low flow period 
shown in pink. Dashed horizontal line is equal to the mean daily 
runoff (MDR) and is used as the upper-bound for defining the low 
flow periods.  
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Table S2.1 Hydrometric gauging station information. 

ID Name Lat. Lon. 
Area 
[km2] 

Elevation 
[MASL] 

�̅�  
[°C] 

�̅�  
[mm] 

Ecoregion  
[CEC, 2009] 

05AA008 
CROWSNEST RIVER AT 
FRANK 

49.60 -114.41 402.7 1473 0.8 815 Canadian Rockies 

05AD003 
WATERTON RIVER NEAR 
WATERTON PARK 

49.11 -113.84 612.7 1268 0.8 1281 Canadian Rockies 

05BL022 
CATARACT CREEK NEAR 
FORESTRY ROAD 

50.29 -114.59 165.5 1671 -1.4 800 Canadian Rockies 

08LG016 
PENNASK CREEK NEAR 
QUILCHENA 

49.97 -120.14 87 1442 1.9 485 
Thompson-
Okanogan Plateau 

08MH016 
CHILLIWACK RIVER AT 
OUTLET OF CHILLIWACK 
LAKE 

49.08 -121.46 329 685 1.6 2454 North Cascades 

08NE006 
KUSKANAX CREEK NEAR 
NAKUSP 

50.28 -117.75 337 706 0.4 1247 
Columbia 
Mountains 
/Northern Rockies 

08NE077 
BARNES CREEK NEAR 
NEEDLES 

49.91 -118.13 201 603 2.5 846 
Columbia 
Mountains 
/Northern Rockies 

08NF001 
KOOTENAY RIVER AT 
KOOTENAY CROSSING 

50.89 -116.04 420 1194 -0.4 775 Canadian Rockies 

08NH005 
KASLO RIVER BELOW 
KEMP CREEK 

49.91 -116.95 453 693 0.3 1011 
Columbia 
Mountains 
/Northern Rockies 

08NH084 
ARROW CREEK NEAR 
ERICKSON 

49.16 -116.45 78.7 854 2.1 841 
Columbia 
Mountains 
/Northern Rockies 

08NJ130 
ANDERSON CREEK NEAR 
NELSON 

49.50 -117.26 9.1 761 1.3 1180 
Columbia 
Mountains 
/Northern Rockies 

08NN015 
WEST KETTLE RIVER 
NEAR MCCULLOCH 

49.70 -119.09 230 1050 0.6 837 
Thompson-
Okanogan Plateau 

10109001 
COM F LOGAN R AB ST D 
AND LO HP AND SM C N 
LO UT 

41.74 -111.78 555.6 1510 2.4 951 
Wasatch and Uinta 
Mountains 

10173450 
MAMMOTH CREEK ABV 
WEST HATCH DITCH, 
NEAR HATCH, UT 

37.62 -112.52 268.5 2223 4.4 648 
Wasatch and Uinta 
Mountains 

10234500 
BEAVER RIVER NEAR 
BEAVER, UT 

38.28 -112.57 236.4 1916 2.2 784 
Wasatch and Uinta 
Mountains 

10242000 
COAL CREEK NEAR 
CEDAR CITY, UT 

37.67 -113.03 208.7 1828 5.3 643 
Wasatch and Uinta 
Mountains 

10308200 
E F CARSON R BL 
MARKLEEVILLE C NR 
MARKLEEVILLECA 

38.71 -119.76 716.4 1645 5.4 1000 Sierra Nevada 

10336660 
BLACKWOOD C NR 
TAHOE CITY CA 

39.11 -120.16 29.8 1921 4.0 1542 Sierra Nevada 

11230500 
BEAR C NR LAKE 
THOMAS A EDISON CA 

37.34 -118.97 135.5 2262 1.7 1024 Sierra Nevada 

11264500 
MERCED R A HAPPY 
ISLES BRIDGE NR 
YOSEMITE CA 

37.73 -119.56 468 1227 2.1 1184 Sierra Nevada 

11315000 
COLE C NR SALT 
SPRINGS DAM CA 

38.52 -120.21 54 1831 4.2 1521 Sierra Nevada 

11427700 
DUNCAN CYN C NR 
FRENCH MEADOWS CA 

39.14 -120.48 25.5 1607 6.8 1684 Sierra Nevada 

11522500 
SALMON R A SOMES BAR 
CA 

41.38 -123.48 1943.1 188 6.9 1477 Klamath Mountains 

11523200 
TRINITY R AB COFFEE C 
NR TRINITY CTR CA 

41.11 -122.71 382.9 791 5.8 1539 Klamath Mountains 
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ID Name Lat. Lon. 
Area 
[km2] 

Elevation 
[MASL] 

�̅�  
[°C] 

�̅�  
[mm] 

Ecoregion  
[CEC, 2009] 

12048000 
DUNGENESS RIVER NEAR 
SEQUIM, WA 

48.01 -123.13 405 174 1.7 1590 North Cascades 

12082500 
NISQUALLY RIVER NEAR 
NATIONAL, WA 

46.75 -122.08 350 441 5.4 2265 Cascades 

12092000 
PUYALLUP RIVER NEAR 
ELECTRON, WA 

46.90 -122.04 240.9 511 4.6 2278 Cascades 

12175500 
THUNDER CREEK NEAR 
NEWHALEM, WA 

48.67 -121.07 273.8 395 1.3 2244 North Cascades 

12178100 
NEWHALEM CREEK NEAR 
NEWHALEM, WA 

48.66 -121.24 69.7 372 3.5 2431 North Cascades 

12186000 
SAUK RIVER AB 
WHITECHUCK RIVER 
NEAR DARRINGTON, WA 

48.17 -121.47 398.4 284 3.1 3100 North Cascades 

12189500 
SAUK RIVER NEAR SAUK, 
WA 

48.42 -121.57 1855.3 83 3.5 2568 North Cascades 

12358500 
Middle Fork Flathead River 
nr West Glacier MT 

48.50 -114.01 2939.2 957 1.7 1226 Canadian Rockies 

12390700 
Prospect Creek at 
Thompson Falls MT 

47.59 -115.36 470.2 743 5.0 919 
Columbia 
Mountains 
/Northern Rockies 

12413000 
NF COEUR D ALENE 
RIVER AT ENAVILLE ID 

47.57 -116.25 2325.2 677 4.6 1168 
Columbia 
Mountains 
/Northern Rockies 

12414500 
ST JOE RIVER AT CALDER 
ID 

47.27 -116.19 2679 667 3.6 1278 
Columbia 
Mountains 
/Northern Rockies 

12447390 
ANDREWS CREEK NEAR 
MAZAMA, WA 

48.82 -120.15 58.1 1323 -1.0 1177 North Cascades 

12451000 
STEHEKIN RIVER AT 
STEHEKIN, WA 

48.33 -120.69 830.6 355 1.2 1713 North Cascades 

13011500 
PACIFIC CREEK AT 
MORAN WY 

43.85 -110.52 404.1 2055 -0.8 908 Middle Rockies 

13011900 
BUFFALO FORK AB LAVA 
CREEK NR MORAN WY 

43.84 -110.44 851.8 2078 -1.4 901 Middle Rockies 

13023000 
GREYS RIVER AB 
RESERVOIR NR ALPINE 
WY 

43.14 -110.98 1161.9 1757 0.0 834 Middle Rockies 

13185000 
BOISE RIVER NR TWIN 
SPRINGS ID 

43.66 -115.73 2154.4 996 2.4 889 Idaho Batholith 

13235000 
SF PAYETTE RIVER AT 
LOWMAN ID 

44.09 -115.62 1163.2 1155 1.2 978 Idaho Batholith 

13240000 
LAKE FORK PAYETTE 
RIVER AB JUMBO CR NR 
MCCALL ID 

44.91 -116.00 125.6 1564 0.8 1195 Idaho Batholith 

13313000 
JOHNSON CREEK AT 
YELLOW PINE ID 

44.96 -115.50 561.9 1439 0.5 1060 Idaho Batholith 

13331500 
MINAM RIVER NEAR 
MINAM, OR 

45.62 -117.73 618.9 795 3.9 838 Blue Mountains 

13340600 
NF CLEARWATER RIVER 
NR CANYON RANGER 
STATION ID 

46.84 -115.62 3354.6 512 3.4 1391 
Columbia 
Mountains 
/Northern Rockies 

14020000 
UMATILLA RIVER ABOVE 
MEACHAM CREEK, NR 
GIBBON, OR 

45.72 -118.32 341.4 578 5.8 1011 Blue Mountains 

14158500 
MCKENZIE RIVER AT 
OUTLET OF CLEAR LAKE, 
OR 

44.36 -122.00 237.1 948 5.6 2282 Cascades 
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ID Name Lat. Lon. 
Area 
[km2] 

Elevation 
[MASL] 

�̅�  
[°C] 

�̅�  
[mm] 

Ecoregion  
[CEC, 2009] 

14158790 
SMITH R AB SMITH R RES 
NR BELKNAP SPRGS, 
OREG. 

44.33 -122.05 40.6 869 5.2 2820 Cascades 

6622700 
NORTH BRUSH CREEK 
NEAR SARATOGA, WY 

41.37 -106.52 98.7 2463 0.8 929 Southern Rockies 

6623800 
ENCAMPMENT RIVER AB 
HOG PARK CR, NR 
ENCAMPMENT, WY 

41.02 -106.82 187.7 2520 0.1 1249 Southern Rockies 

6632400 
ROCK CREEK AB KING 
CANYON CANAL, NR 
ARLINGTON, WY 

41.59 -106.22 163 2375 0.5 891 Southern Rockies 

7083000 
HALFMOON CREEK NEAR 
MALTA, CO. 

39.17 -106.39 60.8 3012 -1.4 755 Southern Rockies 

8267500 
RIO HONDO NEAR 
VALDEZ, NM 

36.54 -105.56 96.3 2400 1.1 795 Southern Rockies 

8271000 
RIO LUCERO NEAR 
ARROYO SECO, NM 

36.51 -105.53 43.8 2460 -0.6 883 Southern Rockies 

8378500 
PECOS RIVER NEAR 
PECOS, NM 

35.71 -105.68 445 2288 2.9 852 Southern Rockies 

9035900 
SOUTH FORK OF 
WILLIAMS FORK NEAR 
LEAL, CO. 

39.80 -106.03 72.8 2732 -1.2 753 Southern Rockies 

9066000 
BLACK GORE CREEK 
NEAR MINTURN, CO. 

39.60 -106.27 32.4 2802 -1.5 831 Southern Rockies 

9081600 
CRYSTAL RIVER AB 
AVALANCHE C, NEAR 
REDSTONE, CO. 

39.23 -107.23 432.9 2109 0.4 950 Southern Rockies 

9223000 
HAMS FORK BELOW 
POLE CREEK, NEAR 
FRONTIER, WY 

42.11 -110.71 333.2 2275 -0.5 726 Middle Rockies 

9312600 
WHITE RIVER BL 
TABBYUNE C NEAR 
SOLDIER SUMMIT, UT 

39.88 -111.04 195.3 2214 2.4 562 
Wasatch and Uinta 
Mountains 

9352900 
VALLECITO CREEK NEAR 
BAYFIELD, CO. 

37.48 -107.54 188.2 2422 -1.0 980 Southern Rockies 

9378630 
RECAPTURE CREEK 
NEAR BLANDING, UT 

37.76 -109.48 10.4 2209 5.7 595 Southern Rockies 
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Table S2.2 Climate predictor and low flow response variable equations. 

 Equation for 30-year regime values Equation for yearly values 

Pa �̅�𝑎 =
1

30
∑ ∑ 𝑃𝑖,𝑗

𝑛

𝑖=1

2012

𝑗=1983

 𝑃𝑎,𝑗 = ∑ 𝑃𝑖,𝑗

𝑛

𝑖=1

 

Ta �̅�𝑎 =
1

30
∑

1

𝑛
∑ 𝑇𝑖,𝑗

𝑛

𝑖=1

2012

𝑗=1983

 𝑇𝑎,𝑗 =
1

𝑛
∑ 𝑇𝑖,𝑗

𝑛

𝑖=1

 

Ps �̅�𝑠 =
1

30
∑ ∑ 𝑃𝑖,𝑗

[𝑖 𝑖𝑛 𝑆]

2012

𝑗=1983

 
𝑃𝑠,𝑗 = ∑ 𝑃𝑖,𝑗

[𝑖 𝑖𝑛 𝑆]

 

Ts �̅�𝑠 =
1

30
∑

1

𝑛𝑠

∑ 𝑇𝑖,𝑗

[𝑖 𝑖𝑛 𝑆]

2012

𝑗=1983

 
𝑇𝑠,𝑗 =

1

𝑛𝑠

∑ 𝑇𝑖,𝑗

[𝑖 𝑖𝑛 𝑆]

 

Pw �̅�𝑤 =
1

30
∑ ∑ 𝑃𝑖,𝑗

[𝑖 𝑖𝑛 𝑊]

2012

𝑗=1983

 
𝑃𝑤,𝑗 = ∑ 𝑃𝑖,𝑗

[𝑖 𝑖𝑛 𝑊]

 

Tw �̅�𝑤 =
1

30
∑

1

𝑛𝑤

∑ 𝑇𝑖

[𝑖 𝑖𝑛 𝑊]

2012

𝑗=1983

 𝑇𝑤,𝑗 =
1

𝑛𝑤

∑ 𝑇𝑖

[𝑖 𝑖𝑛 𝑊]

 

TDw 𝑇𝐷̅̅ ̅̅
𝑤 =

1

30
∑ ∑ 𝑇𝑖,𝑗  

[𝑖 𝑖𝑛 𝑊]

 [𝑇𝑖,𝑗 > 0]

2012

𝑗=1983

 
𝑇𝐷𝑤,𝑗 = ∑ 𝑇𝑖,𝑗  

[𝑖 𝑖𝑛 𝑊]

 [𝑇𝑖,𝑗 > 0] 

Sf 𝑆𝑓̅̅ ̅ =
1

30
∑

∑ 𝑃𝑖,𝑗  𝑛
𝑖=1  [𝑇𝑖,𝑗  <  0]

∑ 𝑃𝑖,𝑗
𝑛
𝑖=1

2012

𝑗=1983

 𝑆𝑓𝑗 =
1

∑ 𝑃𝑖,𝑗
𝑛
𝑖=1

∑ 𝑃𝑖,𝑗 

𝑛

𝑖=1

 [𝑇𝑖,𝑗  <  0] 

MDR 𝑀𝐷𝑅 =
1

30
∑

1

𝑛
∑ 𝑅𝑂𝑖,𝑗

𝑛

𝑖=1

2012

𝑗=1983

 𝑀𝐷𝑅𝑗 =
1

𝑛
∑ 𝑅𝑂𝑖,𝑗

𝑛

𝑖=1

 

DURs 𝐷𝑈𝑅𝑠 = ∑ 1

[𝑖 𝑖𝑛 𝑊]

[𝑅𝑂̅̅ ̅̅
15𝑖 < 𝑀𝐷𝑅] 𝐷𝑈𝑅𝑠,𝑗 = ∑ 1

[𝑖 𝑖𝑛 𝑆]

[𝑅𝑂15𝑖,𝑗 < 𝑀𝐷𝑅] 

MAGs 𝑀𝐴𝐺𝑠 =
∑ 𝑀𝐷𝑅 − 𝑅𝑂̅̅ ̅̅

15𝑖[𝑅𝑂̅̅ ̅̅
15𝑖 < 𝑀𝐷𝑅][𝑖 𝑖𝑛 𝑊]

𝐷𝑈𝑅𝑠  ×  𝑀𝐷𝑅
  𝑀𝐴𝐺𝑠,𝑗 =

∑ 𝑀𝐷𝑅 − 𝑅𝑂15𝑖,𝑗[𝑅𝑂15𝑖,𝑗 < 𝑀𝐷𝑅][𝑖 𝑖𝑛 𝑆]

𝐷𝑈𝑅𝑠,𝑗  ×  𝑀𝐷𝑅
  

SEVs 𝑆𝐸𝑉𝑠 =
∑ 𝑀𝐷𝑅 − 𝑅𝑂̅̅ ̅̅

15𝑖[𝑅𝑂̅̅ ̅̅
15𝑖 < 𝑀𝐷𝑅][𝑖 𝑖𝑛 𝑆]

𝑀𝐴𝑅
 𝑆𝐸𝑉𝑠,𝑗 =

∑ 𝑀𝐷𝑅 − 𝑅𝑂15𝑖,𝑗[𝑅𝑂15𝑖,𝑗 < 𝑀𝐷𝑅][𝑖 𝑖𝑛 𝑆]

𝑀𝐴𝑅
 

MAXs 𝑀𝐴𝑋𝑠 =
𝑚𝑎𝑥(𝑀𝐷𝑅 −  𝑅𝑂̅̅ ̅̅

15𝑖[𝑖 𝑖𝑛 𝑆])

𝑀𝐷𝑅
 𝑀𝐴𝑋𝑠,𝑗 =

𝑚𝑎𝑥(𝑀𝐷𝑅 −  𝑅𝑂15𝑖,𝑗[𝑖 𝑖𝑛 𝑆])

𝑀𝐷𝑅
 

DURw 𝐷𝑈𝑅𝑤 = ∑ 1
[𝑖 𝑖𝑛 𝑊]

[𝑅𝑂̅̅ ̅̅
15𝑖 < 𝑀𝐷𝑅] 𝐷𝑈𝑅𝑤,𝑗 = ∑ 1

[𝑖 𝑖𝑛 𝑊]

[𝑅𝑂15𝑖,𝑗 < 𝑀𝐷𝑅] 

MAGw 𝑀𝐴𝐺𝑤 =
∑ 𝑀𝐷𝑅 − 𝑅𝑂̅̅ ̅̅

15𝑖[𝑅𝑂̅̅ ̅̅
15𝑖 < 𝑀𝐷𝑅][𝑖 𝑖𝑛 𝑊]

𝐷𝑈𝑅𝑤  ×  𝑀𝐷𝑅
  

𝑀𝐴𝐺𝑤,𝑗

=
∑ 𝑀𝐷𝑅 − 𝑅𝑂15𝑖,𝑗[𝑅𝑂15𝑖,𝑗 < 𝑀𝐷𝑅][𝑖 𝑖𝑛 𝑊]

𝐷𝑈𝑅𝑤,𝑗  ×  𝑀𝐷𝑅
  

SEVw 𝑆𝐸𝑉𝑤 =
∑ 𝑀𝐷𝑅 − 𝑅𝑂̅̅ ̅̅

15𝑖[𝑅𝑂̅̅ ̅̅
15𝑖 < 𝑀𝐷𝑅][𝑖 𝑖𝑛 𝑊]

𝑀𝐴𝑅
 𝑆𝐸𝑉𝑤,𝑗 =

∑ 𝑀𝐷𝑅 − 𝑅𝑂15𝑖,𝑗[𝑅𝑂15𝑖,𝑗 < 𝑀𝐷𝑅][𝑖 𝑖𝑛 𝑊]

𝑀𝐴𝑅
 

MAXw 𝑀𝐴𝑋𝑤 =
𝑚𝑎𝑥(𝑀𝐷𝑅 −  𝑅𝑂̅̅ ̅̅

15𝑖[𝑖 𝑖𝑛 𝑊])

𝑀𝐷𝑅
 𝑀𝐴𝑋𝑤,𝑗 =

𝑚𝑎𝑥(𝑀𝐷𝑅 −  𝑅𝑂15𝑖,𝑗[𝑖 𝑖𝑛 𝑊])

𝑀𝐷𝑅
 

Note:  j = hydrologic year, i = day of the hydrologic year, RO = daily runoff, and 𝑅𝑂15 = 15-day mean runoff. n is the 

number of days in year j, ns is the number of days in the set of summer days [𝑖 𝑖𝑛 𝑆], and nw is the number of days in 

the set of winter days [𝑖 𝑖𝑛 𝑊]. The classification of winter versus summer days is unique to each catchment and 

consistent between years. The 30-year mean daily smoothed runoff is calculated as 𝑅𝑂̅̅ ̅̅
15𝑖 =

1

30
∑ 𝑅𝑂15𝑖,𝑗

2012
𝑗=1983 .  
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Appendix B. 
 
Chapter 3 Supplemental Information 

Supplementary information, in schematic form (Figure S3.1), is provided to 

illustrate spatial patterns in peak SWE precipitation-sensitivity (Figures S3.1a and S3.1c) 

and peak SWE temperature-sensitivity (Figures S3.1b and S3.1d). 

Supplementary information, in tabular form (Tables S3.1 –S3.3), is provided to 

summarize six different linear regression models and compare (a) their predictive ability 

for peak SWE (Table S3.1), (b) the slope magnitude for the temperature predictors 

(Table S3.2), and (c) the standard error estimates for the temperature predictors (Table 

S3).  

Supplementary information, in tabular form (Table S3.4), is included as the 

tabular version of Figure 3.3. 

 Supplementary information, in tabular form (Table S3.5), is provided as an 

alternative to the volume-based ecoregion summary (Table 3.1 in the main text), 

showing an area-based ecoregion summary of peak SWE susceptibility to temperature-

related snow drought. 
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Figure S3.1  Relative and absolute sensitivity of peak SWE to precipitation [SP; plots 
(a) and (c)] and temperature [ST; plots (b) and (d)], using grid-cell based 
winter season definition and thawing degrees (TD) as the temperature 
metric. Relative sensitivity is expressed as percent decrease in peak 
SWE per 1 standard deviation (SD) decrease in precipitation and per 1 
SD increase in TD; absolute sensitivity is expressed as the centimeter 
(cm) decrease in peak SWE per 1 SD decrease in precipitation and per 1 
SD increase in TD. Note: Glaciated cells are shown in white, and the 
scale in the bottom row is different between the precipitation and 
temperature sensitivity maps. 
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Table S3.1  Peak snow water equivalent (SWE) mean linear model R2 value by 
ecoregion based on winter season definition (grid-cell-based versus 1-
Nov to 1-Apr) and predictor variables (TD = thawing degrees, P = 
precipitation, T = temperature). Bold values highlight values within 0.01 of 
the maximum R2 for each ecoregion. Ecoregion numbering as in Figure 
3.1. 

 Definition of winter season: Grid-cell-based  1-Nov to 1-Apr 
 Predictors: TD, P T, P P TD, P T, P P 

1 Pacific & Nass Ranges 0.85 0.82 0.60 0.83 0.81 0.58 
2 North Cascades 0.91 0.89 0.78 0.88 0.87 0.76 
3 Cascades 0.78 0.74 0.47 0.76 0.73 0.48 
4 Eastern Cascades Slopes & Foothills 0.73 0.72 0.58 0.72 0.72 0.59 
5 Klamath Mountains 0.64 0.64 0.38 0.54 0.58 0.38 
6 Sierra Nevada 0.81 0.82 0.69 0.78 0.81 0.69 
7 Wasatch & Uinta Mountains 0.86 0.87 0.84 0.86 0.86 0.83 
8 Southern Rockies 0.89 0.90 0.88 0.85 0.85 0.83 
9 Middle Rockies 0.87 0.88 0.85 0.84 0.82 0.81 
10 Idaho Batholith 0.93 0.92 0.90 0.91 0.90 0.88 
11 Blue Mountains 0.81 0.81 0.71 0.82 0.81 0.71 
12 Canadian Rockies 0.92 0.89 0.84 0.87 0.86 0.81 
13 Columbia Mountains / N. Rockies 0.90 0.90 0.89 0.89 0.87 0.86 
14 Thompson-Okanagan Plateau 0.95 0.94 0.92 0.94 0.93 0.91 
15 Chilcotin Ranges & Fraser Plateau 0.93 0.92 0.89 0.91 0.91 0.88 

 Entire Domain: 0.87 0.86 0.79 0.85 0.84 0.77 
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Table S3.2  Peak snow water equivalent (SWE) mean linear model slope, i.e. 
temperature-sensitivity, for different temperature predictors (TD = thawing 
degrees, T = temperature) and winter season definition (grid-cell-based 
versus 1-Nov to 1-Apr). P = precipitation. Slope units are % decrease in 
peak SWE per 1 SD increase in the associated temperature predictor, 
consistent with Figure S3.1b. Bold values highlight maximum value for 
each ecoregion. Ecoregion numbering as in Figures 3.1. Mean winter 
temperature (Tw) is included to illustrate relationship between peak SWE 
T-sensitivity and temperature. 

 Definition of winter season: Grid-cell-based 1-Nov to 1-Apr Tw 
 Predictors: TD, P T, P TD, P T, P [°C] 

1 Pacific & Nass Ranges 17.5 16.4 17.0 16.4 -3.9 
2 North Cascades 11.2 9.8 10.2 9.5 -4.3 
3 Cascades 25.8 24.2 24.6 23.5 -0.3 
4 E. Cascades Slopes & Foothills 20.1 20.0 19.6 19.5 -1.4 
5 Klamath Mountains 31.2 31.0 23.5 26.1 0.9 
6 Sierra Nevada 17.6 19.0 16.4 17.8 -1.4 
7 Wasatch & Uinta Mountains 4.4 7.8 6.3 6.2 -6.3 
8 Southern Rockies 3.6 7.0 6.0 5.6 -7.7 
9 Middle Rockies 3.9 6.0 6.6 4.2 -8.6 
10 Idaho Batholith 5.0 4.6 5.2 4.2 -6.4 
11 Blue Mountains 13.6 13.5 14.3 13.4 -3.3 
12 Canadian Rockies 7.9 6.0 6.8 5.7 -9.6 
13 Columbia Mtns. / N. Rockies 4.3 5.0 5.7 3.3 -6.3 
14 Thompson-Okanagan Plateau 7.0 5.7 5.5 4.8 -6.5 
15 Chilcotin Ranges & Fraser Plateau 8.4 7.5 7.1 6.3 -7.6 

 Entire Domain: 9.9 10.2 10.0 9.2 -5.8 
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Table S3.3  As Table S3.2, but with standard error values. Bold values highlight 
minimum standard error for each ecoregion. Ecoregion numbering as in 
Figure 3.1. 

 Definition of winter season: Grid-cell-based 1-Nov to  1-Apr Tw 
 Predictors: TD, P T, P TD, P T, P [°C] 

1 Pacific & Nass Ranges 1.82 1.99 1.91 2.03 -3.9 

2 North Cascades 1.34 1.45 1.55 1.59 -4.3 

3 Cascades 2.93 3.14 3.06 3.16 -0.3 

4 E. Cascades Slopes & Foothills 3.73 3.76 3.80 3.79 -1.4 

5 Klamath Mountains 4.72 4.67 5.16 4.95 0.9 

6 Sierra Nevada 3.28 3.11 3.47 3.28 -1.4 

7 Wasatch & Uinta Mountains 2.48 2.36 2.40 2.42 -6.3 

8 Southern Rockies 2.18 2.05 2.34 2.39 -7.7 

9 Middle Rockies 1.96 1.89 2.13 2.27 -8.6 

10 Idaho Batholith 1.33 1.32 1.47 1.52 -6.4 

11 Blue Mountains 2.46 2.49 2.41 2.48 -3.3 

12 Canadian Rockies 1.14 1.30 1.42 1.51 -9.6 

13 Columbia Mtns. / N. Rockies 1.70 1.73 1.84 2.05 -6.3 

14 Thompson-Okanagan Plateau 1.20 1.27 1.39 1.40 -6.5 

15 Chilcotin Ranges & Fraser Plateau 1.80 1.83 2.04 2.07 -7.6 

 Entire Domain: 2.08 2.10 2.23 2.29 -5.8 
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Table S3.4  Snow drought severity [fraction below mean], frequency [fraction of 
years], and risk [severity x frequency], 1951-2013, for dry [D], warm [W], 
and warm & dry [WD] snow droughts. Ecoregion numbering as in Figure 
3.1. Bold values highlight the snow drought type with the maximum 
severity, frequency, and risk by ecoregion. 

 Mean Severity Frequency Risk 
Snow Drought Type: D W WD D W WD D W WD 

1. Pacific & Nass Ranges 0.13 0.06 0.14 0.25 0.11 0.22 0.03 0.01 0.03 

2. North Cascades 0.17 0.03 0.19 0.21 0.06 0.27 0.03 0.00 0.05 

3. Cascades 0.15 0.10 0.31 0.11 0.11 0.29 0.02 0.01 0.09 

4. Eastern Cascades Slopes & 
Foothills 

0.23 0.06 0.34 0.16 0.05 0.29 0.04 0.00 0.10 

5. Klamath Mountains 0.30 0.24 0.29 0.25 0.10 0.21 0.08 0.02 0.06 

6. Sierra Nevada 0.28 0.06 0.38 0.17 0.03 0.37 0.05 0.00 0.14 

7. Wasatch & Uinta 
Mountains 

0.21 0.08 0.27 0.19 0.06 0.35 0.04 0.01 0.09 

8. Southern Rockies 0.21 0.06 0.23 0.19 0.03 0.37 0.04 0.00 0.08 

9. Middle Rockies 0.17 0.05 0.25 0.24 0.03 0.29 0.04 0.00 0.07 

10. Idaho Batholith 0.25 0.02 0.28 0.22 0.03 0.27 0.06 0.00 0.08 

11. Blue Mountains 0.20 0.08 0.36 0.16 0.06 0.29 0.03 0.01 0.10 

12. Canadian Rockies 0.17 0.08 0.23 0.32 0.06 0.24 0.05 0.01 0.05 

13. Columbia Mountains / 
Northern Rockies 

0.15 0.04 0.17 0.24 0.03 0.29 0.03 0.00 0.05 

14. Thompson-Okanagan 
Plateau 

0.22 0.05 0.24 0.13 0.02 0.30 0.03 0.00 0.07 

15. Chilcotin Ranges & Fraser 
Plateau 

0.22 0.12 0.27 0.13 0.02 0.32 0.03 0.00 0.08 
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Table S3.5  Temperature-related snow drought susceptibility summarized by 
ecoregion. SWE = mean snow water equivalent. Ecoregion numbering as 
in Figure 3.1. “Other” includes all grid cells not within the 15 ecoregions. 
Note: Values may not add up to 100% due to rounding. 

  Historical +2°C Warming 

Ecoregion 
Area Low Med High Low Med High 
[km2] [% Area] [% Change] 

1. Pacific & Nass Ranges  27,689  53% 39% 8% -22% +6% +16% 
2. North Cascades  28,784  60% 34% 6% -21% +9% +11% 
3. Cascades  35,822  11% 63% 27% -10% -24% +34% 
4. Eastern Cascades Slopes & Foothills  26,340  15% 82% 3% -12% -16% +28% 
5. Klamath Mountains  20,024  2% 49% 49% -2% -31% +33% 
6. Sierra Nevada  37,577  23% 58% 18% -10% -16% +26% 
7. Wasatch & Uinta Mountains  30,787  92% 8% 0% -21% +21% 0% 
8. Southern Rockies  73,507  98% 2% 0% -12% +12% 0% 
9. Middle Rockies  94,420  100% 0% 0% -3% +3% 0% 
10. Idaho Batholith  56,361  92% 8% 0% -19% +19% 0% 
11. Blue Mountains  28,209  53% 47% 0% -39% +35% +4% 
12. Canadian Rockies  71,401  100% 0% 0% -6% +6% 0% 
13. Columbia Mountains / N. Rockies  142,425  81% 19% 0% -22% +19% +3% 
14. Thompson-Okanagan Plateau  41,937  96% 4% 0% -19% +19% 0% 
15. Chilcotin Ranges & Fraser Plateau  38,458  100% 0% 0% -9% +9% 0% 
       Other  70,794  53% 35% 12% -22% +7% +15% 

Total  824,536  74% 21% 5% -15% 8% 7% 
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Appendix C. 
 
Chapter 4 Supplemental Information 

Table S4.1  Land cover and associated surface roughness (Manning’s M) values 
based on the dominant land cover of watershed. 

Watershed Dominant Land 
cover 

Surface Type from 
Chow (1959) Table 5-6 

Manning’s n Manning’s M 

Fort Nelson young & old forest D-2.d. 3-4 0.08 12 
Blueberry young forest D-2.d. 3 0.06 17 
Whiteman Creek young & old forest D-2.d. 3-4 0.08 12 
Capilano River subalpine D-1.b. 1 or C.d. 2. 0.04 25 

 

Table S4.2  Fort Nelson unsaturated/saturated zone parameters. McConachie 
soil – sphagnum peat over morainal till. Fine clastic sedimentary 
(mudstone, siltstone, shale) bedrock of the Fort St. John Group.  

Depth 
below 
ground 
surface 

(m) 

Layer 
 

Density 
(Kg/m3) 

θs θr 
α  

(cm-1) 
n Sy 

Kz 
(m/s) 

Kxy 
(m/s) 

Ss 

0-0.2 O fibric 40 0.85 0.04 0.08 1.9 0.68 4.8E-5 4.8E-5 1E-4 
0.2-0.4 O hemic 130 0.50 0.15 0.02 1.7 0.16 1.4E-5 1.4E-5 1E-4 
0.4-0.6 O sapric 170 0.40 0.22 0.003 1.6 0.009 5.5E-7 7.0E-7 1E-4 
0.6-2 C horizon 1500 0.35 0.068 0.016 1.31 0.062 2.7E-6 7.0E-6 1E-4 
2-5 Saprolite 2200 0.20 0.068 0.008 1.31 0.02 1.0E-7 3.0E-7 1E-5 
5-200 Bedrock 2400 0.12 0.068 0.008 1.31 0.01 1.0E-10 5.0E-10 1E-5 

 

Table S4.3  Blueberry unsaturated/saturated zone parameters. Wonowon soil – 
morainal till. Dunvegan sandstone bedrock. 

Depth 
below 
ground 
surface  

(m) 

Layer 
 

Density 
(Kg/m3) 

θs θr 
α  

(cm-1) 
n Sy 

Kz 
(m/s) 

Kxy 
(m/s) 

Ss 

0-0.2 A horizon 1310 0.45 0.067 0.02 1.41 0.23 2.7E-6 3.0E-5 1E-4 
0.2-0.85 B horizon 1560 0.43 0.089 0.01 1.23 0.17 2.7E-7 5.0E-6 1E-4 
0.85-1.5 C horizon 1420 0.36 0.07 0.005 1.09 0.1 2.7E-7 5.0E-6 1E-4 
1.5-5 Saprolite 2200 0.27 0.05 0.03 1.45 0.2 2.0E-6 3.0E-6 1E-5 
5-200 Bedrock 2400 0.25 0.05 0.008 1.45 0.2 5.0E-8 5.0E-8 1E-5 
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Table S4.4  Whiteman unsaturated/saturated zone parameters. Grant soil – 
morainal till. Trachyandesite bedrock of the Kitley Lake Member. 

Depth 
below 
ground 

surface (m) 

Layer 
 

Density 
(Kg/m3) 

θs θr 
α 

(cm-1) 
n Sy 

Kz 
(m/s) 

Kxy 
(m/s) 

Ss 

0-0.1 A horizon 1300 0.41 0.065 0.075 1.89 0.2 2E-5 2E-5 1E-4 
0.1-0.5 B horizon 1450 0.41 0.095 0.019 1.31 0.2 1.6E-5 5E-5 1E-4 

0.4-0.75 C horizon 1600 0.41 0.065 0.075 1.89 0.2 1.1E-5 5E-5 1E-4 
0.8-5 Saprolite 2400 0.15 0.05 0.0036 2.75 0.02 5E-7 6E-7 1E-5 
5-200 Bedrock 2500 0.10 0.05 0.0036 2.75 0.01 3E-8 3E-8 1E-5 

 

Table S4.5  Capilano unsaturated/saturated zone parameters. Sayres soil – 
colluvial underlain by igneous acidic bedrock. Mid-cretaceous 
unnamed quartz diorite bedrock. 

Depth 
below 
ground 

surface (m) 

Layer 
 

Density 
(Kg/m3) 

θs θr 
α  

(cm-1) 
n Sy 

Kz 
(m/s) 

Kxy 
(m/s) 

Ss 

0-0.1 A horizon 1400 0.39 0.10 0.059 1.48 0.2 2E-6 5E-6 1E-4 
0.1-0.8 B horizon 1450 0.39 0.10 0.059 1.48 0.2 2E-6 2E-6 1E-4 
0.8-5 Saprolite 2700 0.05 0.01 0.0036 2.75 0.02 5E-7 5E-7 1E-5 
5-200 Bedrock 2800 0.03 0.01 0.0036 2.75 0.01 1E-7 1E-7 1E-5 
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Table S4.6  Mean annual values and absolute difference (°C) in mean annual 
temperature (Temp) and mean annual values (mm/year) and relative 
difference (%) in mean annual precipitation (Precip), peak snow 
water equivalent (SWE), annual runoff, actual evapotranspiration 
(AET), and groundwater recharge for 1980s baseline (1970-1999) 
versus 2050s (2040-2069) and 2080s (2070-2099) for representative 
concentration pathway (RCP) 4.5 and RCP 8.5.  

 Time 
Period 

RCP 
Fort Nelson Blueberry  Whiteman  Capilano  

 Mean  Δ Mean  Δ Mean  Δ Mean  Δ 

T
em

p
 

1980s -- -0.6 -- 0.0 -- 2.1 -- 5.9 -- 
2050s 4.5 2.1 +2.8 2.7 +2.7 4.8 +2.8 8.4 +2.6 
2050s 8.5 2.9 +3.5 3.3 +3.4 5.5 +3.4 9.1 +3.2 
2080s 4.5 2.8 +3.4 3.3 +3.3 5.6 +3.5 9.1 +3.2 
2080s 8.5 5.2 +5.9 5.8 +5.9 8.2 +6.1 11.4 +5.6 

P
re

ci
p

 

1980s -- 459 -- 498 -- 650 -- 2346 -- 
2050s 4.5 521 +13.5% 566 +13.7% 667 +2.6% 2440 +4.0% 
2050s 8.5 554 +20.7% 599 +20.3% 706 +8.6% 2524 +7.6% 
2080s 4.5 546 +19.0% 585 +17.6% 712 +9.5% 2576 +9.8% 
2080s 8.5 588 +28.2% 607 +21.9% 726 +11.7% 2594 +10.6% 

S
W

E
  

1980s -- 123 -- 124 -- 312 -- 398 -- 
2050s 4.5 127 +4.0% 119 -3.8% 272 -12.9% 103 -74.1% 
2050s 8.5 132 +7.5% 123 -1.0% 252 -19.3% 77 -80.7% 
2080s 4.5 135 +10.0% 128 +3.3% 268 -14.0% 77 -80.6% 
2080s 8.5 140 +14.5% 101 -18.8% 162 -48.1% 31 -92.3% 

R
u

n
o

ff
  

1980s -- 12 -- 104 -- 273 -- 1588 -- 
2050s 4.5 16 +27.8% 122 +17.6% 288 +5.7% 1668 +5.0% 
2050s 8.5 19 +57.6% 140 +34.5% 314 +15.1% 1729 +8.9% 
2080s 4.5 20 +60.3% 134 +28.7% 325 +19.0% 1773 +11.7% 
2080s 8.5 24 +96.3% 140 +34.8% 338 +23.9% 1785 +12.4% 

A
E

T
  

1980s -- 429 -- 354 -- 365 -- 471 -- 
2050s 4.5 479 +11.6% 395 +11.5% 364 -0.3% 471 +0.0% 
2050s 8.5 500 +16.4% 403 +13.8% 374 +2.3% 484 +2.8% 
2080s 4.5 491 +14.3% 397 +12.1% 371 +1.7% 483 +2.4% 
2080s 8.5 518 +20.6% 409 +15.5% 371 +1.7% 486 +3.2% 

R
ec

h
ar

g
e 

1980s -- 288 -- 194 -- 234 -- 774 -- 
2050s 4.5 339 +17.6% 211 +9.2% 244 +4.4% 769 -0.6% 
2050s 8.5 368 +27.5% 221 +14.0% 258 +10.6% 783 +1.1% 
2080s 4.5 360 +24.9% 213 +10.0% 254 +8.7% 771 -0.4% 
2080s 8.5 394 +36.5% 229 +18.5% 264 +13.0% 742 -4.1% 
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Figure S4.1  Annual climate and water balance components for the 1980s 
baseline (1970-1999) versus 2050s (2040-2069) and 2080s (2070-
2099) for representative concentration pathway (RCP) 4.5 and RCP 
8.5, including mean annual temperature (Temp), annual precipitation 
(Precip), peak snow water equivalent (SWE), annual runoff, annual 
actual evapotranspiration (AET), and annual groundwater recharge. 
Blue and pink shading indicate a significant (p < 0.05) increase or 
decrease relative to the baseline period, as assessed with the two-
sided Mann-Whitney U test. Arrows are added for clarity where 
boxplot shading is unclear. 
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Figure S4.2  Smoothed 15-day mean precipitation rate for the 1980s baseline 
(1970-1999) versus 2050s (2040-2069) and 2080s (2070-2099) for 
representative concentration pathway (RCP) 4.5 and RCP 8.5. 
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Figure S4.3  Mean daily temperature for the 1980s baseline (1970-1999) versus 
2050s (2040-2069) and 2080s (2070-2099) for representative 
concentration pathway (RCP) 4.5 and RCP 8.5. 
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Figure S4.4  Smoothed 15-day mean daily runoff for the 1980s baseline (1970-
1999) versus 2050s (2040-2069) and 2080s (2070-2099) for 
representative concentration pathway (RCP) 4.5 and RCP 8.5. 
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Figure S4.5 Mean daily snow water equivalent for the 1980s baseline (1970-1999) 
versus 2050s (2040-2069) and 2080s (2070-2099) for representative 
concentration pathway (RCP) 4.5 and RCP 8.5. 
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Figure S4.6  Smoothed 15-day mean actual evapotranspiration rate for the 1980s 
baseline (1970-1999) versus 2050s (2040-2069) and 2080s (2070-
2099) for representative concentration pathway (RCP) 4.5 and RCP 
8.5. 
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Figure S4.7 Smoothed 15-day mean groundwater recharge rate for the 1980s 
baseline (1970-1999) versus 2050s (2040-2069) and 2080s (2070-
2099) for representative concentration pathway (RCP) 4.5 and RCP 
8.5. 
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Figure S4.8  Mean daily groundwater (GW) storage anomaly (calculated as the 
mean daily value minus the baseline mean annual value) for the 
1980s baseline (1970-1999) versus 2050s (2040-2069) and 2080s 
(2070-2099) for representative concentration pathway (RCP) 4.5 and 
RCP 8.5.  
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Table S4.7  Frequency (fraction of years) of dry (D), warm (W), and warm and dry 
(W&D) snow droughts. Baseline 1980s (1970-1999) versus 2050s 
(2040-2069) and 2080s (2070-2099) for representative concentration 
pathways (RCP) 4.5 and 8.5. 

  Fort Nelson Blueberry Whiteman Capilano 
19

80
s D 0.16 0.16 0.22 0.07 

W 0.08 0.09 0.07 0.30 
W&D 0.30 0.26 0.22 0.21 

 RCP 4.5 8.5 4.5 8.5 4.5 8.5 4.5 8.5 

20
50

s D 0.04 -- 0.01 -- 0.01 -- 0.01 -- 
W 0.23 0.20 0.34 0.39 0.37 0.59 0.54 0.63 

W&D 0.27 0.19 0.29 0.19 0.33 0.19 0.41 0.34 

20
80

s D -- -- -- -- -- -- -- -- 

W 0.28 0.32 0.32 0.71 0.51 0.79 0.60 0.60 

W&D 0.22 0.08 0.22 0.04 0.20 0.13 0.40 0.40 

 

Table S4.8   Mean severity (fraction below baseline normal) of dry (D), warm (W), 
and warm and dry (W&D) snow droughts. Baseline 1980s (1970-
1999) versus 2050s (2040-2069) and 2080s (2070-2099) for 
representative concentration pathways (RCP) 4.5 and 8.5. 

  Fort Nelson Blueberry Whiteman Capilano 

19
80

s D 0.20 0.18 0.17 0.45 

W 0.16 0.19 0.12 0.47 

W&D 0.21 0.22 0.23 0.56 

 RCP 4.5 8.5 4.5 8.5 4.5 8.5 4.5 8.5 

20
50

s D 0.31 0.03 0.16 0.23 0.29 0.16 0.70 0.79 

W 0.13 0.16 0.20 0.26 0.20 0.27 0.82 0.82 

W&D 0.23 0.22 0.27 0.23 0.25 0.29 0.82 0.88 

20
80

s D -- -- -- -- 0.34 -- 0.51 -- 

W 0.15 0.22 0.20 0.37 0.22 0.49 0.84 0.92 

W&D 0.23 0.23 0.27 0.49 0.31 0.53 0.84 0.95 
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Figure S4.9  Snow drought risk (frequency x severity) for dry (D), warm (W), and 
warm and dry (W&D) snow droughts versus the mean winter (1-Nov 
to 1-Apr) temperature (Tw). Linear trend lines plotted by watershed 
and local regression lines (dark gray) plotted for all data points to 
highlight the non-linear relationship between risk and Tw. 
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Figure S4.10  Winter low flow regime indicators for the 1980s baseline (1970-1999) 
versus 2050s (2040-2069) and 2080s (2070-2099) for representative 
concentration pathway (RCP) 4.5 and RCP 8.5. Blue and pink 
shading indicate a significant (p < 0.05) increase or decrease relative 
to the baseline period, as assessed with the two-sided Mann-
Whitney U test. Figure 4.5 (in main text) shows summer low flow 
regime indicators. 
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Figure S4.11  Empirical cumulative distributions for (a) winter low flow duration 
and (b) summer low flow duration for the 1980s baseline (1970-1999) 
versus 2050s (2040-2069) and 2080s (2070-2099) for representative 
concentration pathway (RCP) 4.5 and RCP 8.5. A shift to the right of 
the 1980s baseline indicates increased low flow duration, while a 
shift to the left indicates decreased low flow duration. 
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Figure S4.12  Empirical cumulative distributions for (a) winter low flow severity 
and (b) summer low flow severity for the 1980s baseline (1970-1999) 
versus 2050s (2040-2069) and 2080s (2070-2099) for representative 
concentration pathway (RCP) 4.5 and RCP 8.5. MAR = Mean Annual 
Runoff for the baseline period. A shift to the right of the 1980s 
baseline indicates increased low flow severity, while a shift to the 
left indicates decreased low flow severity. 
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Figure S4.13  Empirical cumulative distributions for (a) winter and (b) summer 
mean 15-day minimum runoff for the 1980s baseline (1970-1999) 
versus 2050s (2040-2069) and 2080s (2070-2099) for representative 
concentration pathway (RCP) 4.5 and RCP 8.5. A shift to the left of 
the 1980s baseline indicates increased low flow severity, i.e. lower 
low flows, while a shift to the right indicates decreased low flow 
severity, i.e. higher low flows. 
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Figure S4.14  Empirical cumulative distributions for (a) winter and (b) summer 
mean 30-day minimum runoff for the 1980s baseline (1970-1999) 
versus 2050s (2040-2069) and 2080s (2070-2099) for representative 
concentration pathway (RCP) 4.5 and RCP 8.5. A shift to the left of 
the 1980s baseline indicates increased low flow severity, i.e. lower 
low flows, while a shift to the right indicates decreased low flow 
severity, i.e. higher low flows. 
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Figure S4.15  Snow drought impacts on winter low flows by snow drought type, 
including years without snow drought (None) and years with warm 
(W), dry (D), and warm and dry (W&D) snow droughts. Blue and pink 
shading indicate a significant (p < 0.05) increase or decrease relative 
to the baseline period, as assessed with the two-sided Mann-
Whitney U test. Abbreviations are as in Table 4.2Error! Reference s
ource not found.. Arrows are added for clarity where boxplot shading 
is unclear. Figure 4.6 (in main text) shows the summer low flow 
regime indicators. 
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Figure S4.16  Frequency of snow drought propagation into summer streamflow 
drought, in the absence of summer precipitation deficit, by snow 
drought type: warm (W), Dry (D), warm and dry (W&D), RCP 4.5. 
Figure 4.7 (in main text) shows the same plot for RCP 8.5. 
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Appendix D. 
 
Chapter 5 Supplemental Information: Daily to Hourly 
Climate Time Series Disaggregation 

To disaggregate the daily downscaled climate projections to the hourly time 

series required for the Cold Regions Hydrological model, the observed hourly data were 

first subset to full days (24 hours) with no missing observations. For each day in the 

downscaled daily time series, one day of observed hourly data was then randomly 

selected based on temporal occurrence and precipitation amount. For example, for each 

day in the daily time series, a preliminary subset of hourly data was selected based on a 

30-day centered window, i.e. from days of the year within ±15 days of the day of the year 

of respective daily downscaled data. The set of days of observed hourly data was then 

further subset to match precipitation of the daily data (binary: Yes or No). For days in the 

daily time series with precipitation, further subsetting of the set of days of observed 

hourly data was completed based on quartile matching of the daily precipitation amount. 

In this step, quartiles of daily precipitation were calculated from the subset of observed 

hourly data, and the set of days of observed hourly data was then subset to days with a 

precipitation amount within the quartile that matched (i.e. contained) the precipitation 

amount of the daily data. One day (24 hours) of the observed hourly data was then 

randomly selected from the final subset.   

From the final selected 24 hours of observed climate data, hourly humidity and 

wind speed observations were used without transformation. The diurnal patterns of the 

hourly temperature and precipitation observations were used to disaggregate the daily 

time series to hourly as described in the following sections. 

Temperature disaggregation 

The observed hourly temperatures were transformed into a normalized diurnal 

temperature curve, ranging from 0 (minimum daily temperature) to 1 (maximum daily 

temperature) using Equation S5.1. 

𝑇𝑛𝑜𝑟𝑚 =
(𝑇 −𝑚𝑖𝑛(𝑇))

(max (𝑇)−𝑚𝑖𝑛(𝑇))
                                                                                               [S5.1] 
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Where T is the set of hourly temperatures for the randomly selected day. The normalized 

diurnal temperature curve was then used to disaggregate the daily maximum and 

minimum temperature from the downscaled time series to hourly using Equation S5.2: 

𝑡 =  (𝑇𝑛𝑜𝑟𝑚  × (𝑡𝑑,𝑚𝑎𝑥 −  𝑡𝑑,𝑚𝑖𝑛 )) +  𝑡𝑑,𝑚𝑖𝑛                                                                  [S5.2] 

Where t is the disaggregated temperature time series for one day. Tnorm is the diurnal 

temperature curve from Equation S5.1, and td,max and td,min are the downscaled daily 

maximum and minimum temperature. 

Precipitation disaggregation 

For days with precipitation, the daily precipitation was disaggregated using 

Equation S5.3: 

𝑝 =
𝑃

∑ 𝑃24
1

× 𝑝𝑑                                                                                                             [S5.3] 

Where p is the disaggregated precipitation time series for one day, and pd is the 

downscaled daily precipitation, and P is the observed hourly precipitation. 
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Appendix E. 
 
Chapter 5 Supplemental Information: Gauge Time 
Series Comparison 

The plots below show observed daily runoff time series for the Beatton River 

(15,600 km2; ID 07FC001) and two sub-watersheds: the Blueberry River (1,770 km2; ID 

07FC003) and St. John Creek (201 km2; ID 07FC002). Only years with no missing data 

for all three watersheds are included. These plots show that the hydrographs of the two 

sub-watersheds (St. John Creek and Blueberry River) differ significantly from each other 

and from the Beatton River watershed in which they are contained. St. John Creek, the 

smallest watershed, consistently exhibits an earlier spring snowmelt peak and lower 

summer rain event peaks compared to the Blueberry and Beatton watersheds.  

Similarity and error statistics between the three watersheds (Beatton, Blueberry, 

and St. John) are shown in Table S5.1. The Nash-Sutcliffe (1970) efficiency criterion 

(NSE) is often used to evaluate the performance of hydrological models; however, it puts 

greater emphasis on high flows. Therefore, the volumetric efficiency criterion (VE), which 

was proposed by Criss & Winston (2008) to overcome problems with NSE, is also 

reported in Table S5.1. For the calculation of NSE and VE, the smaller watershed was 

treated as the observed data and the larger treated as the simulated data. Thus, the 

similarity measures give an indication of how well the hydrograph of the larger 

watershed matches the hydrograph of the smaller watershed. The common error 

statistics root mean square error (RMSE) and mean absolute error (MAE) are also 

reported. 

NSE values range from –Inf to 1, with 0 indicating the model predictions are as 

accurate as the mean of the observed data and 1 indicating a perfect match. VE 

represents the fraction of water delivered at the proper time. VE values range from 0 to 1 

and, where 1 represents a perfect match. Negative values represent the volumetric 

mismatch (Criss & Winston, 2008).  

The hydrographs of the two larger watersheds (Beatton and Blueberry) have the 

greatest similarity. Neither the Beatton nor the Blueberry hydrographs are a good fit with 
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the hydrograph for the small St. John Creek watershed, as indicated by the low NSE and 

VE values and high RMSE values in Table S5.1. 

Table S5.1  Similarity statistics between Beatton, Blueberry, and St. John Creek 
hydrographs. 

 Beatton (SIM) | 
Blueberry (OBS) 

Beatton (SIM) | 
St. John (OBS) 

Blueberry (SIM) |  
St. John (OBS) 

Nash-Sutcliffe efficiency 0.59 0.35 0.04 
Volumetric efficiency 0.44 -0.08 0.00 
Root Mean Square Error [mm] 0.48  2.75  2.28  
Mean Absolute Error [mm] 0.18 0.30 0.28 
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